Bill Coish - Home | University of Waterloo | University of Waterloo · 2013. 5. 21. · Quantum Metrology with highly entangled states and realistic decoherence FQRNT Bill Coish Department

Post on 18-Jan-2021

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Quantum Metrology with highly entangled states and realistic decoherence

FQRNT

Bill CoishDepartment of Physics, McGill University, Montréal QC

Work done with Maxime Hardy (co-op Université de Sherbrooke)

2012 June 11; IQC Colloquium, Waterloo, ON

Collaboration with Innsbruck: R. Blatt, T. Monz, P. Schindler, J. T. Barreiro, ...

General Philosophy

Abstract models are excellent for fast progress, well defined questions...

BUT: too many to choose from.

Physical considerations often show the way to go.

True dynamics/decoherence often more complex than initial models suggest.

Goal: Quantum Information Processing

Ujªouti

j0i0j0i1

j0iN¡1j0iN

0 1

Initialization Arbitrary unitary Readout

0 1

0 1

0 1

Ujªouti

j0i0j0i1

j0iN¡1j0iN

0 1

Initialization Arbitrary unitary Readout

0 1

0 1

0 1

Physical Implementation:

U = T exp½¡iZ t

0

dt0H(t0)

¾H 2 HS

Goal: Quantum Information Processing

Reality: Imperfections

Ujªouti

j0i0j0i1

j0iN¡1j0iN

0 1

Initialization Arbitrary unitary Readout

0 1

0 1

0 1

~U = T exp½¡iZ t

0

dt0 (H(t0) + ±H(t0))

¾±H 2 HS ­HE

Qubit encoding: Single ions (40Ca+)

V(r)

r

¢E » 10eV

» 10¡10m

encoding:

R. Blatt and D. Wineland, Nature (2008)

jsi ! j0ijdi ! j1i

Collective dephasing

jÃ(0)i = 1p2(j0000:::i+ j1111:::i) (GHZ)

N qubits

N = 1

N = 2

N = 3N = 4

N = 6

deco

here

n ce

rate

1/T

2

Number of qubits, N

Uncorrelated noise

1

T2/ N

Expectation

deco

here

n ce

rate

1/T

2

Number of qubits, N

Correlated noise: “Superdecoherence”

1

T2/ N2

G. Palma et al., Proc. Roy. Soc. Lond. A (1996)

F (t) =DjhÃ(0)jÃ(t)ij2

Eav:

T. Monz et al., PRL (2011)

Collective dephasing

jÃ(0)i = 1p2(j0000:::i+ j1111:::i) (GHZ)

N qubits

N = 1

N = 2

N = 3N = 4

N = 6

deco

here

n ce

rate

1/T

2

Number of qubits, N

1

T2/ N

1

T2/ N2

Fits

something in between?

F (t) =DjhÃ(0)jÃ(t)ij2

Eav:

T. Monz et al., PRL (2011)

Dephasing: General

!(t)

j1i

j0i

_½ = ¡i [H(t); ½]H(t) = !(t)¾z=2

h¾+(t)i = eiÁ(t) h¾+(0)i Á(t) =

Z t

0

dt0!(t0)

!(t)

tprepare measure tprepare measure

Average over noise realizations:

h¾+(t)iav: =DeiÁ(t)

Eav:

h¾+(0)i

Dephasing: Generalh¾+(t)iav: =

DeiÁ(t)

Eav:

h¾+(0)i = e¡12 hÁ2(t)iav: h¾+(0)i

h±!(t)±!(0)iav:t

¿c

(Gaussian, stationary)­Á2(t)

®av:=

Z t

0

dt0(t¡ t0) h±!(t0)±!(0)iav:

Reh¾+(t)i a

v:

¿c < ¿dec:

¿c ¿dec:

» e¡t=¿dec:

(Markovian)

Reh¾+(t)iav: ¿c > ¿dec:

¿dec: ¿c

» e¡(t=¿dec:)2

(Non-Markovian)

Sources of dephasing in ion traps

●Fluctuating global phase reference (laser stability, also slow)

●Global magnetic field fluctuations (slow)

s= j0i = j1i

d(orbital Zeeman)

AMO Physics: Usually assume fast, local noise.

Gaussian dephasing model:

Szk = (j0i h0jk ¡ j1i h1jk) =2

jÃ(0)i = 1p2(j0000:::i+ j1111:::i)

h±B(t)±B(0)i =­±B2

®e¡t=¿c

(GHZ)

N qubits

H(t) = ±B(t)X

k

Szk

Gaussian dephasing model:

Szk = (j0i h0jk ¡ j1i h1jk) =2

jÃ(0)i = 1p2(j0000:::i+ j1111:::i)

h±B(t)±B(0)i =­±B2

®e¡t=¿c

(GHZ)

N qubits

²(N; t) =N2

2

Z t

0

d¿(t ¡ ¿) h±B(t)±B(0)i

“Superdecoherence”

H(t) = ±B(t)X

k

Szk

F (t) =­j hÃ(0)j Ã(t)i j2

®av:=1

2(1 + exp [¡2²(N; t)]) ' 1¡ ²(N; t)

N = 1

N = 2

N = 6

N = 3

N = 4

Revised noise model, accounting for a finite correlation time (non-Markovian)

Dominant noise source (B-field) identified; N extended to 14 qubits!

