Crop Spec, A Collaborative Partnership A real time integrated plant nutrient monitoring and application system for Agricultural equipment.

Post on 29-Jan-2016

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Crop Spec, A Collaborative Partnership

A real time integrated plant nutrient monitoring and application system for

Agricultural equipment

• Founded 1905• World’s Largest

Manufacture of Fertilizer

• 2008 – $ 7+ Bil in Sales– 20+ Bil tonnes

• Research on N uptake dating to 1960’s

• Founded 1932• World Leading Company

in Optical and Positioning Technologies

• 2008 $ 1 Bil in Sales• PA business since 2007,• 20+ years experience in

Ag Applications, Rate Control, VRA, Consoles

The Challenge• Nutrient supply within a field can be highly variable• Soil Ability to exchange nutrients can vary• Uniform Blanket application of nitrogen fertilizer

can result in over- and underfertilization• Measure the current local nitrogen supply• Adapt Application Rate to Meet Crop Requirement

Yara Electronic Products ,1995 - Present

Date: 2006-01-31 - Page: 5

The measurement principleThe N-Tester measures the total chlorophyll content of the leaf which is closely related to the nitrogen concentration in the leaf.

0

10

20

30

40

50

0 100 200 300 400 500 600 700 800

N-Tester readings

µg

Ch

loro

ph

yll (

a+

b)/

sqcm

r² = 0.95

1,5

2

2,5

3

3,5

250 300 350 400 450 500 550 600

N-Tester readings

N %

in

lea

ve

s

r² = 0.88

Objective: To decide on a N fertilizer requirement based on N-Tester reading

MeasurementCalculation of

N fertilizer demandN application

Plant Nutrition, Based upon Crop Need“Just In Time” Plant Nutrition

Yara N-Sensor ® adoption

Number of units by countries as of spring 2009: 800+

49

73

29

349

137

16 22Czech Republic/Slovakia

Denmark/Sweden

France

Germany

UK

Others Europe

Outside Europe

SpecularReflectance

DiffuseReflectance

Chlorophyll pigments

AbsorptionCells

Bottom layer

Interaction of Light with Leaves

Sensing Chlorophyll in the Plant

Multiple transmitters, one receiver• Modulated light source => Pulse Laser Diodes• 2 spectral channels• Temperature control

Modu-lation

High Pass Filter

De-modu-lation

control unit

temperature controlled

Pulse Laser Diode (1W) 10kHz

optics

Photo Diode

CropSpecTM - Sensing Head

400 500 600 700 800 900 1000

W ave le ngth 1 /nm

400

500

600

700

800

900

1000

Wa

vele

ng

th 2

/n

m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

r2 valuesfor the correlation betweenmeasurements using respective waveband combinationsand cropcharacteristics(e.g. crop biomass, N-uptake)optimum waveband

combination

Waveband to Chlorophyll relationship

The basis for getting meaningful crop information • accurate measurements in various crops and

over a wide range of crop densities• based on know-how and extensive field trial work by Yara• 730-740 nm & 800-810 nm

Source: Reusch, 2005

Date: 2006-01-31 - Page: 11

N status of crops can be measured by analysing reflectance spetral data => non-destructive, non-contacting

IR450 500 550 600 650 700 750 800 850

0

0,1

0,2

0,3

0,4

0,5

0,6

Wavelenght, nm

Reflectance

60 kg/ha

120 kg/ha

200 kg/ha

Increase due to increased biomass

Decrease due to increased chlorophyll content

N Supply

N response trail, 1994

Impact of different N supply on the reflectance spectra of winter wheat

IR

N1

N2

N3

N4N5

N6N7

N8N9

N9N8N7N6N5N4N3N2N1N0

19181716151413121110

29282726252423222120Ludwig

39383736353433323130

19181716151413121110

29282726252423222120Drifter

39383736353433323130

19181716151413121110

29282726252423222120Batis

39383736353433323130

19181716151413121110

29282726252423222120Hattrick

39383736353433323130

N9N8N7N6N5N4N3N2N1N0

19181716151413121110

29282726252423222120Ludwig

39383736353433323130

19181716151413121110

29282726252423222120Drifter

39383736353433323130

19181716151413121110

29282726252423222120Batis

39383736353433323130

19181716151413121110

29282726252423222120Hattrick

39383736353433323130

3 m

Tramline

15 m

System testing

CropSpecTM – specifications

Environment IP 67 compliant

Laser safety Class 1 or Class 1M

Physical Dimensions 200 mm x 80 mm x 80 mm

Mounting height 2 - 4 meters

Viewing angle 45°- 55°

Temperature 0 - 60°Celsius

Operational wavebands 730-740 nm and 800-810 nm

Supply voltage 10-32 VDC

Supply current 5 A

d/2

h

x1

x2

sensedarea

v

sensedarea

16°50°

Sensor Viewing geometry

H X1 X2 Footprint (width)

