Dichio - Sostenibilità dei sistemi frutticoli

Post on 29-Jun-2015

351 Views

Category:

Technology

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

Progetto Factor 20 - Seminario La sfida della sostenibilità energetica per le imprese agricole Metaponto, 9 dicembre 2013

Transcript

Cristos Xiloyannis Bartolomeo Dichio

DiCEM- Università degli Studi della Basilicata

Sostenibilità dei sistemi frutticoli e certificazione dell’impronta del carbonio e dell’acqua

SEMINARIO FORMATIVOLa sfida della sostenibilità energetica per le imprese agricolelunedì 09 dicembre 2013

Source: National Geographic. Oct 2007

Three possible paths for future carbon emissions:

2057

Maintain current r

ate

Past 50 years Next 50 years

Consequences after 2057

Maintain current rate andadopting reducing strategies

REDUCE current rate andadopting reducing strategies

over 800 ppm atmospheric CO2

+ 5°C

525 ppm atmospheric CO2

+ 3°C

450 ppm atmospheric CO2

+ 2°C

8

7

6

5

4

3

2

1

1957 today

380 ppm

360

340

320

280

Atm

osp

he

re CO

2

8

7

6

5

4

3

2

1

1957 today

380 ppm

360

340

320

280

Atm

osp

he

re CO

2

380 ppm

360

340

320

280

Atm

osp

he

re CO

2

today1957

Report Intergovernmental Panel for Climate Change (Ipcc) September 2013 – Stockolm

Non ci sono, affatto, le minimizzazioni né i cambiamenti di rotta annunciati -50 billlions tonnes of CO2 eq/year EMISSIONS

- TO MANTAIN THE INCREASE OF TEMP. AROUND 2C WE MUST EMMIT NO MORE THAN 820-1445 BILLIONS TONNES OF CO2 eq TO THE ATMOSPHERE DURING THE REST OF THE CENTURY.

- GLOBAL TEMPERATURES ARE LIKELY TO RISE BY 0.3 TO 5 C BY THE END OF THE CENTURY.

- SEA LEVELS ARE EXPECTED TO RISE A FURTHER 26-82cm BY 2100.

- THE OCEANS HAVE ACIDIFIED HAVING ABSORBED ABOUT A THIRD OF THE CO2 EMITTED.

3,152EU

595

291

160

421

259

1990

Canada

India

Cina (+ Hong Kong)

Sud Africa

Arabia Saudita

USA

Australia

2010

9.0 4,565EU

595

2,389

291

160

4,844

421

259

1990

20.2 681Canada

2.4 2856India

7.6 10,102Cina (+ Hong Kong)

11.9 589Sud Africa

24.1 186Arabia Saudita

21.1 6,479USA

26.8 583Australia

2010

Total emissions

(Mt CO2eq)

Per capita emissions (t CO2eq/year)

Total and per capita GHG emissions in various country (source: UNFCCC, EEA, DIW Berlin, World Bank )

Background: Agriculture-related GHG Emitting Activities

Source: Smith, et al., 2007

25% of total GHG emissions in 2004

The potential role of agriculture in mitigating climate change

• Agriculture is expected to contribute 18% of total GHG emission reductions

• Together with better forest management, the two sources are 33% of the total abatement potential

Source: Smith, et al., 2007.

Sources of expected GHG emission reductions

Other

CSA is agriculture that

• increases yields (poverty reduction & food security),

• makes yields more resilient in the face of worsening weather conditions (adaptation), and

• transforms the farm into a solution to the climate change problem (mitigation).

(World Bank , 2012)

What is Climate-Smart Agriculture?

Source: World Bank (Development Indicators Tables)

WORLD ARABLE LAND PER PERSON1961-2010

0,37

0,32

0,27

0,24 0,23

0,20

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

1961 1970 1980 1990 2000 2010

ha

/ p

ers

on

Land grabbing: the race for food

• The population growth, the environmental constraints for food production and the consequences of climate change are elements that compose a scenario of a new food scarcity.

• At present, many companies and governments are willing to pay billions to buy or rent large arable land areas, nominally catalogued as virgins, marginal or depopulated; Countries with developing or in transition economies, are increasinlgy well inclined to sell it.

