Electrons in Atoms Chap. 5. I.Light (electromagnetic radiation)

Post on 22-Dec-2015

218 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Electrons in Electrons in AtomsAtoms

Chap. 5Chap. 5Chap. 5Chap. 5

I.I. Light (electromagnetic Light (electromagnetic radiation)radiation)

I.I. Light (electromagnetic Light (electromagnetic radiation)radiation)A. Two componentsA. Two components

I.I. Light (electromagnetic Light (electromagnetic radiation)radiation)A. Two componentsA. Two components

1.1. Electrical waveElectrical wave

I.I. Light (electromagnetic Light (electromagnetic radiation)radiation)A. Two componentsA. Two components

1.1. Electrical waveElectrical wave2.2. Magnetic waveMagnetic wave

I.I. Light (electromagnetic Light (electromagnetic radiation)radiation)A. Two componentsA. Two components

B. Two naturesB. Two natures

I.I. Light (electromagnetic Light (electromagnetic radiation)radiation)A. Two componentsA. Two components

B. Two naturesB. Two natures1.1. ParticleParticle

I.I. Light (electromagnetic Light (electromagnetic radiation)radiation)A. Two componentsA. Two components

B. Two naturesB. Two natures1.1. ParticleParticle2.2. WaveWave

I.I. LightLightC.C. Characteristics of a Characteristics of a

Light WaveLight Wave

1.1. wavelengthwavelength

I.I. LightLightC.C. Characteristics of a Characteristics of a

Light WaveLight Wave

1.1. wavelengthwavelength

The distance between successive wave crestsThe distance between successive wave crests

I.I. LightLightC.C. Characteristics of a Characteristics of a

Light WaveLight Wave

1.1. wavelengthwavelength2.2. frequencyfrequency

The time it takes a wave to pass a given pointThe time it takes a wave to pass a given point

I.I. LightLightC.C. Characteristics of a Characteristics of a

Light WaveLight Wave

1.1. wavelengthwavelength2.2. frequencyfrequency3.3. amplitudeamplitude

The height of a waveThe height of a wave

I.I. LightLightC.C. Characteristics of a Characteristics of a

Light WaveLight Wave

1.1. wavelengthwavelength2.2. frequencyfrequency3.3. amplitudeamplitude4.4. speedspeed

I.I. LightLightC.C. Characteristics of a Characteristics of a

Light WaveLight Wave

C.C. Characteristics of a Characteristics of a Light WaveLight Wave

D.D. The Wave EquationThe Wave Equation

I.I. LightLight

C.C. Characteristics of a Characteristics of a Light WaveLight Wave

D.D. The Wave EquationThe Wave Equation1.1. inverse relation of inverse relation of

wavelength and frequencywavelength and frequency

I.I. LightLight

C.C. Characteristics of a Characteristics of a Light WaveLight Wave

D.D. The Wave EquationThe Wave Equation1.1. inverse relation of inverse relation of

wavelength and frequencywavelength and frequency

2.2. check the unitscheck the units

I.I. LightLight

The Wave EquationThe Wave Equation

c = λ x υ

Self Check – Ex. 1Self Check – Ex. 1

A light wave has a A light wave has a frequency of 2.6 frequency of 2.6 xx 10 101414 Hz. Hz. What is the wavelength?What is the wavelength?

Self Check – Ex. 2Self Check – Ex. 2

What is the frequency of What is the frequency of light with a wavelength of light with a wavelength of 0.0000072 m?0.0000072 m?

C.C. Characteristics of a Characteristics of a Light WaveLight Wave

D.D. The Wave EquationThe Wave Equation

E.E. Planck’s EquationPlanck’s Equation

I.I. LightLight

Planck’s EquationPlanck’s Equation

EE = = hh xx υυ

hh = 6.63 = 6.63 xx 10 10-34-34 J·s J·s

Self Check – Ex. 3Self Check – Ex. 3

A light photon has 4.2 A light photon has 4.2 xx 10 10-19 -19 J J of energy. What is the of energy. What is the frequency of this light?frequency of this light?