2m 0.89m + d/2

2.97m + d/2

2.08m

3m 1.34m + d/2

4.45m + d/2

3.11m

4m 1.78m + d/2

5.93m + d/2

4.15m

Large Sensor Footprint

3m

Cab Mounted Sensors• Geometry provides largest footprint per sensor

in the industry• Sensing Larger % of Area to be Applied

– Redundancy in Left and Right viewing areas

• Safety and Stability of Sensors– Less potential for damage

• Viewing crop at an angle, rather than from 90 degrees directly above– Minimize affects of shadowing, crop movement, etc.

• Light Source and Detector at Uniform Angle to Crop– Minimize affects of crop movement, weak crop

stands.

Crop Spec System Diagram

Implement with Liquid or Granular Application

RS232CANBUS

Topcon X20

X20 as Controller and Data Collector

2 2

2 6

3 0

3 4

3 8

4 2

4 6

5 0

5 4

5 8

6 2

6 6

0 m 1 0 0 m 2 0 0 m 3 0 0 m 4 0 0 m

kg N /ha

0

10

20

30

40

50

60

70

80

90

100

0 m 100 m 200 m 300 m 400 m

Biomass map N application map

Field size: 60.6 haMinimum: 0 kg/haAverage: 62 kg/haMaximum: 110 kg/ha

Reliable measurements day

and night

0 m 2 5 m 5 0 m 7 5 m 1 0 0 m

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

Measured at 5pm Measured at 10pm

Wheat, April 24th, 2007

0 m 1 0 0 m 2 0 0 m 3 0 0 m 4 0 0 m

1 52 02 53 03 54 04 55 05 56 06 57 07 58 08 5

April 19th, 2007 April 25th, 2007

Average S1: 47 Average S1: 56

Designed to facilitate Accuracy and Repeatability

• Read and Record– allows the user to collect and store data for offline

analysis and creation of prescription maps– Use of various tools to develop prescription

• User Determined Rate Control – 2 point Calibration, User sets High and Low– Field Observation point and use existing algorithm– “On the Go” Averaging with User determined target

rate

• “On-the-Go” Application using Yara Agronomics– uses Yara’s crop specific algorithms to determine

optimum amounts of fertilizer for real time variable rate application

CropSpec Operational Modes

Achievable Yield Advantage

-4

-2

0

2

4

6

8

10

12

14

Yie

ld D

iffe

ren

ce

[d

t/h

a]

CZ

DK

FR

DE

HU

IT

SE

UK

US

Average: 1.8 dt/ha = 2.3 %

1999-2002, 160 Yara N-Sensor trials

Advantages of N-Sensor Controlled Nitrogen Application

• Yield increase 2-3%• Easier and better harvesting• More homogeneous grain

quality• Lower risk of lodging• Better nitrogen use

efficiency

• Full documentation of the fertilizer application

Achievable profit: 30 – 100 €/ha

Research Centre Hanninghof - JJa - Date: 2006-07-20 - Page: 25

Relationship between reflectance measurements and N uptake

y = 0,75x1,29

R2 = 0,96

y = 0,39x1,46

R2 = 0,99

y = 0,22x1,60

R2 = 0,99

y = 0,31x1,51

R2 = 0,97

0

50

100

150

200

250

10 20 30 40 50 60

100 * (ln R760 - ln R730)

y = 0,08x1,69

R2 = 0,98

y = 0,04x1,88

R2 = 0,99

y = 0,11x1,61

R2 = 0,97

y = 0,04x1,91

R2 = 0,98

0

10

20

30

40

50

60

70

80

10 20 30 40 50

100 * (ln R760 - ln R730)

N uptake (kg N

ha

-1)

EC 31 EC 39

◆Bussard■Drifter▲Ludwig●Ritmo

◆Bussard■Drifter▲Ludwig●Ritmo

active measurement(N-Sensor ALS)

Preliminary research results

y = 13.201x + 0.283R2 = 0.7643

0

0.5

1

1.5

2

2.5

3

3.5

0 0.05 0.1 0.15 0.2 0.25

Topcon NDVI

Pla

nt

N (

%)

y = 306.73x - 3.8666R2 = 0.8758

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

0 0.05 0.1 0.15 0.2 0.25

Topcon NDVI

SP

AD

top related