DEVELOPMENT OF THE CBM-MVD: DEVELOPMENT OF THE CBM-MVD: THE PROTOTYPE Michal Koziel on behalf of CBM-MVD collaboration Michal.Koziel@Physik.uni-frankfurt.de.

Post on 30-Mar-2015

231 Views

Category:

Documents

5 Downloads

Preview:

Click to see full reader

Transcript

DEVELOPMENT OF THE CBM-MVD

THE PROTOTYPEMichal Koziel

on behalf of CBM-MVD collaboration

MichalKozielPhysikuni-frankfurtde (+49) 069 798-47119

The MVD ndash required performances

Required performances (SIS-100)

Radiation tolerance

gt 1013neqcm2 amp gt3 MRad

Read-out speed gt 30 kframess

Intrinsic resolution

lt 5 microm

Operation in vacuum

bdquoLightrdquo support and cooling

Material budget ~ 03 X0

CBM-MVD will- improve secondary vertex resolution- host highly granular silicon pixel

sensors featuring fast read-out excellent spatial resolution and robustness to radiation environment

See PSenger introduction

Sensor development

Front-End Electronics

Supportamp cooling

MWinter

Radiation tolerance

Research fields towards the MVD

Syst

em

in

tegra

tion

JStroth

Main challenges

bull Provide fast and radiation tolerant sensor featuring low material budgetbull Develop sensor readout system capable to handle high data rates

bull Provide cooling and support with low material budget

Progress towards the MVD

200

820

1

0

Material budget

~ 245 X0

SensorMIMOSA-20

~200 framessfew 1011 neqcm2 amp

~300 kRad750microm thick

Cooling amp support

TPG+RVC foam Material budget

~ 03 X0

SensorMIMOSA-26 AHR~10 kframess~1013 neqcm2 amp gt300 kRad50microm thickReadout

CPdigitalhigh data rates

Cooling amp support

CVD diamond

ReadoutSerialanalog

will meet all

requirementsSensor

MIMOSIS-1 (diff geometry)

Readout speed

~30 kframessRadiation tol gt1013

neqcm2 amp gt3 MRad

Demonstrator

Prototype

Finalfrac12 of 1st station

4 sensors

201

2

2015

Main features- CP architecture- in pixel amplification- comparator for each column- 0 suppression logic- pitch 184 μmsim 07 million

pixels

MIMOSA-26 AHR035microm processHigh Resistivity (HR) EPI (400Ωcm)

Sensors for the MVD prototype

Extensively studied at IKF[1] MDeveaux bdquoRadiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layerrdquo accepted for publication in Journal Of Instrumentation 2011

Achieved performancesMIMOSA-26 AHR (2009)

[1]

Design goals (SIS-100)MIMOSIS-1 (~2015)

Radiation tolerance

~1013neqcm2 amp gt300 kRad

~1013neqcm2 amp gt3 MRad

Read-out speed ~10 kframess gt30 kframess

Intrinsic resolution

~35 microm lt 5 microm

Material budget ~ 005 X0 (50microm Si) ~ 005 X0 (50microm Si)

CMOS processes with smaller feature size

(018microm)

CMOS processes with smaller feature size (018microm)

Sensor geometry ndash column length

212 x 106 mm2

184 microm pixel pitch

Readout concept for MVD prototype

FEB CB RCB PEXOR PC

Driver

board

ClkStartResetJTAG

5 x 800MBitsmultiwireLVDS

5 x 1GBitsOptical Fibers

5 x 300MBitsOptical Fibers

Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

PoweringLVDS driversCurrent amp temperature monitoring

Signal distributionFiltering

CBM DAQ

FEB ndash Front End Board CB ndash Converter Board

PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

RCB ndash Readout Controller Board

PCI optical receiver

vacuum

multiwireLVDS

1 optical link

Data reductionTime stampingSlow controlFast controlData concentrator

Low voltage distribution

Slow control

Main objectives

On-line current monitoring Latch-up detection amp handling

(based on STAR solution) Possibility to use radiation

tolerant components (CERN)