Self Check – Ex. 4Self Check – Ex. 4

How much energy does a How much energy does a photon of orange light have photon of orange light have ((λλ = 630 nm)? = 630 nm)?

101099 nm = 1 m nm = 1 m

C.C. Characteristics of a Characteristics of a Light WaveLight Wave

D.D. The Wave EquationThe Wave Equation

E.E. Planck’s EquationPlanck’s Equation

F.F. The Electromagnetic The Electromagnetic SpectrumSpectrum

I.I. LightLight

Electromagnetic SpectrumElectromagnetic SpectrumLong waves

Short waves

Electromagnetic SpectrumElectromagnetic Spectrum

Radio waves

Long waves

Short waves

Electromagnetic SpectrumElectromagnetic Spectrum

Radio waves

Micro-waves

Long waves

Short waves

Electromagnetic SpectrumElectromagnetic Spectrum

Radio waves

Micro-waves

Long waves

Short waves

Infra-red

Electromagnetic SpectrumElectromagnetic Spectrum

Radio waves

Micro-waves

Long waves

Short waves

Infra-red

Visible

Electromagnetic SpectrumElectromagnetic Spectrum

Radio waves

Micro-waves

Long waves

Short waves

Infra-red

Visible

Ultra-violet

Electromagnetic SpectrumElectromagnetic Spectrum

Radio waves

Micro-waves

Long waves

Short waves

Infra-red

Visible

Ultra-violet

X-rays

Electromagnetic SpectrumElectromagnetic Spectrum

Radio waves

Micro-waves

Long waves

Short waves

Infra-red

Visible

Ultra-violet

X-rays

Gamma rays

II.II. Emission SpectraEmission Spectra

A.A. DefinitionDefinitionII.II. Emission SpectraEmission Spectra

Emission Spectrum:Emission Spectrum:

The various types of light given off when an atom is excited

The various types of light given off when an atom is excited

A.A. DefinitionDefinition

B.B. ExamplesExamples

II.II. Emission SpectraEmission Spectra

400 nm 500 nm 600 nm 700 nm

Hydrogen’s SpectrumHydrogen’s Spectrum

Note – only a few colors are present

400 nm 500 nm 600 nm 700 nm

Mercury’s SpectrumMercury’s Spectrum

400 nm 500 nm 600 nm 700 nm

Neon’s SpectrumNeon’s Spectrum

A.A. DefinitionDefinition

B.B. ExamplesExamples

C.C. Explanation – Bohr’s Explanation – Bohr’s ModelModel

II.II. Emission SpectraEmission Spectra

e-

Bohr’s Model of an AtomBohr’s Model of an Atom

Electrons orbit the nucleus (like planets orbiting the sun)

Bohr’s Model of an AtomBohr’s Model of an Atom

e-

Electrons must be in a specific orbit (never between orbits)

Bohr’s Model of an AtomBohr’s Model of an Atom

e-

n=1

n=2n=3

Electron wants to be in the lowest unoccupied level

Bohr’s Model of an AtomBohr’s Model of an Atom

e-

The energy of the electrons depends on the distance from the nucleus

Bohr’s Model of an AtomBohr’s Model of an Atom

e-low energy

high energy

Light is emitted when electrons fall to lower energy levels

Bohr’s Model of an AtomBohr’s Model of an Atom

e-

Only certain sized falls are permitted.

Bohr’s Model of an AtomBohr’s Model of an Atom

e-

410 nm

434 nm

486 nm 656 nm

Hydrogen’s SpectrumHydrogen’s SpectrumWhat is the energy for each line produced?

Color Wavelength Frequency Energy

Red 6.56x10-7 m

Green 4.86x10-7 m

Blue 4.34x10-7 m

Purple 4.10x10-7 m

410 nm

434 nm

486 nm 656 nm

Hydrogen’s SpectrumHydrogen’s SpectrumWhat is the energy for each line produced?