• China (20% of world population) has recently established a 50 years lease agreement of 3 million hectares of agricultural land with Ukraine, for cultivation and pigs farming. It’s the largest lease agreement concluded by China to the exploitation of farmland abroad .

Rielaborato da WBGU Special Report: The Accounting of Biological Sinks and Sources Under the Kyoto Protocol

Gestione convenzionale

Gestione sostenibile

Inizio della coltivazione

Anni dall’inizio della coltivazione

3,8

2.6

3.2

4,5

% Sostanza Organica

1.90 20 40 60 80

Frazione della SO duratura

Frazione della SO labile

Inversione della tendenza

CO2 Emission in Italy (Source: EEA 2004)(Total annual 580.7 Mt)

Industry 50.6%

Urban (Transport, waste + Other ) 40.0%

Agriculture 9.4%

GREENHOUSE GAS SOURCE AND SINK CATEGORIES

2011

CO2

equivalent (Gg)

1. Energy 404.443,53

2. Industrial Processes 31.640,92

3. Solvent and Other Product Use 1.656,28

4. Agriculture 33.530,43

5. Land Use, Land-Use Change and Forestry(5) -30.590,07

6. Waste 17.520,85

7. Other NA

Total (including LULUCF)(5) 458.201,95

Source: NIR 2011 (UNFCCC CRF)

Sostenibile convenzionale

Compost (15 t ha-1)Mineral N if necessary

Mineral fertilizers

Soil management

Pruning material

Fertilization

increase C input

limit C output

carbon sources

internal external

cover crops

pruning material

senescent leaves

stabilised manure

compost

Biochar, others

increase C input

use polygenic organic material!!!

biochar

Biochar is charcoal obtained by pyrolysis of biomass in a low/no oxigen environment.It is a stable solid, rich in carbon and can remain in soil for thousands of years.

Biochar can be used as

•carbon sink

•soil amendment

COMPOST Contribution

Chemical Properties

Umidity % 25,64pH 8,1C org % C dm 44,6Organic Acids % d.m. 20C/N 14,9Density Kg/dm3 1,3Conducibility µS/cm 2700

Salinitymeq/100gr 22,7

Clorides mg/Kg 2580N tot %N d.m. 3,5P tot % P d.m. 0,4

Namg/Kg d.m. 2059

Kmg/Kg d.m. 11000Other Carbon resource

% C Quantity (Tons/ha)

dry matter (Tons/ha)

C tot (Tons/ha)

Compost 44,06 15,84 11,00 4,85

Residue quality C/N Lignin/N

highly decomposable < 18 < 5

moderate 18-27 5-7

slow 28-60 7.5-15

least > 60 > 15

Residue quality based on different quality index methods (Praveen-Kumar et al., 2003)

unità fertilizzanti distribuite con il

compostN P K total

228 33,8 130,8 392,6

N P2O5 K20 total

€ 67,95 € 10,07 € 38,98 € 117,00 0,30€

€ 310,22 € 158,81 € 76,11 € 545,14 1,39€

cost for unit of fertilizzer in the compost

average cost

compost

Mineral fertilizers

The cost of the Compost is 7.8 €/t

Se si considera il costo di trasporto (Veneto) il costo per unità fertilizzante arriva ad 1,67euro

CARBON BALANCE

Chambers for soil respiration measurements

Closed chamber taking measurements

Measuring CO2 flux…

Eddy covariance

Chamber-based methods

(static or mobile)

(photo: nrel.colostate.edu)

EDDY COVARIANCE TOWER

Tagliavini, 2011

GPP = Global Primary Productivity

Reco = Respiration Ecosystem

NEE = Net Exchange Ecosystem

Reduction of natural CO2 emissions from soil

limit C output

heterotrophic and autotrophic soil respiration

soil water availabilitysoil temperaturessoil microbiological fertility

factors which affect soil respiration

effect of soil water availability

how to control soil respiration???

limit C output

use of localized irrigation methods

use of biotechnological techniques (biopolymers able to catalyze oxidative polimerization of organic molecules – IRON PORPHYRIN)

use of soil management techniquesto limit soil mineralization

mean (2001-2008) Annual Net Primary Productivity (CO2eq, t ha-1 year-1)

1 calculated according to Almagro et al. (2010).2 estimated according to Sofo et al. (2005).3 estimated as the 50% of the annual biomass production of olive trees (Cannell, 1985).