Mechanical design

Material budget ~245 X0 Material budget ~035 X0

Sensors thinned down to 50microm

Carrier

Heat Sink

Cooling

Demonstrator Prototype

Cooling amp carrier

Heat Sink

TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

750microm thick sensors

SensorFlex Cable

Cu heat sinkRVCTPG

TPG

RO

RO

- +20C gt3000WmK -50C

Sensor

Cu heat sinkCVDD300microm

RO

Flex Cable

RO

Mechanical design

SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

Radiation tolerance Reliability Thermal cycles Real material budget

IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

Improving connectivity and handling

IKF Technology LabDigital Microscope Keyence VHX-600

Probe Station PA200 (Suss-Microtec)

Thermal imaging system (VarioCAM HiRes 640)

10-7 mBar vacuum chamber

1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

Conclusions amp Summary

Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

Thank you for your attention

CBM-MVD Collaboration members

Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
  • The MVD ndash required performances
  • Slide 3
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13

    The MVD ndash required performances

    Required performances (SIS-100)

    Radiation tolerance

    gt 1013neqcm2 amp gt3 MRad

    Read-out speed gt 30 kframess

    Intrinsic resolution

    lt 5 microm

    Operation in vacuum

    bdquoLightrdquo support and cooling

    Material budget ~ 03 X0

    CBM-MVD will- improve secondary vertex resolution- host highly granular silicon pixel

    sensors featuring fast read-out excellent spatial resolution and robustness to radiation environment

    See PSenger introduction

    Sensor development

    Front-End Electronics

    Supportamp cooling

    MWinter

    Radiation tolerance

    Research fields towards the MVD

    Syst

    em

    in

    tegra

    tion

    JStroth

    Main challenges

    bull Provide fast and radiation tolerant sensor featuring low material budgetbull Develop sensor readout system capable to handle high data rates

    bull Provide cooling and support with low material budget

    Progress towards the MVD

    200

    820

    1

    0

    Material budget

    ~ 245 X0

    SensorMIMOSA-20

    ~200 framessfew 1011 neqcm2 amp

    ~300 kRad750microm thick

    Cooling amp support

    TPG+RVC foam Material budget

    ~ 03 X0

    SensorMIMOSA-26 AHR~10 kframess~1013 neqcm2 amp gt300 kRad50microm thickReadout

    CPdigitalhigh data rates

    Cooling amp support

    CVD diamond

    ReadoutSerialanalog

    will meet all

    requirementsSensor

    MIMOSIS-1 (diff geometry)

    Readout speed

    ~30 kframessRadiation tol gt1013

    neqcm2 amp gt3 MRad

    Demonstrator

    Prototype

    Finalfrac12 of 1st station

    4 sensors

    201

    2

    2015

    Main features- CP architecture- in pixel amplification- comparator for each column- 0 suppression logic- pitch 184 μmsim 07 million

    pixels

    MIMOSA-26 AHR035microm processHigh Resistivity (HR) EPI (400Ωcm)

    Sensors for the MVD prototype

    Extensively studied at IKF[1] MDeveaux bdquoRadiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layerrdquo accepted for publication in Journal Of Instrumentation 2011

    Achieved performancesMIMOSA-26 AHR (2009)

    [1]

    Design goals (SIS-100)MIMOSIS-1 (~2015)

    Radiation tolerance

    ~1013neqcm2 amp gt300 kRad

    ~1013neqcm2 amp gt3 MRad

    Read-out speed ~10 kframess gt30 kframess

    Intrinsic resolution

    ~35 microm lt 5 microm

    Material budget ~ 005 X0 (50microm Si) ~ 005 X0 (50microm Si)

    CMOS processes with smaller feature size

    (018microm)

    CMOS processes with smaller feature size (018microm)

