Current Performance and Future Possibilities of HERA

Post on 14-Jan-2016

34 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Current Performance and Future Possibilities of HERA. 7 July 2001 Georg Hoffstaetter (DESY, Hamburg). HERMES (7 GeV). H1 (318 GeV). HERA. ZEUS. HERA-B (42 GeV). PETRA. H1. 778 m. HERMES. HERA. HERA-B. Polarized Electrons Protons. DESY. PETRA. ZEUS. 6336 m long. - PowerPoint PPT Presentation

Transcript

Georg.Hoffstaetter@DESY.de

7 July 2001

Georg Hoffstaetter (DESY, Hamburg)

Current Performanceand Future Possibilities of HERA

ZEUSHERAH1 (318 GeV)

HERA-B (42 GeV)

HERMES (7 GeV)

PETRA

Georg.Hoffstaetter@DESY.de

HERA and its Pre-Accelerator Chain

H1

ZEUS

HERMES

HERA-B HERA

PETRA

778 m

6336 m long

DE

SY Polarized Electrons

Protons

Protons Electrons

20 keV Source Source 150 keV750 keV RFQ Linac II 450 MeV50 MeV Linac III Pia 450 MeV

8 GeV DESY III DESY II 7 GeV40 GeV PETRA PETRA 12 GeV

920 GeV HERA-p HERA-e 27.5 GeV

Georg.Hoffstaetter@desy.de

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

July August September October Nov ember0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

February March April Mai Juni Juli August

HERA: Improvements 1999/2000

0

20

40

60

80

100

120

9-Jul 3-Aug 28-Aug 22-Sep 17-Oct 11-Nov 6-Dec 31-Dec

0

20

40

60

80

100

120

31-Dec 25-Jan 19-Feb 15-Mar 9-Apr 4-May 29-May 23-Jun 18-Jul 12-Aug 6-Sep

andBeam current:e p

mA 1999 2000

Average peak luminosity ( )1999 2000

123010 scm

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

HERA: Efficiency 1999/2000

0%

20%

40%

60%

80%

January February March April Mai Juni Juli August0%

20%

40%

60%

80%

July August September October Nov ember

1999 2000

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Development of the Luminosity

Inte

grat

ed L

umin

osity

(1/

pb)

HERA Luminosity 1993-2000

Linear increase of the integrated Luminosity

The time for a luminosity upgrade of HERA has come

Days after start of run

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Specific Luminosity and Polarization

%

55

0.00

2.00

4.00

6.00

8.00

10.00

31-D

ec

25-J

an

19-F

eb

15-M

ar

9-A

pr

4-M

ay

29-M

ay

23-J

un

18-J

ul

12-A

ug

6-S

ep

0.00

2.00

4.00

6.00

8.00

10.00

9-Ju

l

3-A

ug

28-A

ug

22-S

ep

17-O

ct

11-N

ov

6-D

ec

31-D

ec

specific luminosity ( )2122910 mAscm

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

The HERA Lumi-Upgrade

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Concept of HERA IRs

m

• Beam separation by super-conducting magnets in the detectors

• e-bending radius reduced from 1200 m to 400 m

• More radiation power: 28 kW, critical Energy = 150 kV

• Radiation passes the detector, absorbers at 11, 19, and 25 m

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Th e Detec to r R

e gion

courtesy B.Holzer courtesy B.Holzer

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

4 super-conducting magnets ( BNL ) [6 MDM]

56 normal-conducting magnets

(Eframov Inst.) [6 MDM]

448 m UH Vacuum

system [6 MDM]

Absorbers, instrumentation,

controls, stands, … [6 MDM]

New Components

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Superconducting Magnet GO

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Superconducting Magnet GO

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

One Pipe - Three Beams

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Synchrotron Radiation Absorber

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Parameters

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Potential Problems

Dynamic Aperture OK? Polarization OK?, Luminosity OK? Can HERA be handled well?

Polarization OK?, Luminosity OK?

Too strong beam-beam force on p? Too strong beam-beam force on e?