4 estimated as 20% of the above-ground part (Celano et al., 2003).

Net Primary Productivity (NPP)

Sustainable System

Conventional System

CO2 eq (t ha-1 year-1) Above Ground NPP 28.38 11.03

Yield 9.06 3.99 Olive permanent structures1 0.60 0.60

Pruning material 6.11 4.84 Senescent leaves2 1.60 1.60

Spontaneous vegetation epigean biomass

11.01 -

Below Ground NPP 10.43 5.51 Olive root biomass3 7.68 5.51

Spontaneous vegetation root biomass4

2.75 -

Total NPP -38.81 -16.55

CO2eq emissions and stock variations in the 2 systems

1elaborated from data reported by Almagro et al. (2009) and Testi et al. (2008)

Sustainable System

Conventional System

CO2eq (t ha-1 year-1) Total emissions + 25.42 + 27.37 Anthropogenic + 2.42 + 1.53 Fertilizers, pesticides

Farm operations and transport

Pruning res idues burning - + 4.84 Soil respiration1 + 23.00 + 21.00

Difference -13.39 +10.82

Total NPP - 38.81 - 16.55

Sustainable Conventional

-8.62 Kg CO2 equivalent/Kg oil +17.59 Kg CO2 equivalent/Kg oil

Oil yield 1552 Kg Oil yield 672 Kg

CO2 Balance in the Orchard

Kg of CO2 per L of Extra Vergin Oil

Sustain. Conven.

CO2 in orchard -8.62 +17.59

CO2 in Mill +0.13 +0.13

Packing +1.81 +1.81

Balance -6.68 +19.53

CO2 Balance in a Mature Peach Orchard

+40

+20

0

-20

-40

-60

-80

-100

-120

-140

-160

-180

2004 2005 2006 2007 2008 2009

Sustainable Conventional

To increase the Carbon content in the soil of one hectare

of orchard (30 cm depth) from 1% to 2% are necessary

about 10 years and the soil will fix about 15 t ha-1 year-1 of

CO2

1 2 3 40.0

0.5

1.0

1.5

2.0

30-60 cm10-30 cm0-5 cm

Car

boni

o O

rgan

ico

(%)

5-10 cm

Equivalent of about….

The increase of carbon in the soil of olive trees: 2000-2006 (sustainable management without compost).

61 t ha-1 of CO2

In the top 30 cm of soil

2006

2000

Carbon accumulated in plant structures:

12- 20 t ha-1 Carbon

In 15 years

(45-75 t ha-1 CO2)

GESTIONE SOSTENIBILE

CO2 CO2 CO2 CO2

CO2 CO2 CO2

CO2 CO2

CO2

CO2

CO2

CO2

CO2CO

2

CO2

CO2GESTIONE convenzionale

???? Euro per t CO2

….vantaggio economico

Generi più rappresentati di funghi e di Streptomyces

Sostenibile ConvenzionaleAspergillus AspergillusStreptomices MucorPhaeoacremonium

Penicillium

ArmillariaCladosporium Rosellinia

MucorAcremonium Cladosporium

AlternariaPhaeoacremoniumRoselliniaPhyalophoraCylindrocarpon Microdochium

Maggior numero di funghi (e anche di batteri, non mostrati qui) nel

sistema sostenibile (diluizione 10-2)

Sostenibile

Convenzionale

…….as intestinal flora for humans……………

roots with ifes and spores of glomus intraradices (10 X).

soil water holding capacity

SUSTAINABLE SOIL MANAGEMENT AND

Inerbito

a

a

a

a

a

0 2 4 6 8 10 12

40-50

30-40

20-30

10-20

0-10

pro

fon

dit

à (

cm

)

Macroporosità (%)

Regolari

Irregolari

Allungati

Lavorato

a

b

b

b

ab

0 2 4 6 8 10 12

40-50

30-40

20-30

10-20

0-10

pro

fon

dit

à (c

m)

Macroporosità (%)