    Sensor geometry ndash column length

    212 x 106 mm2

    184 microm pixel pitch

    Readout concept for MVD prototype

    FEB CB RCB PEXOR PC

    Driver

    board

    ClkStartResetJTAG

    5 x 800MBitsmultiwireLVDS

    5 x 1GBitsOptical Fibers

    5 x 300MBitsOptical Fibers

    Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

    PoweringLVDS driversCurrent amp temperature monitoring

    Signal distributionFiltering

    CBM DAQ

    FEB ndash Front End Board CB ndash Converter Board

    PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

    RCB ndash Readout Controller Board

    PCI optical receiver

    vacuum

    multiwireLVDS

    1 optical link

    Data reductionTime stampingSlow controlFast controlData concentrator

    Low voltage distribution

    Slow control

    Main objectives

    On-line current monitoring Latch-up detection amp handling

    (based on STAR solution) Possibility to use radiation

    tolerant components (CERN)

    Mechanical design

    Material budget ~245 X0 Material budget ~035 X0

    Sensors thinned down to 50microm

    Carrier

    Heat Sink

    Cooling

    Demonstrator Prototype

    Cooling amp carrier

    Heat Sink

    TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

    Sensor

    Cu heat sinkCVDD300microm

    RO

    Flex Cable

    RO

    750microm thick sensors

    SensorFlex Cable

    Cu heat sinkRVCTPG

    TPG

    RO

    RO

    - +20C gt3000WmK -50C

    Sensor

    Cu heat sinkCVDD300microm

    RO

    Flex Cable

    RO

    Mechanical design

    SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

    Radiation tolerance Reliability Thermal cycles Real material budget

    IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

    Improving connectivity and handling

    IKF Technology LabDigital Microscope Keyence VHX-600

    Probe Station PA200 (Suss-Microtec)

    Thermal imaging system (VarioCAM HiRes 640)

    10-7 mBar vacuum chamber

    1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

    the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

    Conclusions amp Summary

    Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

    for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

    Thank you for your attention

    CBM-MVD Collaboration members

    Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

    Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

    • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
    • The MVD ndash required performances
    • Slide 3
    • Slide 4
    • Slide 5
    • Slide 6
    • Slide 7
    • Slide 8
    • Slide 9
    • Slide 10
    • Slide 11
    • Slide 12
    • Slide 13

      Sensor development

      Front-End Electronics

      Supportamp cooling

      MWinter

      Radiation tolerance

      Research fields towards the MVD

      Syst

      em

      in

      tegra

      tion

      JStroth

      Main challenges

      bull Provide fast and radiation tolerant sensor featuring low material budgetbull Develop sensor readout system capable to handle high data rates

      bull Provide cooling and support with low material budget

      Progress towards the MVD

      200

      820

      1

      0

      Material budget

      ~ 245 X0

      SensorMIMOSA-20

      ~200 framessfew 1011 neqcm2 amp

      ~300 kRad750microm thick

      Cooling amp support

      TPG+RVC foam Material budget

      ~ 03 X0

      SensorMIMOSA-26 AHR~10 kframess~1013 neqcm2 amp gt300 kRad50microm thickReadout

      CPdigitalhigh data rates

      Cooling amp support

      CVD diamond

      ReadoutSerialanalog

      will meet all

      requirementsSensor

      MIMOSIS-1 (diff geometry)

      Readout speed

      ~30 kframessRadiation tol gt1013

      neqcm2 amp gt3 MRad

      Demonstrator

      Prototype

      Finalfrac12 of 1st station

      4 sensors

      201

      2

      2015

      Main features- CP architecture- in pixel amplification- comparator for each column- 0 suppression logic- pitch 184 μmsim 07 million

      pixels

      MIMOSA-26 AHR035microm processHigh Resistivity (HR) EPI (400Ωcm)

      Sensors for the MVD prototype

      Extensively studied at IKF[1] MDeveaux bdquoRadiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layerrdquo accepted for publication in Journal Of Instrumentation 2011

      Achieved performancesMIMOSA-26 AHR (2009)

      [1]

      Design goals (SIS-100)MIMOSIS-1 (~2015)

      Radiation tolerance

      ~1013neqcm2 amp gt300 kRad

      ~1013neqcm2 amp gt3 MRad

      Read-out speed ~10 kframess gt30 kframess

      Intrinsic resolution

      ~35 microm lt 5 microm

      Material budget ~ 005 X0 (50microm Si) ~ 005 X0 (50microm Si)