Color Wavelength Frequency Energy

Red 6.56x10-7 m 4.57x1014 Hz

Green 4.86x10-7 m 6.17x1014 Hz

Blue 4.34x10-7 m 6.91x1014 Hz

Purple 4.10x10-7 m 7.32x1014 Hz

410 nm

434 nm

486 nm 656 nm

Hydrogen’s SpectrumHydrogen’s SpectrumWhat is the energy for each line produced?

Color Wavelength Frequency Energy

Red 6.56x10-7 m 4.57x1014 Hz 3.03x10-19 J

Green 4.86x10-7 m 6.17x1014 Hz 4.09x10-19 J

Blue 4.34x10-7 m 6.91x1014 Hz 4.58x10-19 J

Purple 4.10x10-7 m 7.32x1014 Hz 4.85x10-19 J

III. A new modelIII. A new model

III. A new modelIII. A new model

Electrons’ location cannot be accurately determined

A. Quantum MechanicsA. Quantum Mechanics

1. Orbitals1. Orbitals

III. A new modelIII. A new modelA. Quantum MechanicsA. Quantum Mechanics

OrbitalOrbital

A region of space around the nucleus where an electron is likely to be found.

A region of space around the nucleus where an electron is likely to be found.

Types of Orbitals

1.1. s orbitals orbital

1.1. s orbitals orbital

2.2. p orbitalsp orbitals

Types of Orbitals

1.1. s orbitals orbital

2.2. p orbitalsp orbitals

3.3. d orbitalsd orbitals

Types of Orbitals

1.1. s orbitals orbital

2.2. p orbitalsp orbitals

3.3. d orbitalsd orbitals

4.4. f orbitalsf orbitals

Types of Orbitals

1.1. OrbitalsOrbitals

2.2. SublevelsSublevels

III. A new modelIII. A new modelA. Quantum MechanicsA. Quantum Mechanics

Sub-levelSub-level

A group of orbitals that have the same shape and energy.A group of orbitals that have the same shape and energy.

III. A new modelIII. A new modelA. Quantum MechanicsA. Quantum Mechanics

1.1. OrbitalsOrbitals

2.2. SublevelsSublevelsa.a. A few examplesA few examples

1.1. OrbitalsOrbitals

2.2. SublevelsSublevels

III. A new modelIII. A new modelA. Quantum MechanicsA. Quantum Mechanics

a.a. A few examplesA few examples

b.b. Their electron capacityTheir electron capacity

Sublevels Capacity1.1. Each Each orbitalorbital can hold 2 electrons can hold 2 electrons

Sublevels Capacity1.1. Each Each orbitalorbital can hold 2 electrons can hold 2 electrons

2.2. An ‘s’ sublevel is made of An ‘s’ sublevel is made of ONEONE orbital, so it holds orbital, so it holds ______ electrons electrons

Sublevels Capacity1.1. Each Each orbitalorbital can hold 2 electrons can hold 2 electrons

2.2. An ‘s’ sublevel is made of An ‘s’ sublevel is made of ONEONE orbital, so it holds orbital, so it holds _2__2_ electrons electrons

Sublevels Capacity1.1. Each Each orbitalorbital can hold 2 electrons can hold 2 electrons

2.2. An ‘s’ sublevel is made of An ‘s’ sublevel is made of ONEONE orbital, so it holds orbital, so it holds _2__2_ electrons electrons

3.3. A ‘p’ sublevel is made of A ‘p’ sublevel is made of THREETHREE orbitals, so it holds orbitals, so it holds ______ electrons electrons

Sublevels Capacity1.1. Each Each orbitalorbital can hold 2 electrons can hold 2 electrons

2.2. An ‘s’ sublevel is made of An ‘s’ sublevel is made of ONEONE orbital, so it holds orbital, so it holds _2__2_ electrons electrons

3.3. A ‘p’ sublevel is made of A ‘p’ sublevel is made of THREETHREE orbitals, so it holds orbitals, so it holds _6__6_ electrons electrons