Regolari

Irregolari

Allungati

0-10 cm

10-20 cm

0-10 cm

10-20 cm

sustainable

Macroporosity %

Dep

th c

mD

epth

cm

Dep

th c

m

Tesi Ksat (Guelph)(mm d-1)

Classe di Conducibilità satura

(Rossi Pisa 1997)

Inerbito (tubo) 160 media

Lavorato (tubo) 13 molto bassa

apr giu ago ott dic feb0

40

80

120

160

200

ET0

precipitazioni

deficit = 855 mmE

To

- P

reci

pita

zion

i (m

m)

mesi dell'anno

Massimizzare l’immagazzinamento delle acque meteoriche nel suolo esplorato dalle radici

Agire su scala aziendale per ridurre l’incidenza della componete BLUE

BLUE WF

GREEN WF

GREY WF

BLUE WF

GREEN WF

GREY WF

• Aumentare la capacità di immagazzinamento idrico da parte del suolo

• Migliorare l’assorbimento/trasporto da parte della pianta (es. micorrizze)

• Migliorare la gestione dei “contenitori”

• Integrare attuali conoscenze di fisiologia del trasporto idrico e dello stress idrico

29-03-2007

Soil

layer (cm)

SS CS Δ

0-50 108.6 85.6 23.0

50-100 115.7 59.2 56.5

100-150 104.3 39.0 65.3

150-200 80.1 39.0 41.1

total 0-200 408.7 222.8 185.9

31-03-2008

SS CS Δ

110.9 102.1 8.8

110.0 91.2 18.8

111.1 90.3 20.8

110.1 80.9 29.1

442.0 364.5 77.5

Soil Water Content – SWC (mm)TOP POSITION

SS: Sustainable SystemCS: Conventional System

S. Giuliano’s Dam

dam

erosionerosion

S. Giuliano Dam (Basilicata Region)Reduction of the maximum volume (110Mm3)

capacity of about 30 Mm3 in 50 years

reservoir sedimentation

reservoir

Agriculture: reasons for otpimism

• It is probably still possible to increment the area of cultivated lands, without damages for the enviromnent

• Technologies and science can help to increase resource use efficiency in agriculture (water, fertilizers, pesticides, energy) and biotechnologies can be used in a smart way, to ameliorate genetics of cultivated plants and control roots-soil biological processes.

• Food scarcity problem can be also reduced through changes in dietary habits (eg: introduction of high efficiency foods) and eliminating food losses and waste (per capita food waste by consumers in Europe and North-America is 95-115 kg/year).

Le Norme

Agreenment s.r.l.Spin Off AccademicoUniversità degli Studi della Basilicatawww.agreenment.it

C. Xiloyannis B. Dichio V. Nuzzo G. Celano G. Montanaro G. Tataranni A. Sofo A. Palese E. Lardo A. Mininni A. Tuzio A. Fiore

Il gruppo di lavoro:

Definizione• Il Carbon Footprint è

l’ammontare totale delle emissioni di diossido di carbonio (CO2) e di altri gas serra (GHG) associati alla realizzazione di un prodotto o servizio.

• L’analisi e la quantificazione della Carbon Footprint sono delle azioni fondamentali per prevenire l’incremento dei volumi di CO2 presenti nell’atmosfera.

Introduction

New Viticulture role

ORGANIC MATTER

=

SOIL QUALITY

SOIL CONSERVATION

TERRITORY AND BIODIVERSITY PROTECTION

Celano et al., 2002; Sofo et al., 2005

Palese et al., 2004 Xiloyannis et al., 2003

More C “Sink” Reducing loss of O.M.

Compost Distribution

Annual global carbon emissions during the past 50 years (billions metric tons per year)

Source: National Geographic. Oct 2007 - IPCC

8

7

6

5

4

3

2

1

1957 today

380 ppm

360

340

320

280

Atm

osphere CO

2

Limits of the green revolution

• To increase the surface of cultivated lands is still possible, but not indefinitely

• It is necessary to increase the production rate per unit of land, through the introduction of new technologies.

• The main limit of the first green revolution was that poverty and corruption blocked the expansion of new technologies on which the revolution is based, having as consequence an excessive depletion of natural resources.

top related