Calculation of Eigenfields for the European XFEL Cavities 2010-12-21.pdf12.5 mm 60.0 mm 3.4 mm 16.0 mm TEM TE 11 TE 21 TEM TE 11 TE 21 f 0 = 1.3 GHz f 0 = 1.3 GHz Dispersion relation

Post on 24-Sep-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Calculation of Eigenfields for the

European XFEL Cavities

Wolfgang Ackermann, Erion Gjonaj, Wolfgang F. O. Müller, Thomas Weiland

Institut Theorie Elektromagnetischer Felder, TU Darmstadt

Status MeetingDecember 21, 2010DESY, Hamburg

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 1

Overview

▪ Task

- Calculation of fields for the European XFEL cavities in 3D

considering coupling ports as well as non-ideal geometries

- Coupling ports:

• Modeling of ports

• Include ports in the eigenvalue formulation

• Implementation for large scale applications

- Non-ideal geometries

• Support flexible geometry description in 3D

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 2

Motivation

▪ Particle accelerators

- Linear accelerator at DESY, Hamburg

http://www.desy.de

Cavity 1.3 GHz

Cavity 3.9 GHz

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 3

Computational Model

▪ Superconducting resonator

- Geometry

9-Cell Cavity Beam Tube

Upstream

Higher Order Mode

Coupler

Downstream Higher Order Mode Coupler

Input Coupler

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 4

Computational Model

▪ Available grid structures

‚Staircase‘-grid partially filled cells tetrahedral mesh

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 5

▪ Modeling using CST Studio Suite

- 3d.tet:NodeID, X, Y, Z

EdgeID, NodeID0, NodeID1

FaceID, EdgeID0, EdgeID1, EdgeID2

ElemID, FaceID0, FaceID1, FaceID2, FaceID3

ElemID, NodeID0, NodeID1, NodeID2, NodeID3

Object3D GroupID, #Elems <immediately followed by> ElemID List

Object2D GroupID, #Faces <immediately followed by> FaceID List

Object1D GroupID, #Edges <immediately followed by> EdgeID List

Object0D GroupID, #Nodes <immediately followed by> NodeID List

- bc3d.tetObj3D_ID, MediaCode

Obj2D_ID, BCCode

Obj1D_ID, BCCode

Computational Model

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 6

PEC, PMC and port

boundary conditions

can be extracted

▪ Modeling using CST Studio Suite

- 3d.tet:NodeID, X, Y, Z

EdgeID, NodeID0, NodeID1

FaceID, EdgeID0, EdgeID1, EdgeID2

ElemID, FaceID0, FaceID1, FaceID2, FaceID3

ElemID, NodeID0, NodeID1, NodeID2, NodeID3

Object3D GroupID, #Elems <immediately followed by> ElemID List

Object2D GroupID, #Faces <immediately followed by> FaceID List

Object1D GroupID, #Edges <immediately followed by> EdgeID List

Object0D GroupID, #Nodes <immediately followed by> NodeID List

Computational Model

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 7

CST 3d.tet

modify point locations but maintain the topology

Modify 3d.tet

Computational Model

▪ Modeling using CST Studio Suite

- 3d.tet:

linear element curvilinear element

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 8

only linear geometry transformation available

standard points

Computational Model

▪ Modeling using CST Studio Suite

- 3d.tet:

linear element curvilinear element

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 9

insert additional control points (at the surface)

additional points

Computational Model

▪ Modeling using CST Studio Suite

- 3d.slim:

linear element curvilinear element

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 10

available in CST but not yet used here… (ToDo)