Sublevels Capacity1.1. Each Each orbitalorbital can hold 2 electrons can hold 2 electrons

2.2. An ‘s’ sublevel is made of An ‘s’ sublevel is made of ONEONE orbital, so it holds orbital, so it holds _2__2_ electrons electrons

3.3. A ‘p’ sublevel is made of A ‘p’ sublevel is made of THREETHREE orbitals, so it holds orbitals, so it holds _6__6_ electrons electrons

4.4. A ‘d’ sublevel is made of A ‘d’ sublevel is made of FIVEFIVE orbitals, so it holds orbitals, so it holds ________ electrons electrons

Sublevels Capacity1.1. Each Each orbitalorbital can hold 2 electrons can hold 2 electrons

2.2. An ‘s’ sublevel is made of An ‘s’ sublevel is made of ONEONE orbital, so it holds orbital, so it holds _2__2_ electrons electrons

3.3. A ‘p’ sublevel is made of A ‘p’ sublevel is made of THREETHREE orbitals, so it holds orbitals, so it holds _6__6_ electrons electrons

4.4. A ‘d’ sublevel is made of A ‘d’ sublevel is made of FIVEFIVE orbitals, so it holds orbitals, so it holds _10__10_ electrons electrons

Sublevels Capacity1.1. Each Each orbitalorbital can hold 2 electrons can hold 2 electrons

2.2. An ‘s’ sublevel is made of An ‘s’ sublevel is made of ONEONE orbital, so it holds orbital, so it holds _2__2_ electrons electrons

3.3. A ‘p’ sublevel is made of A ‘p’ sublevel is made of THREETHREE orbitals, so it holds orbitals, so it holds _6__6_ electrons electrons

4.4. A ‘d’ sublevel is made of A ‘d’ sublevel is made of FIVEFIVE orbitals, so it holds orbitals, so it holds _10__10_ electrons electrons

5.5. An ‘f’ sublevel is made of An ‘f’ sublevel is made of SEVENSEVEN orbitals, so it holds orbitals, so it holds ________ electrons electrons

Sublevels Capacity1.1. Each Each orbitalorbital can hold 2 electrons can hold 2 electrons

2.2. An ‘s’ sublevel is made of An ‘s’ sublevel is made of ONEONE orbital, so it holds orbital, so it holds _2__2_ electrons electrons

3.3. A ‘p’ sublevel is made of A ‘p’ sublevel is made of THREETHREE orbitals, so it holds orbitals, so it holds _6__6_ electrons electrons

4.4. A ‘d’ sublevel is made of A ‘d’ sublevel is made of FIVEFIVE orbitals, so it holds orbitals, so it holds _10__10_ electrons electrons

5.5. An ‘f’ sublevel is made of An ‘f’ sublevel is made of SEVENSEVEN orbitals, so it holds orbitals, so it holds _14__14_ electrons electrons

1.1. OrbitalsOrbitals

2.2. SublevelsSublevels

III. A new modelIII. A new modelA. Quantum MechanicsA. Quantum Mechanics

a.a. A few examplesA few examples

b.b. Their electron capacityTheir electron capacity

c.c. The ordered listThe ordered list

III. A new modelIII. A new modelB. Arrangement of electronsB. Arrangement of electrons

1.1. Aufbau principleAufbau principle

III. A new modelIII. A new modelB. Arrangement of electronsB. Arrangement of electrons

Electrons fill the lowest energy level first.Electrons fill the lowest energy level first.