      CMOS processes with smaller feature size

      (018microm)

      CMOS processes with smaller feature size (018microm)

      Sensor geometry ndash column length

      212 x 106 mm2

      184 microm pixel pitch

      Readout concept for MVD prototype

      FEB CB RCB PEXOR PC

      Driver

      board

      ClkStartResetJTAG

      5 x 800MBitsmultiwireLVDS

      5 x 1GBitsOptical Fibers

      5 x 300MBitsOptical Fibers

      Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

      PoweringLVDS driversCurrent amp temperature monitoring

      Signal distributionFiltering

      CBM DAQ

      FEB ndash Front End Board CB ndash Converter Board

      PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

      RCB ndash Readout Controller Board

      PCI optical receiver

      vacuum

      multiwireLVDS

      1 optical link

      Data reductionTime stampingSlow controlFast controlData concentrator

      Low voltage distribution

      Slow control

      Main objectives

      On-line current monitoring Latch-up detection amp handling

      (based on STAR solution) Possibility to use radiation

      tolerant components (CERN)

      Mechanical design

      Material budget ~245 X0 Material budget ~035 X0

      Sensors thinned down to 50microm

      Carrier

      Heat Sink

      Cooling

      Demonstrator Prototype

      Cooling amp carrier

      Heat Sink

      TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

      Sensor

      Cu heat sinkCVDD300microm

      RO

      Flex Cable

      RO

      750microm thick sensors

      SensorFlex Cable

      Cu heat sinkRVCTPG

      TPG

      RO

      RO

      - +20C gt3000WmK -50C

      Sensor

      Cu heat sinkCVDD300microm

      RO

      Flex Cable

      RO

      Mechanical design

      SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

      Radiation tolerance Reliability Thermal cycles Real material budget

      IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

      Improving connectivity and handling

      IKF Technology LabDigital Microscope Keyence VHX-600

      Probe Station PA200 (Suss-Microtec)

      Thermal imaging system (VarioCAM HiRes 640)

      10-7 mBar vacuum chamber

      1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

      the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

      Conclusions amp Summary

      Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

      for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

      Thank you for your attention

      CBM-MVD Collaboration members

      Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

      Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

      • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
      • The MVD ndash required performances
      • Slide 3
      • Slide 4
      • Slide 5
      • Slide 6
      • Slide 7
      • Slide 8
      • Slide 9
      • Slide 10
      • Slide 11
      • Slide 12
      • Slide 13

        Progress towards the MVD

        200

        820

        1

        0

        Material budget

        ~ 245 X0

        SensorMIMOSA-20

        ~200 framessfew 1011 neqcm2 amp

        ~300 kRad750microm thick

        Cooling amp support

        TPG+RVC foam Material budget

        ~ 03 X0

        SensorMIMOSA-26 AHR~10 kframess~1013 neqcm2 amp gt300 kRad50microm thickReadout

        CPdigitalhigh data rates

        Cooling amp support

        CVD diamond

        ReadoutSerialanalog

        will meet all

        requirementsSensor

        MIMOSIS-1 (diff geometry)

        Readout speed

        ~30 kframessRadiation tol gt1013

        neqcm2 amp gt3 MRad

        Demonstrator

        Prototype

        Finalfrac12 of 1st station

        4 sensors

        201

        2

        2015

        Main features- CP architecture- in pixel amplification- comparator for each column- 0 suppression logic- pitch 184 μmsim 07 million

        pixels

        MIMOSA-26 AHR035microm processHigh Resistivity (HR) EPI (400Ωcm)

        Sensors for the MVD prototype

        Extensively studied at IKF[1] MDeveaux bdquoRadiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layerrdquo accepted for publication in Journal Of Instrumentation 2011

        Achieved performancesMIMOSA-26 AHR (2009)

        [1]

        Design goals (SIS-100)MIMOSIS-1 (~2015)