Focusing:

fRF increase:

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

The Luminosity was initially too small: Lumiscan

Emittance and Lumi for 72° Optic

)60( sL

)60( sL )72( sL

)72( sL

)(mmx )(mmx)(mmy )(mmy

Bunch has no product distribution: )()( yx coupling

)72( sL

)72( sL

x

y

Luminosity with 72° is large as expected

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Dynamic Aperture for 72° Optic

The kick where half the current is lost leads to a satisfactory dynamic aperture.

Kickx

x´ V2(kV)

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Polarization was in the spin matched 72° optic quickly brought to 63% (one day).

Harmonic bumps were immediately effective Decoupling bumps worked well

60%

PolarizationIe

Polarization for 72° Optic

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

6 more measurements indicate For the center frequency , the

luminosity is increased as expected

Luminosity for fRF IncreaseLL

RFf RFf

HzfZentrum 175

HzfZentrum 175

HzfZentrum 175HzfZentrum 0

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Ls is independent of e-current Tp depends on e-current Tails depend on

e-current

Too Strong Beam-Beam Force on p?16mA 73mACorresponding e-current after upgrade

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Too Strong Beam-Beam Force on e?

No reduction of Ls by the second experiment

No reduction of Ls by a larger -funktionen

Ls

Ippb

So far no reduction of Ls by the

bunch current

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

• beam-beam tune shift for e and p

• hourglass effect for protons

• background due to synchrotron radiation and scattered e

• dynamic aperture of electrons

Limits for the Lumi Upgrade

m

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

)(mey

measureds,L

Where are the Beam-Beam Limits?

Upgrade and Ip=140mA: emittance starts to grow

)(mey

yQ2

xQ2

)(mey

emeasuredx,

emeasuredy ,

)(mey

)( ,ecalcys L

measureds,L

)( ,emeasuredys L

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Lumi Reduction by Hourglass Effect

)(cmpy

ep

75.1)5.12(

0L

L cmpyLength 19cm:

12cm: 9.1)5.12(

0L

L cmpy

Luminosity ( )3210

20cm

bunch length: 6cm

30cm

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Tuneshift Change by Hourglass Effect

m

mm

mm

mpx 45.2

mpy 18.0

mex 63.0

mey 26.0

Protons Electrons

Horizontal: grows slowerpx Vertical: grows fasterpy

py

py s

)(px

px s

)(

pss / pss /

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Tune Shift with Bunch Length Effect

How will the tune shift parameters change and have these been analyzed by accelerator experiments ?

)(spx

)(spy

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Bunch Length Dependent Resonances 6Qx+4Qy Resonance

pss /pss /

10Qy Resonance

JpyJpyJpxJpx

For maximum For maximum

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Resonances with Bunch Length EffectHow will the resonance strength change and have these been analyzed by accelerator experiments ?

All large resonance strength are due to the proton bunch length

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Nominal and Ultimate Parameters

The performance goal of HERA is not unrealistic and should not be too hard to achieve.

A shortfall of beam intensity in the short term can be compensated.

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Spin-Orbit Tracking with Quaternions

Computation of the invariant spin field by

analyzing tracking data:

Fourier analysis Stroboscopic averaging Antidamping

Computations performed in SPRINT, Hoffstaetter and Vogt, DESY/00

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

High Order Resonance Strength

Tracked depolarization as expected

Resonances up to 19th order can be observed

Resonance strength can be determined from tune jump.

Spin tune )(lim znP

Computations performed in SPRINT, Hoffstaetter and Vogt, DESY/00

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

Increasing the Proton CurrentPETRA: N=60, 50 MHz 10 MHz & 5 MHz

10 MHz & 5 MHzN=30, 50 MHz

Georg.Hoffstaetter@DESY.deGeorg.Hoffstaetter@desy.de

TESLA with Röntgen FEL

Damping RingTunnel

Super-conducting Positron Linac

Wiggler for thePositron Source

Detector and Experimental Area

Cryogenic Halls

Super-conducting Electron Linac

Röntgen FEL

top related