1.1. Aufbau principleAufbau principle

2.2. Pauli Exclusion PrinciplePauli Exclusion Principle

III. A new modelIII. A new modelB. Arrangement of electronsB. Arrangement of electrons

Two electrons per orbital with opposite spinTwo electrons per orbital with opposite spin

1.1. Aufbau principleAufbau principle

2.2. Pauli Exclusion PrinciplePauli Exclusion Principle

3.3. Hund’s RuleHund’s Rule

III. A new modelIII. A new modelB. Arrangement of electronsB. Arrangement of electrons

Half fill all orbitals in a sublevel before completely filling themHalf fill all orbitals in a sublevel before completely filling them

1.1. Aufbau principleAufbau principle

2.2. Pauli Exclusion PrinciplePauli Exclusion Principle

3.3. Hund’s RuleHund’s Rule

4.4. A pictorial representationA pictorial representation

III. A new modelIII. A new modelB. Arrangement of electronsB. Arrangement of electrons

‘The Aufbau Hotel’‘The Aufbau Hotel’

IV. Orbital DiagramsIV. Orbital Diagrams

A representation of the electrons in an atomA representation of the electrons in an atom

A.A. Boxes represent . . .Boxes represent . . .

IV. Orbital DiagramsIV. Orbital Diagrams

A.A. Boxes represent . . .Boxes represent . . .

IV. Orbital DiagramsIV. Orbital Diagrams

1.1. An ‘An ‘ff’ sublevel should have ’ sublevel should have 77 boxesboxes

A.A. Boxes represent . . .Boxes represent . . .

IV. Orbital DiagramsIV. Orbital Diagrams

1.1. An ‘An ‘ff’ sublevel should have ’ sublevel should have 77 boxesboxes

2.2. ‘‘dd’ = 5 boxes’ = 5 boxes

A.A. Boxes represent . . .Boxes represent . . .

IV. Orbital DiagramsIV. Orbital Diagrams

1.1. An ‘An ‘ff’ sublevel should have ’ sublevel should have 77 boxesboxes

2.2. ‘‘dd’ = 5 boxes’ = 5 boxes

3.3. ‘‘pp’ = 3 boxes’ = 3 boxes

A.A. Boxes represent . . .Boxes represent . . .

IV. Orbital DiagramsIV. Orbital Diagrams

1.1. An ‘An ‘ff’ sublevel should have ’ sublevel should have 77 boxesboxes

2.2. ‘‘dd’ = 5 boxes’ = 5 boxes

3.3. ‘‘pp’ = 3 boxes’ = 3 boxes

4.4. ‘‘ss’ = 1 box ’ = 1 box

A.A. Boxes represent . . .Boxes represent . . .

B.B. Arrows represent . . .Arrows represent . . .

IV. Orbital DiagramsIV. Orbital Diagrams

A.A. Boxes represent . . .Boxes represent . . .

B.B. Arrows represent . . .Arrows represent . . .

C.C. These boxes are filled in a These boxes are filled in a specific orderspecific order

IV. Orbital DiagramsIV. Orbital Diagrams

See Aufbau, Pauli Exclusion, and Hund aboveSee Aufbau, Pauli Exclusion, and Hund above

Self Check – Ex. 5Self Check – Ex. 5

Write the orbital diagrams Write the orbital diagrams for:for:

FluorineFluorineVanadiumVanadiumGermaniumGermanium

V. Electron ConfigurationV. Electron Configuration

A shorthand notation of electron positions in an atomA shorthand notation of electron positions in an atom

V. Electron ConfigurationV. Electron ConfigurationA.A. Number represents Number represents

energy levelenergy level

V. Electron ConfigurationV. Electron ConfigurationA.A. Number represents Number represents

energy levelenergy level

B.B. Letter shows the type of Letter shows the type of sublevelsublevel

V. Electron ConfigurationV. Electron ConfigurationA.A. Number represents Number represents

energy levelenergy level

B.B. Letter shows the type of Letter shows the type of sublevelsublevel

C.C. Electrons are counted and Electrons are counted and written as an exponentwritten as an exponent

V. Electron ConfigurationV. Electron ConfigurationD.D. The ordered listThe ordered list

V. Electron ConfigurationV. Electron ConfigurationD.D. The ordered listThe ordered list

1s22s22p63s23p64s23d104p65s24d105p66s24f145d106p67s25f146d107p6

Self Check – Ex. 6Self Check – Ex. 6

Write the electron Write the electron configurations for:configurations for:

MagnesiumMagnesiumSulfurSulfurSilverSilver

VI. Electron Config. using VI. Electron Config. using P.T.P.T.

VI. Electron Config. using VI. Electron Config. using P.T.P.T.A.A. The The ss-block-block

VI. Electron Config. using VI. Electron Config. using P.T.P.T.A.A. The The ss-block-block

B.B. The The pp-block-block

VI. Electron Config. using VI. Electron Config. using P.T.P.T.A.A. The The ss-block-block

B.B. The The pp-block-block

C.C. The The dd-block-block

VI. Electron Config. using VI. Electron Config. using P.T.P.T.A.A. The The ss-block-block

B.B. The The pp-block-block

C.C. The The dd-block-block

D.D. The The ff-block-block

VI. Electron Config. using VI. Electron Config. using P.T.P.T.A.A. The The ss-block-block

B.B. The The pp-block-block

C.C. The The dd-block-block

D.D. The The ff-block-block

E.E. The order of sublevels The order of sublevels ((made easy!made easy!))

Self Check – Ex. 7Self Check – Ex. 7

Use your P.T. to write Use your P.T. to write electron configurations for:electron configurations for:

PotassiumPotassiumArsenicArsenicRhodiumRhodium

VII. Electron Config. using VII. Electron Config. using abbreviationsabbreviations

VII. Electron Config. using VII. Electron Config. using abbreviationsabbreviationsA.A. Abbreviate the Abbreviate the previousprevious

noble gas in bracketsnoble gas in brackets

VII. Electron Config. using VII. Electron Config. using abbreviationsabbreviationsA.A. Abbreviate the Abbreviate the previousprevious

noble gas in bracketsnoble gas in brackets

B.B. Write configuration of Write configuration of remaining electronsremaining electrons

Self Check – Ex. 8Self Check – Ex. 8

Write the abbreviated Write the abbreviated electron configurations for:electron configurations for:

IridiumIridiumTerbiumTerbiumRadonRadon

VII. Exceptions to AufbauVII. Exceptions to Aufbau

VII. Exceptions to AufbauVII. Exceptions to AufbauA.A. CopperCopper

1s22s22p63s23p64s13d9

VII. Exceptions to AufbauVII. Exceptions to AufbauA.A. CopperCopper

B.B. ChromiumChromium

1s22s22p63s23p64s13d5

VII. Exceptions to AufbauVII. Exceptions to AufbauA.A. CopperCopper

B.B. ChromiumChromium

C.C. There are othersThere are others

IX. Lewis Dot DiagramsIX. Lewis Dot Diagrams

A diagram that uses dots to represent valence electrons

A.A. Valence electronValence electron

IX. Lewis Dot DiagramsIX. Lewis Dot Diagrams

A.A. Valence electronValence electron

IX. Lewis Dot DiagramsIX. Lewis Dot Diagrams

1.1. The outermost electrons (the The outermost electrons (the ones that bond)ones that bond)

A.A. Valence electronValence electron

IX. Lewis Dot DiagramsIX. Lewis Dot Diagrams

1.1. The outermost electrons (the The outermost electrons (the ones that bond)ones that bond)

2.2. Determined by adding the Determined by adding the highest energy highest energy ss and and pp electronselectrons

Self Check – Ex. 9Self Check – Ex. 9

How many valence electrons How many valence electrons do the following have?do the following have?

NitrogenNitrogenArsenicArsenicChlorineChlorine

A.A. Valence electronValence electron

B.B. We write these for We write these for representative elementsrepresentative elements

IX. Lewis Dot DiagramsIX. Lewis Dot Diagrams

Representative elements are found in the ‘s’ and ‘p’ blocks

Self Check – Ex. 5Self Check – Ex. 5

Write Lewis structures for:Write Lewis structures for:

StrontiumStrontiumIodineIodine

1s22s22p63s23p64s23d104p65s24d105p3

The End

top related