Classic Research Articles as PBL Problems Hal White Dept of Chemistry and Biochemistry University of Delaware Case Study Teaching in Science 7 October.

Post on 19-Dec-2015

220 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

Transcript

Classic Research Articles as PBL Problems

Hal WhiteDept of Chemistry and Biochemistry

University of Delaware

Case Study Teaching in Science7 October 2005

Buffalo, NY

Introductory Science Courses Stereotype

1. Lecture format that is content-driven.

2. Abstract concepts introduced before concrete examples.

3. Enrollments typically more than 100.

4. Limited student-faculty interaction.

5. Grading based on a few multiple choice examinations that emphasize recall of information.

6. Reinforce intellectually immature students to a naïve view of knowledge.

What do we teach in science?

“Much of our educational system seems

designed to discourage any attempt at

finding things out for oneself, but makes

learning things others have found out, or

think they have, the major goal.”

Anne Roe (1953)

Common Features of aProblem-Based Approach to Learning

• Learning is initiated by a problem

• Problems are based on real-life, open-ended situations.

• Students identify and find the information necessary to solve the problem using appropriate resources.

• Students work in small permanent groups with access to an instructor.

• Learning is active, integrated, cumulative, and connected.

Overview

• The Case for Classic Articles as PBL Problems

• Example of an Article-Based Course

• Experience a Classic Article Problem

• Designing a Course Around Classic Articles

• Student Response

Characteristics of Good PBL Problems

• Engage interest

• Require decision and judgement

• Need full group participation

• Open-ended or controversial

• Connected to prior knowledge

• Incorporate content objectives

Classic Articles as PBL Problems

Advantages

• Authentic (not contrived)

• Complex

• Relevant to the Discipline

• Introduce Important Historical Figures

• Encourage use of Library

Science as Literature?

“There is no form of prose

more difficult to understand

and more tedious to read that

the average scientific paper.”

Francis Crick

(1995)

Science as Literature?

“I am absolutely convinced that science

is vastly more stimulating to the

imagination than are the classics, but the

products of this stimulus do not normally

see the light of day because scientific

men as a class are devoid of any

perception of literary form”

J. B. S. Haldane

What is a Classic Article?

“It is indeed rare for a scientific paper to remain central to current concerns several decades after its publication; in general, papers decay like last winter’s leaves or this summer’s pop songs, and scientists instead cite the latest review paper.”

Edward Ahrens (1992)

How can we connect students to their discipline?

“Only by understanding the difficulties

encountered in trying to do what now seems

simple can a student appreciate the hurdles

which must be surmounted in modern

experiments of which we, for the most part,

hear only the conclusions”

James Bryant Conant (1946)

Introduction to BiochemistryEvolution of the Course

1970's Course for non-science majors based on Herman Epstein’s model.

1989 Modified course initiated as part of a new B.S. Biochemistry curriculum.

1993 Problem-Based Learning format introduced.

1996 Undergraduate Tutor-Facilitators used for the first time.

Introduction to Biochemistry:

An Article-Based PBL Course

• 3 Credits, No Laboratory, 8:00 AM MWF • Theme - Hemoglobin and Sickle Cell Anemia• First Biochemistry Course for Sophomore

Biochemistry Majors• Required for the Major• Taught in a PBL Classroom• Enrollment 20 - 35• Uses Juniors and Seniors as Group Facilitators

Introduction to BiochemistryCourse Description

• Heterogeneous groups of 4 discuss and work to understand about ten classic articles.

• Articles presented in historical context, show the development of scientific understanding of protein structure and genetic disease.

• Assignments and examinations emphasize conceptual understanding.

• Instructor monitors progress, supervises tutors, presents demonstrations, and leads whole class discussions to summarize each article.

Introduction to BiochemistryInstructional Goals For Students

1. Become intellectually independent learners

2. Recognize and confront areas of personal ignorance

3. Review and apply chemical, biological, physical, and mathematical principles in a biochemical context

4. Improve problem-solving skills

5. Create, understand, and value abstract biochemical models

6. See biochemistry in relevant historical and societal contexts

7. Discover and use the resources of the library and the Internet

8. Gain confidence in reading and understanding scientific articles

9. Experience the powers (and pitfalls) of collaborative work

10. Appreciate importance of clear oral and written communication

11. Learn to organize logical arguments based on evidence

Oxidation and Reduction of Hemoglobin

CHEM-342 Introduction to Biochemistry

Constructing Meaning from Stokes (1864)

• What was done? Read Section 11 of the Stokes article. In the left-hand column of the work sheet, transform Stokes’ description into a multi-step protocol suitable for an undergraduate chemistry laboratory experiment.