control points

Motivation

▪ Input coupler and coupler to extract unwanted modes

Beam Tube

Downstream Higher Order Mode Coupler

Coaxial Input Coupler

Coaxial Line

Antennas

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 11

Motivation

▪ Input coupler and coupler to extract unwanted modes

Antennas

in linear scale

Beam TubeCoaxial Line

Downstream Higher Order Mode Coupler

Coaxial Input Coupler

f0 = 1.300 GHz

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 12

Motivation

▪ Input coupler and coupler to extract unwanted modes

Antennas

in linear scale

Beam TubeCoaxial Line

Downstream Higher Order Mode Coupler

Coaxial Input Coupler

f0 = 1.709 GHz

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 13

▪ Problem definition

- Accelerating field

Motivation

Determine the accelerating

-mode with high precision

9-Cell Cavity

including couplers

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 14

Computational Model

▪ Problem formulation

- Fundamental equations

- Boundary conditions

Maxwell‘s equations

Material relations

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 15

0 5 10 15 200

100

200

300

400

0 2 4 6 8 100

50

100

150

200

Motivation

▪ Wave propagation in the applied coaxial lines

- Main coupler

- HOM coupler

12.5 mm

60.0 mm

3.4 mm

16.0 mm

TEM

TE11 TE21

TEM

TE11 TE21

f0 = 1.3 GHz

f0 = 1.3 GHz

Dispersion relation

propagation

damping

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 16

Computational Model

▪ Problem formulation

- Local Ritz approach

continuous eigenvalue problem

+ boundary conditions

vectorial function

global index

number of DOFs

scalar coefficient

discrete eigenvalue problem

Galerkin

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 17

Computational Model

▪ Numerical formulation

- Function definition

Pär

Ingels

tröm

,

A N

ew

Se

t o

f H

(cu

rl)-

Co

nfo

rmin

g H

iera

rch

ica

l

Ba

sis

Fu

nctio

ns fo

r Te

tra

he

dra

l Me

sh

es,

IEE

E T

RA

NS

AC

TIO

NS

ON

MIC

RO

WA

VE

TH

EO

RY

AN

D T

EC

HN

IQU

ES

,

VO

L. 5

4, N

O.

1, JA

NU

AR

Y 2

00

6

FEM06: lowest order approximation

(edge elements, Nedelec)

scala

rvecto

r

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 18

Computational Model

▪ Numerical formulation

- Function definition

Pär

Ingels

tröm

,

A N

ew

Se

t o

f H

(cu

rl)-

Co

nfo

rmin

g H

iera

rch

ica

l

Ba

sis

Fu

nctio

ns fo

r Te

tra

he

dra

l Me

sh

es,

IEE

E T

RA

NS

AC

TIO

NS

ON

MIC

RO

WA

VE

TH

EO

RY

AN

D T

EC

HN

IQU

ES

,

VO

L. 5

4, N

O.

1, JA

NU

AR

Y 2

00

6

scala

rvecto

r

FEM12: higher order approximation

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 19

Computational Model

▪ Numerical formulation

- Function definition

Pär

Ingels

tröm

,

A N

ew

Se

t o

f H

(cu

rl)-

Co

nfo

rmin

g H

iera

rch

ica

l

Ba

sis

Fu

nctio

ns fo

r Te

tra

he

dra

l Me

sh

es,

IEE

E T

RA

NS

AC

TIO

NS

ON

MIC

RO

WA

VE

TH

EO

RY

AN

D T

EC

HN

IQU

ES

,

VO

L. 5

4, N

O.

1, JA

NU

AR

Y 2

00

6

scala

rvecto

r

FEM20: higher order approximation

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 20

Computational Model

▪ Numerical formulation

- Implementation

contribution of

element-matrices

ready availabe

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 21

Computational Model

▪ Eigenvalue formulation

- Fundamental equation

- Matrix properties

- Fundamental properties

Notation:

A - stiffness matrix

B - mass matrix

C - damping matrix

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 22

for proper chosen scalar and vector basis functions

orstatic dynamic

Computational Model

▪ Fundamental properties

- Number of eigenvalues

- Orthogonality relation

Notation:

A - stiffness matrix

B - mass matrix

C - damping matrixMatrix B nonsingular:

• matrix polynomial is regular

• 2n finite eigenvalues

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 23

If the vectors and are no longer B-orthogonal:

Computational Model

▪ Fundamental properties

- Orthogonality relation

- Scalar product

1)

2)

3)

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 24

currently not available

Computational Model

▪ Eigenvalue formulation

- Fundamental equation

- Companion notation

Notation:

A - stiffness matrix

B - mass matrix

C - damping matrix

real symmetric

matrices

real asymmetric

matrices

A, B, C: real symmetric

conjugate complex eigenvalues

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 25

Computational Model

▪ Eigenvalue solution

- Fundamental equation

- Subspace projection method

- Companion notation for the projected system

Notation:

A - stiffness matrix

B - mass matrix

C - damping matrix

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 26

▪ Problem definition

- Geometry

Numerical Examples

TESLA 3rd harmonic

9-cell cavity

including couplers

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 27

▪ Problem definition

- Geometry

- Task

Numerical Examples

Distribution

on 64 nodes

ParMeTiS, VTK and

CST - Studio Suite®

Search for the - mode field distribution

9-Cell Cavity

including couplers

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 28

Numerical Examples

▪ Efficient solution of large problems

- Domain composition

parallel computing

domain #2

domain #1

cavity model

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 29

▪ Fields along the axis of an accelerator cavity

Numerical Examples

9-Cell Cavity

including couplers

z

Ez

Longitudinal

electric field strength

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 30

▪ Simulation results

Numerical Examples

0.5 0.4 0.3 0.2 0.1 0.0 0.10.015

0.010

0.005

0.000

0.005

0.010

0.015

Longitudinal coordinate, z m

Field

component,

Ex

Ez0

607 576 cells

reduced linear

full linear

reduced quadratic

hierarchical set of

basis functions

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 31

0.5 0.4 0.3 0.2 0.1 0.0 0.10.015

0.010

0.005

0.000

0.005

0.010

0.015

Longitudinal coordinate, z m

Field

component,

Ex

Ez0

▪ Simulation results

Numerical Examples

2 064 944 cells

reduced linear

full linearreduced quadratic

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 32

hierarchical set of

basis functions

Numerical Examples

▪ Transversal grid information

- Cut plane plots

Iris

Equator

unsymmetric mesh generation

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 33

Numerical Examples

▪ Symmetric mesh generation

Coaxial coupler

Higher order mode coupler (HOM)

HOM

Beam tube

TESLA 9 cell cavity

Idea:

1) Meshing performed only

on ¼ of the model

2) Copy mesh to assemble

the full information

CST – Microwave Studio

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 34

Numerical Examples

▪ Transversal grid information

- Cut plane plots

Iris

Equator

symmetric mesh generation

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 35

Numerical Examples

▪ Simulation results

- Transverse mesh properties

arbitrary distribution

of tetrahedra

tetrahedra faces aligned

along coordinate faces

symmetric distribution

of tetrahedra

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 36

0.5 0.4 0.3 0.2 0.1 0.0 0.1

0.010

0.008

0.006

0.004

0.002

0.000

Longitudinal coordinate, z m

Field

component,

Ex

Ez0

▪ Simulation results

Numerical Examples

3 282 467 cells

reduced quadratic set of basis functions

1 904 470 cells

652 742 cells

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 37

▪ Simulation results

Numerical Examples

Symmetric mesh:

1 904 470 cells

11 780 962 DOFs

Symmetric mesh:

3 282 467 cells

20 370 322 DOFs

c0 Bxc0 By

c0 Bz

(no contribution)

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 38

Numerical Examples

▪ Simulation results

Ex

z zFx

Fy

Ey

c0 By

c0 Bx

Contributions to the force for

a particle moving with speed

of light along the axis

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 39

Computational Model

▪ Eigenvalue distribution

0f/MHz

f/MHz

target frequency

search direction

desired mode

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 40

Motivation

▪ Superconducting Resonator

9-Cell Cavity Beam Tube

Upstream

Higher Order Mode

Coupler

Downstream Higher Order Mode Coupler

Input Coupler

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 41

Numerical Examples

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 42

in linear scale

f 0 =

1.3

00 G

Hz

f 0 =

1.7

09 G

Hz

Numerical Examples

December 21, 2010 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Wolfgang Ackermann | 43

in linear scale

f 0 =

1.8

02 G

Hz

f 0 =

1.8

90 G

Hz

top related