        Radiation tolerance

        ~1013neqcm2 amp gt300 kRad

        ~1013neqcm2 amp gt3 MRad

        Read-out speed ~10 kframess gt30 kframess

        Intrinsic resolution

        ~35 microm lt 5 microm

        Material budget ~ 005 X0 (50microm Si) ~ 005 X0 (50microm Si)

        CMOS processes with smaller feature size

        (018microm)

        CMOS processes with smaller feature size (018microm)

        Sensor geometry ndash column length

        212 x 106 mm2

        184 microm pixel pitch

        Readout concept for MVD prototype

        FEB CB RCB PEXOR PC

        Driver

        board

        ClkStartResetJTAG

        5 x 800MBitsmultiwireLVDS

        5 x 1GBitsOptical Fibers

        5 x 300MBitsOptical Fibers

        Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

        PoweringLVDS driversCurrent amp temperature monitoring

        Signal distributionFiltering

        CBM DAQ

        FEB ndash Front End Board CB ndash Converter Board

        PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

        RCB ndash Readout Controller Board

        PCI optical receiver

        vacuum

        multiwireLVDS

        1 optical link

        Data reductionTime stampingSlow controlFast controlData concentrator

        Low voltage distribution

        Slow control

        Main objectives

        On-line current monitoring Latch-up detection amp handling

        (based on STAR solution) Possibility to use radiation

        tolerant components (CERN)

        Mechanical design

        Material budget ~245 X0 Material budget ~035 X0

        Sensors thinned down to 50microm

        Carrier

        Heat Sink

        Cooling

        Demonstrator Prototype

        Cooling amp carrier

        Heat Sink

        TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

        Sensor

        Cu heat sinkCVDD300microm

        RO

        Flex Cable

        RO

        750microm thick sensors

        SensorFlex Cable

        Cu heat sinkRVCTPG

        TPG

        RO

        RO

        - +20C gt3000WmK -50C

        Sensor

        Cu heat sinkCVDD300microm

        RO

        Flex Cable

        RO

        Mechanical design

        SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

        Radiation tolerance Reliability Thermal cycles Real material budget

        IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

        Improving connectivity and handling

        IKF Technology LabDigital Microscope Keyence VHX-600

        Probe Station PA200 (Suss-Microtec)

        Thermal imaging system (VarioCAM HiRes 640)

        10-7 mBar vacuum chamber

        1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

        the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

        Conclusions amp Summary

        Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

        for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

        Thank you for your attention

        CBM-MVD Collaboration members

        Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

        Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

        • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
        • The MVD ndash required performances
        • Slide 3
        • Slide 4
        • Slide 5
        • Slide 6
        • Slide 7
        • Slide 8
        • Slide 9
        • Slide 10
        • Slide 11
        • Slide 12
        • Slide 13

          Main features- CP architecture- in pixel amplification- comparator for each column- 0 suppression logic- pitch 184 μmsim 07 million

          pixels

          MIMOSA-26 AHR035microm processHigh Resistivity (HR) EPI (400Ωcm)

          Sensors for the MVD prototype

          Extensively studied at IKF[1] MDeveaux bdquoRadiation tolerance of a column parallel CMOS sensor with high resistivity epitaxial layerrdquo accepted for publication in Journal Of Instrumentation 2011

          Achieved performancesMIMOSA-26 AHR (2009)

          [1]

          Design goals (SIS-100)MIMOSIS-1 (~2015)

          Radiation tolerance

          ~1013neqcm2 amp gt300 kRad

          ~1013neqcm2 amp gt3 MRad

          Read-out speed ~10 kframess gt30 kframess

          Intrinsic resolution

          ~35 microm lt 5 microm

          Material budget ~ 005 X0 (50microm Si) ~ 005 X0 (50microm Si)

          CMOS processes with smaller feature size

          (018microm)

          CMOS processes with smaller feature size (018microm)