• What was seen? In the middle column, describe what observations students would make.

• What happened chemically? In the last column, explain briefly in words the chemical basis for the observations.

• How do we represent it? On the back of the work sheet, construct a diagram (model) that represents the chemistry.

Transforming Section 11 of Stokes’ Article into a Laboratory

Experiment

ProceduralStep

ExpectedObservation

ChemicalMeaning

1.

2.

3.

4.

5.

6.

Question for Group Work on Midterm Examination

Prof. Essigsaure returned to his lab one night to prepare for a lecture demonstration based on the experiment presented in the second paragraph of Section 11 in Stokes’ 1864 article. Within minutes he was looking high and low for the glacial acetic acid and mumbling angrily about associates who don’t replace the things they use up. Frustrated, but undaunted, he figured any acid would do and substituted concentrated hydrochloric acid. After all, he reasoned, a stronger acid should work even better. — Not so. Sure enough the hemoglobin solution turned brown immediately upon addition of HCl but, much to his initial puzzlement, the resulting hematin did not extract into the ether layer.

Explain in chemical terms why HCl cannot be substituted for glacial acetic

acid in this experiment. Draw chemical structures and diagrams to support your argument. If you are uncertain of the explanation, please outline the possibilities you have considered or how you analyzed the problem.

O2 (g)

O2 (l)

HbO2 Hb SnII SnIVH2O

Air

Water 2. Shaking, rapid transfer

1. Diffusion, slow transfer

Reversible binding, rapidIrreversible oxidation, slow

Constructing Models to Explain Observations

Introduction to Biochemistry

Student Assignments

• Write an Abstract

• Construct a Concept Map

• Draw an Appropriate Illustration

• Critique from a Modern Perspective

• Find out about the Author

• Explore a Cited Reference

Introduction to BiochemistryStudent Perceptions 1995-2004

A. Consider items 1 through 12 and rate them with respect to how important they are for success in CHEM-342, Introduction to Biochemistry.

(1 = Extremely Important to 5 = Not Important; N = 263 out of 268)

Item

Mean ± SD

Item

Mean ± SD

1. Personal Initiative

1.47 ± 0.61

7. Prior Knowledge

2.83

± 0.97 2. Library Research Skills

1.88

± 0.80

8. Memorization

3.90

± 0.95 3. Taking Notes in Class

2.92

± 1.00

9. Learning New Information

1.61

± 0.77 4. Writing Skills

2.16

± 0.85

10. Problem Solving Skills

1.64

± 0.79 5. Collaboration with Classmates

1.55

± 0.76

11. Conceptualization

1.50

± 0.65 6. Oral Communication Skills

1.77

± 0.81

12. Attendance

1.43

± 0.69

Introduction to BiochemistryStudent Perceptions 1995-2004

B. Consider the items 1 through 12 in relation to other science courses. Circle those items which, in your experience, are more important in CHEM-342

than in most other science courses you have taken. (N=263) Item

Percent

Item Percent

1. Personal Initiative

40.8

7. Prior Knowledge

12.1

2. Library Research Skills

60.0

8. Memorization

1.1

3. Taking Notes in Class

1.9

9. Learning New Information

14.8

4. Writing Skills

37.5

10. Problem Solving Skills

46.9

5. Collaboration with Classmates

72.7

11. Conceptualization

40.5

6. Oral Communication

Skills

57.8

12. Attendance

39.7

Effect of Facilitators on Attendance

Attendance before facilitators: 91.1%Attendance after facilitators: 94.1%

(32% reduction in absences)

Allen & White (2001). In, Student-Assisted Teaching,Miller, Groccia & Miller, Eds. Bolton, MA: Anchor.

Effect of Facilitators on Effort

Hours before facilitators: 4.8 per weekHours after facilitators: 6.0 per week

(25% increase in time spent on course work outside of class)

Allen & White (2001). In, Student-Assisted Teaching,Miller, Groccia & Miller, Eds. Bolton, MA: Anchor.

CourseObjective

No. 1

CourseObjective

No. 2

CourseObjective

No. 3

CourseObjective

No. 4

ArticleNo. 1 XXX X X X

ArticleNo. 2 XX XXX X

ArticleNo. 3 XXX X XX

Learning Issue Matrix

Prelude to the Final Exam

Always remember that it is possible to

be a worthwhile human being regardless

(or in spite of) how much biochemistry

you know. This won't necessarily help

you with biochemistry, but it may help

you keep your sanity.Hiram F. Gilbert (1992)

Course Web-Site

Introduction to Biochemistry

www.udel.edu/chem/white/CHEM342.htm

top related