² » N2

T. Monz, ... WAC, ..., R. Blatt, PRL (2011)

Quantum MetrologyFrequency standards

Fundamental tests of gravitation

Mueller, Peters, Chu, Nature (2010)

Parameter estimation for Qm. Inf. Proc.

e.g., Rafal Demkowicz-Dobrzanski et al., arXiv (2012)

Quantum Metrology

Precision measurements?

j0i H HUÁ0 1

Á = !t

Repeat N times...

P = (1 + cos!t)=2j1i+ ei!t j0i

T: total experiment time

Classical:

±!class: =

pP (1¡ P )=N

jdP=d!j =1pNTt

/ 1pN

Quantum (GHZ state): j1111:::i+ eiN!t j0000:::i

±!quant: =1

NpT t

/ 1

N

Problem! DecoherenceMarkovian (exponential) dephasing, spatially uncorrelated noise:

S. F. Huelga et al., PRL (1997)

¿dec: = 1=(°N)

P = (1 + cosN!t)=2! (1 + e¡N°t cosN!t)=2

±!opt: / 1pNT

/ ±!class:

For (Markovian) spatially correlated noise:

¿dec: / 1=N2 ) ±!quant: / const:

Even worse!

U. Dorner, New J. Phys. (2012)

With dephasing (in general):

±!opt: / 1

Np¿dec:T

What kind of decoherence?

T. Monz, ..., WAC,..., R. Blatt PRL (2011)

non-exponential (long correlation time)

¿c > ¿dec:

“Superdecoherence”(long correlation length)

²(N)=²(1) / N2F = 1¡ ²

»c > L » N

Large N: dephasing becomes local

H(t) =X

k

±hk(t)Szk

L

»c

Generalized model:

Gaussian fluctuations:

Space Time

But: L / N (incr. with N) ¿dec: decr. with N!

Features of the environment(independent of N!)

h±hk(t)±hl(0)i =­±h2(0)

®e¡jxk¡xlj=»c £ e¡t=¿c

Sz =1

2(j1i h1j ¡ j0i h0j)

Large N: Quantum advantage?

±!opt: / 1

Np¿dec:T

¿dec: /1pN

) ±! / 1

N3=4

Also see, e.g., Jones et al., Science (2009); Matsuzaki, Benjamin, Fitzsimons PRA (2011)

¿c > ¿dec:; »c < L :

Large N: Quantum advantage?

¿dec: = T1=N

I : ¿c < ¿dec:; L (» N) < »c

II : ¿c > ¿dec:; L (» N) < »c

OR ¿c < ¿dec:; L (» N) > »c

III : ¿c > ¿dec:; L (» N) > »c

If the qubit frequency fluctuates locally in space and is approximately constant in time, quantum wins.

local, non-Markovian

Model summary: Spatial and temporal correlations

¿c < ¿dec:

¿c ¿dec:

» e¡t=¿dec:

¿c > ¿dec:

¿dec: ¿c

» e¡(t=¿dec:)2

»c ¿ L

¿dec: / N¡1; ±! / N¡1=2

»c À L

¿dec: / N¡2; ±! = const:

»c À L

¿dec: / N¡1; ±! / N¡1=2

F (t) F (t)

»c ¿ L

¿dec: / N¡1=2; ±! / N¡3=4

See also: Matsuzaki, Benjamin, Fitzsimons, PRA (2011)

Scaling: Regimes

t t t t

»c » n0 = 7

¿c = 1

±!0 = 10¡4

Can we do better?

Measurement time long compared to correlation time!

1

N3=4

Jones et al., Science (2009)Matsuzaki et al., PRA (2011)

!(t)

tprepare measure tprepare measure ¿c

Parameter Estimation = “Instantaneous Measurement”

After many measurements, frequency still not precisely defined!

......!

±! = 1=pNtT !k = !0 + k¼=t

T ¿ ¿c“Instantaneous”: ½(!)

½(!) = PN+(1¡ P )N¡N+=N0

More realistic: Gaussian prior

½(!)½(!) = PN+(1¡ P )N¡N+½0(!)=N0

½0(!)

P = (1 + cos!t)=2

Measurement times t?

Advantage in performing measurements at short times, even if the standard formula suggests larger t is always better:

±! » 1ptT

Classical:

Quantum:

¢! =¼

t> ¾

¢! =¼

ntPeak spacing smaller: ¢! > ¾ ) t < 1=n¾

±!class: »1pNtT

»r

¾

NT

±!quant: »r

¾

NTThis protocol gives the same scaling! (not optimal?):

Improved measurement strategy

tMeasurement time

Measurement time t=2

Measurement time t=4

Measurement time overhead:

t0 =X

k

1

2kt = 2t

±!quant: =

p2

NptT

(GHZ)

Result:

T ¿ ¿c

±!class: =

p2p

NptT

Summary

A static random frequency can always be found with Heisenberg-limited precision using GHZ states, provided the prior distribution has finite width.

T ¿ ¿c

±!quant: »1

NpT t

This beats the ~1/N3/4 scaling found previously [Jones et al., Science (2009), Matsuzaki et al., PRA (2011)], even for Gaussian decay of P(t).

t ¿ ¿c ¿ T ?

In this regime, frequency drifts between measurements; problem still open?

Conclusions

●“Superdecoherence”: a short-term problem for ion-trap and other implementations.

●Quantum-enhanced precision measurements still possible in spite of dephasing.

How large can the quantum region be?

Physical dephasing mechanisms:

Charge traps (fluctating electric field)

Surface spins (magnetic field)

Power-law correlations in space/time

Open questions:

top related