          Sensor geometry ndash column length

          212 x 106 mm2

          184 microm pixel pitch

          Readout concept for MVD prototype

          FEB CB RCB PEXOR PC

          Driver

          board

          ClkStartResetJTAG

          5 x 800MBitsmultiwireLVDS

          5 x 1GBitsOptical Fibers

          5 x 300MBitsOptical Fibers

          Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

          PoweringLVDS driversCurrent amp temperature monitoring

          Signal distributionFiltering

          CBM DAQ

          FEB ndash Front End Board CB ndash Converter Board

          PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

          RCB ndash Readout Controller Board

          PCI optical receiver

          vacuum

          multiwireLVDS

          1 optical link

          Data reductionTime stampingSlow controlFast controlData concentrator

          Low voltage distribution

          Slow control

          Main objectives

          On-line current monitoring Latch-up detection amp handling

          (based on STAR solution) Possibility to use radiation

          tolerant components (CERN)

          Mechanical design

          Material budget ~245 X0 Material budget ~035 X0

          Sensors thinned down to 50microm

          Carrier

          Heat Sink

          Cooling

          Demonstrator Prototype

          Cooling amp carrier

          Heat Sink

          TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

          Sensor

          Cu heat sinkCVDD300microm

          RO

          Flex Cable

          RO

          750microm thick sensors

          SensorFlex Cable

          Cu heat sinkRVCTPG

          TPG

          RO

          RO

          - +20C gt3000WmK -50C

          Sensor

          Cu heat sinkCVDD300microm

          RO

          Flex Cable

          RO

          Mechanical design

          SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

          Radiation tolerance Reliability Thermal cycles Real material budget

          IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

          Improving connectivity and handling

          IKF Technology LabDigital Microscope Keyence VHX-600

          Probe Station PA200 (Suss-Microtec)

          Thermal imaging system (VarioCAM HiRes 640)

          10-7 mBar vacuum chamber

          1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

          the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

          Conclusions amp Summary

          Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

          for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

          Thank you for your attention

          CBM-MVD Collaboration members

          Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

          Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

          • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
          • The MVD ndash required performances
          • Slide 3
          • Slide 4
          • Slide 5
          • Slide 6
          • Slide 7
          • Slide 8
          • Slide 9
          • Slide 10
          • Slide 11
          • Slide 12
          • Slide 13

            Readout concept for MVD prototype

            FEB CB RCB PEXOR PC

            Driver

            board

            ClkStartResetJTAG

            5 x 800MBitsmultiwireLVDS

            5 x 1GBitsOptical Fibers

            5 x 300MBitsOptical Fibers

            Data reductionTime stampingSlow controlFast controlLVDS to Optical conversion

            PoweringLVDS driversCurrent amp temperature monitoring

            Signal distributionFiltering

            CBM DAQ

            FEB ndash Front End Board CB ndash Converter Board

            PoweringLatchup detectionCurrent amp temperature monitoringLVDS to Optical conversion

            RCB ndash Readout Controller Board

            PCI optical receiver

            vacuum

            multiwireLVDS

            1 optical link

            Data reductionTime stampingSlow controlFast controlData concentrator

            Low voltage distribution

            Slow control

            Main objectives

            On-line current monitoring Latch-up detection amp handling

            (based on STAR solution) Possibility to use radiation

            tolerant components (CERN)

            Mechanical design

            Material budget ~245 X0 Material budget ~035 X0

            Sensors thinned down to 50microm

            Carrier

            Heat Sink

            Cooling

            Demonstrator Prototype

            Cooling amp carrier

            Heat Sink

            TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

            Sensor

            Cu heat sinkCVDD300microm

            RO

            Flex Cable

            RO

            750microm thick sensors

            SensorFlex Cable

            Cu heat sinkRVCTPG

            TPG

            RO

            RO

            - +20C gt3000WmK -50C

            Sensor

            Cu heat sinkCVDD300microm

            RO

            Flex Cable

            RO

            Mechanical design

            SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

            Radiation tolerance Reliability Thermal cycles Real material budget

            IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

            Improving connectivity and handling

            IKF Technology LabDigital Microscope Keyence VHX-600

            Probe Station PA200 (Suss-Microtec)

            Thermal imaging system (VarioCAM HiRes 640)

