Coupled Wave Current Modeling of Sediment in San Bay using ...

Post on 24-Apr-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Coupled Wave‐Current Modeling of Sediment Dynamics in San Francisco Bay using the 

SUNTANS Model

Yi‐Ju Chou and Oliver FringerEnvironmental Fluid Mechanics LaboratoryDept. Civil and Environmental Engineering 

Stanford University

http://stanvonog.com/?tag=oceanbeach

Motivation

To understand how current restoration activities interacts with the existing system 

CURRENT GOAL: 

LONG‐TERM GOAL: To help guide management of water resources in the Bay• Response to sea‐level rise• Contaminant transport• Ecological productivity...

Outline

• Physics background• Modeling framework/approach• Results‐‐ Hydrodynamics and wave validation‐‐ Tidal and wind‐wave suspension

• Future work

Grant and Madsen 1986

Wind waves

Bedforms/Mud

Turbulent Mixing

Tides

Oscillatory boundary layer

Redwood City

Alameda

Port ChicagoRichmond

San Francisco

Wind Wave Model

Transport of wind energy

Source: Wind forcing

Depth‐induced breaking White cappingBottom friction(bedform/mud)

Dissipation:

NOAA wind station

Transport of wave energy:

Source: Wind forcing

White cappingDepth‐induced breakingBottom friction (bedform/mud) 

Dissipation:

Wind Wave Model

Transport of wave energy:

Source: Wind forcing

White cappingDepth‐induced breakingBottom friction (bedform/mud) 

Dissipation:

Wind Wave Model

Sand ripples

Mud flow

HydrodynamicsStanford Unstructured Coastal Model (SUNTANS)

1. Solve 3D phase‐averaged Navier‐Stokes equation2. Unstructured grid in horizontal; z‐level grid in 

vertical3. Parallelized using MPI

Super computer cluster at Dept. CEE at Stanford University

Sediment ModelMud suspension induced by current‐wave forcing

ResuspensionDeposition

Consolidated bed

Weak fluid mud

Fluid mudErosion

Erosion

Erosion

Consolidation

Consolidation

Consolidation

Consolidation/erosion model

Water column

Suspended Sediment ModelMulticlass sediment transport model

ws, i: settling velocity, as a function of floc size (fractal model)

Size exchange:

: flocculation,  as a function of turbulence, mud concentration and properties

: turbulence break‐up, as a function of turbulence

Simulation Set‐upGrid resolution:

horizontal 200 m in average; 50 m minimum

60 vertical layers (minimum dz = 0.9 m)

Open boundaries:

Pacific Ocean & Sacramento‐San Joaquin Delta

Data source:

bathymetry – National Geophysical Data Center

fresh water inflow – DAYFLOW program (CDWR 1986)

tidal forcing – surface height measured at Point Reyes 

wind field – NOAA wind stations (every 6 min) 

Sediment Properties

two classes: ws = 0.001 ms‐1 & 0.004 ms‐1

Dashed: SUNTANS predictions

Solid: observations

Point San Pablo Benicia

Hydrodynamics (Tides) ValidationJan 2005 (courtesy of Vivien Chua)

Tidal SuspensionNear‐bed SSC by Manning and Schoellhamer on Jun 17, 2008

South Bay

Central Bay

North Bay

Weak wind

Wind speed (m/s)

Wave height (m)Strong wind

Wind speed Wave height

Wave Validation

Wind‐wave Suspension (South Bay)Wnd waves Wave suspension

WIND

Future Work

1. Validation of SSC (South Bay)2. Dealing with non‐uniformity of sediment properties: 

incorporation of field core data3. Mud‐induced wave attenuation4. A refined sediment erosion and suspension model

Acknowledgement

• Stanford team: Stephen Monismith, Jeff Koseff, Bing Wang, Vivien Chua, Sueanne Lee

• Berkeley team: Mark Stacey, Zack Powell, Rusty Holleman• USGS Sacramento: David Schoellhamer• Funding support: California State Coastal Conservancy

top related