CH 3 (3.1-3.4)

Post on 14-Apr-2018

228 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 1/31

CHAPTER 3ENERGY 

Sub chapter covered3.1 Introduction3.2 Energy transfer by heat and work 3.3 Energy balance

3.4 Work boundary 

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 2/31

3.1 Intro

Energy exist in numerous forms.

 – thermal, mechanical, chemical etc.

Their sum constitute Total Energy on aunit mass, e 

m

 E e (kJ/kg)

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 3/31

energy 

Macroscopic E Microscopic E

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 4/31

Macroscopic E: form of energy arethose a system possesses as a wholewith respect to some outside reference

frame. eg: kinetic, potential energy.

Microscopic E: energy related to themolecular structure of a system and thedegree of molecular activity.Independent of outside reference frame.

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 5/31

Sum of all microscopic energy forms calledinternal energy, U 

Macroscopic energy of a system is relatedto motion and the influence of someexternal effect (gravity, magnetism,electricity & surface tension).

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 6/31

Internal Energy

1)  Translational energy 

2)  Rotational kinetic energy 

3)  Vibrational kinetic energy 

4)  Spin energy 

5)  Sensible energy 

6)  Latent energy 

7)  Chemical energy 

8)  Nuclear energy 

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 7/31

Kinetic Energy (KE)?

Potential Energy (PE)?

Total E of the system?

Flow Energy

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 8/31

Kinetic Energy (KE): energy that asystem possesses as a result of its

motion relative to some reference frame.

)(2

2kJ 

V m KE 

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 9/31

Potential Energy (PE): energy thata system possesses as a result of its

elevation in a gravitational field.

)(kJ mgz  PE  (kJ)

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 10/31

Total E of the system (closedsystem):

)(2

2

kJ mgz V 

mU  PE  KE U  E 

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 11/31

FLOW ENERGY 

Closed system: stationary system

Open system (control vol.): involved

fluid flow

Mass flow rate, : amount of massflowing through a cross section perunit

time.

m

)/( skg V m  

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 12/31

3.2 ENERGY TRANSFER 

E transfer

By heat,

By work,

W

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 13/31

Mechanisms:

ConductionConvection

Radiation

Directional quantity

Qin Qout

E transfer by heat,

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 14/31

Other than E by heatForce acting through

distance

Directional quantity:

Win Wout 

E transfer by work,W

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 15/31

  E transfer by work,W

Electrical work, We

Shaft work, Wsh

Spring work, Wspring

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 16/31

3.3 ENERGY BALANCE

The conservation of E can expressed as:

 E E E in out system

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 17/31

 1) Mechanisms of EnergyTransfer, E 

inand E 

out 

Heat transfer, Q = 0, for adiabatic system

Work transfer, W = 0, if no work involved

Mass transfer, m = 0, for closed system

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 18/31

 2) Energy change of thesystem, ∆E system

 E system = E  final  - E initial = E 2 - E 1

E = U + KE + PE 

 where U  = m (u2 

–u1 )

KE  = ½ (m )(V 22 - V 1

2) PE  = mg ( z 2 – z 1 ) 

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 19/31

 

 systemout massinmassout inout inout in E  E  E W W QQ E  E 

 Balance EnergyOverall 

)()()( ,,

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 20/31

Discussion on Problem 2.10

 Assignment on:Problem 2-49Problem 2-50

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 21/31

CHAPTER 3

HEAT, WORK AND MASS  Sub-chapter covered 

3.4 Work boundary 

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 22/31

Boundary Work 

• Boundary work occurs because the mass of the substancecontained within the system boundary 

2

1

2

1

2

1

2

1 PdV  Ads

 A

 F  FdsW W  bb  

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 23/31

The boundary work is equal to the area under theprocess curve plotted on the pressure-volume

diagram 

Note from the figure:

 P is the absolute pressure and is

always positive.

 When dV is positive, Wb ispositive.

 When dV is negative, Wb isnegative.

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 24/31

Some Typical Processes 

a) Constant volume

If the volume is heldconstant, dV = 0, and the boundary work equation becomes

0

2

1 PdV W b

 b) Constant pressure

If the pressure is held constant,the boundary work equation becomes

12

2

1

2

1

V V  P dV  P  PdV W b

P-V diagram for V = constant P-V diagram for P = constant 

P

V

1

2

P

V

12

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 25/31

c) Constant temperature, ideal gas

If the temperature of an ideal gas system is held constant, then

the equation of state provides the pressure-volume relation

mRT  P 

Then, the boundary work is

 

  

 

1

22

1

2

1ln

V mRT dV 

mRT  PdV W b

 Note: The above equation is the result of applying the ideal gasassumption for the equation of state. For real gases undergoingan isothermal (constant temperature) process, the integral inthe boundary work equation would be done numerically.

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 26/31

d) The polytropic process

The polytropic process is one in which the pressure-volume

relation is given as PV n = C (where n and C is constant)

The exponent n may have any value from minus infinity to plusinfinity depending on the process. Some of the more common

 values are given below.Process Exponent n 

Constant pressure 0

Constant volume

 Isothermal & ideal gas 1

 Adiabatic & ideal gas k = CP/C V  

 Here, k is the ratio of the specific heat at constant pressure C  P to

specific heat at constant volume C V .

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 27/31

The boundary work done during the polytropic process is

found by substituting the pressure-volume relation intothe boundary work equation 

2

1

2

1 dV V 

Const 

 PdV W  nb

1,ln

1,1

1

2

1122

 

  

 

nV 

V  PV 

nn

V  P V  P 

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 28/31

For an ideal gas undergoing a polytropic process, the boundary work  

2

1

2

1dV 

Const  PdV W 

nb

1,ln

1,1

1

2

12

  

  

nV V mRT 

nn

T T mR

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 29/31

Discussion

1. A frictionless piston-cylinder device initially contains 200L of saturated liquid refrigerant R134a. The piston is free to moveand its mass is such that it maintains a pressure of 800 kPa onthe refrigerant. The refrigerant is now heated until itstemperature rises to 50°C. Calculate the work done during this

process and show the process in P-v diagram

2. Air enters a nozzle steadily at 2.21 kg/m3 and 30 m/s and leaveat 0.762 kg/m3  and 180 m/s. If the inlet area of the nozzle is 80

cm2

, determinea) the mass flow rate through the nozzle b) the exit area of the nozzle

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 30/31

 Assignment 5:

Problem 4.8, 4.9, 4.12, 4.18

7/27/2019 CH 3 (3.1-3.4)

http://slidepdf.com/reader/full/ch-3-31-34 31/31

To be continue………………… 

top related