            10-7 mBar vacuum chamber

            1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

            the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

            Conclusions amp Summary

            Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

            for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

            Thank you for your attention

            CBM-MVD Collaboration members

            Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

            Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

            • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
            • The MVD ndash required performances
            • Slide 3
            • Slide 4
            • Slide 5
            • Slide 6
            • Slide 7
            • Slide 8
            • Slide 9
            • Slide 10
            • Slide 11
            • Slide 12
            • Slide 13

              Low voltage distribution

              Slow control

              Main objectives

              On-line current monitoring Latch-up detection amp handling

              (based on STAR solution) Possibility to use radiation

              tolerant components (CERN)

              Mechanical design

              Material budget ~245 X0 Material budget ~035 X0

              Sensors thinned down to 50microm

              Carrier

              Heat Sink

              Cooling

              Demonstrator Prototype

              Cooling amp carrier

              Heat Sink

              TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

              Sensor

              Cu heat sinkCVDD300microm

              RO

              Flex Cable

              RO

              750microm thick sensors

              SensorFlex Cable

              Cu heat sinkRVCTPG

              TPG

              RO

              RO

              - +20C gt3000WmK -50C

              Sensor

              Cu heat sinkCVDD300microm

              RO

              Flex Cable

              RO

              Mechanical design

              SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

              Radiation tolerance Reliability Thermal cycles Real material budget

              IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

              Improving connectivity and handling

              IKF Technology LabDigital Microscope Keyence VHX-600

              Probe Station PA200 (Suss-Microtec)

              Thermal imaging system (VarioCAM HiRes 640)

              10-7 mBar vacuum chamber

              1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

              the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

              Conclusions amp Summary

              Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

              for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

              Thank you for your attention

              CBM-MVD Collaboration members

              Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

              Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

              • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
              • The MVD ndash required performances
              • Slide 3
              • Slide 4
              • Slide 5
              • Slide 6
              • Slide 7
              • Slide 8
              • Slide 9
              • Slide 10
              • Slide 11
              • Slide 12
              • Slide 13

                Mechanical design

                Material budget ~245 X0 Material budget ~035 X0

                Sensors thinned down to 50microm

                Carrier

                Heat Sink

                Cooling

                Demonstrator Prototype

                Cooling amp carrier

                Heat Sink

                TPG - Thermal Pyrolitic Graphite RVC - Reticulated Vitreous Carbon

                Sensor

                Cu heat sinkCVDD300microm

                RO

                Flex Cable

                RO

                750microm thick sensors

                SensorFlex Cable

                Cu heat sinkRVCTPG

                TPG

                RO

                RO

                - +20C gt3000WmK -50C

                Sensor

                Cu heat sinkCVDD300microm

                RO

                Flex Cable

                RO

                Mechanical design

                SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

                Radiation tolerance Reliability Thermal cycles Real material budget

                IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

                Improving connectivity and handling

                IKF Technology LabDigital Microscope Keyence VHX-600

                Probe Station PA200 (Suss-Microtec)

                Thermal imaging system (VarioCAM HiRes 640)

                10-7 mBar vacuum chamber

                1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

                the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

                Conclusions amp Summary

                Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

                for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

                Thank you for your attention

                CBM-MVD Collaboration members

                Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

                Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

                • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
                • The MVD ndash required performances
                • Slide 3
                • Slide 4
                • Slide 5
                • Slide 6
                • Slide 7
                • Slide 8
                • Slide 9
                • Slide 10
                • Slide 11
                • Slide 12
                • Slide 13

                  Sensor

                  Cu heat sinkCVDD300microm

                  RO

                  Flex Cable

                  RO

                  Mechanical design

                  SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

                  Radiation tolerance Reliability Thermal cycles Real material budget

                  IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

                  Improving connectivity and handling

                  IKF Technology LabDigital Microscope Keyence VHX-600

                  Probe Station PA200 (Suss-Microtec)

                  Thermal imaging system (VarioCAM HiRes 640)

                  10-7 mBar vacuum chamber

                  1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

                  the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

                  Conclusions amp Summary

                  Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

                  for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

                  Thank you for your attention

                  CBM-MVD Collaboration members

                  Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

                  Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

                  • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
                  • The MVD ndash required performances
                  • Slide 3
                  • Slide 4
                  • Slide 5
                  • Slide 6
                  • Slide 7
                  • Slide 8
                  • Slide 9
                  • Slide 10
                  • Slide 11
                  • Slide 12
                  • Slide 13

                    SERWIETE (SEnsor Row Wrapped In an Extra Thin Envelope)

                    Radiation tolerance Reliability Thermal cycles Real material budget

                    IMEC (Belgium) +IKF Frankfurt +IPHC Strasbourg (sensors)

                    Improving connectivity and handling

                    IKF Technology LabDigital Microscope Keyence VHX-600

                    Probe Station PA200 (Suss-Microtec)

                    Thermal imaging system (VarioCAM HiRes 640)

                    10-7 mBar vacuum chamber

                    1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

                    the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

                    Conclusions amp Summary

                    Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

                    for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

                    Thank you for your attention

                    CBM-MVD Collaboration members

                    Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

                    Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

                    • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
                    • The MVD ndash required performances
                    • Slide 3
                    • Slide 4
                    • Slide 5
                    • Slide 6
                    • Slide 7
                    • Slide 8
                    • Slide 9
                    • Slide 10
                    • Slide 11
                    • Slide 12
                    • Slide 13

                      IKF Technology LabDigital Microscope Keyence VHX-600

                      Probe Station PA200 (Suss-Microtec)

                      Thermal imaging system (VarioCAM HiRes 640)

                      10-7 mBar vacuum chamber

                      1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

                      the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

                      Conclusions amp Summary

                      Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

                      for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

                      Thank you for your attention

                      CBM-MVD Collaboration members

                      Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

                      Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

                      • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
                      • The MVD ndash required performances
                      • Slide 3
                      • Slide 4
                      • Slide 5
                      • Slide 6
                      • Slide 7
                      • Slide 8
                      • Slide 9
                      • Slide 10
                      • Slide 11
                      • Slide 12
                      • Slide 13

                        1) The concept of the MVD read-out is defined2) The hardware components for MVD prototye have been delivered to

                        the IKF3) Assembly and debugging in progress4) Software development is ongoing5) Lab tests to be performed6) In parallel ndash software developments

                        Conclusions amp Summary

                        Challanges1) Deliver MIMOSIS-1 ndash with required radiation tolerance amp readout speed

                        for MVD2) Most optimum read-out3) Connectivity 4) Second station ndash large area sensorshellip

                        Thank you for your attention

                        CBM-MVD Collaboration members

                        Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

                        Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

                        • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
                        • The MVD ndash required performances
                        • Slide 3
                        • Slide 4
                        • Slide 5
                        • Slide 6
                        • Slide 7
                        • Slide 8
                        • Slide 9
                        • Slide 10
                        • Slide 11
                        • Slide 12
                        • Slide 13

                          Thank you for your attention

                          CBM-MVD Collaboration members

                          Samir Amar-Youcef Norbert Bialas Michael Deveaux Dennis Doering Melissa Domachowski Christina Dritsa Horst Duumlring Ingo Froumlhling Tetyana Galatyuk Michal Koziel Jan Michel Boris Milanovic Christian Muumlntz Bertram Neumann Paul Scharrer Christoph Schrader Selim Seddiki Joachim Stroth Tobias Tischler Christian Trageser Bernhard Wiedemann

                          Jeacuterome Baudot Greacutegory Bertolone Nathalie Chon-Sen Gilles Claus Claude Colledani Andrei Dorokhov Wojchiech Dulinski Marie Gelin-Galivel Mathieu Goffe Abdelkader Himmi Christine Hu-Guo Kimmo Jaaskelainen Freacutedeacuteric Morel Fouad Rami Mathieu Specht Isabelle Valin Marc Winter

                          • DEVELOPMENT OF THE CBM-MVD THE PROTOTYPE
                          • The MVD ndash required performances
                          • Slide 3
                          • Slide 4
                          • Slide 5
                          • Slide 6
                          • Slide 7
                          • Slide 8
                          • Slide 9
                          • Slide 10
                          • Slide 11
                          • Slide 12
                          • Slide 13

                            top related