Aspen Plus

Post on 20-Nov-2014

115 Views

Category:

Documents

6 Downloads

Preview:

Click to see full reader

Transcript

I t d ti t A PlIntroduction to Aspen PlusShort Courses on Computer Applications for ChE Students

Speaker: JianKai Cheng (程建凱)p g (程建凱)d95524021@ntu.edu.tw

PSE LaboratoryDepartment of Chemical EngineeringDepartment of Chemical Engineering

Nation Taiwan University

What is Aspen PlusWhat is Aspen PlusWhat is Aspen PlusWhat is Aspen Plus

• Aspen Plus is a market‐leading process modeling tool for conceptual design, optimization, and performance monitoring for the chemical, polymer, specialty chemical, metals and minerals, and coal power industries.

2Ref: http://www.aspentech.com/products/aspen-plus.cfm

What Aspen Plus providesWhat Aspen Plus providesWhat Aspen Plus providesWhat Aspen Plus provides

• Physical Property Models– World’s largest database of pure component and phase equilibrium 

data for conventional chemicals electrolytes solids and polymersdata for conventional chemicals, electrolytes, solids, and polymers– Regularly updated with data from U. S. National Institute of Standards 

and Technology (NIST)

• Comprehensive Library of Unit Operation Models– Addresses a wide range of solid, liquid, and gas processing equipment

d d l d l f f d– Extends steady‐state simulation to dynamic simulation for safety and controllability studies, sizing relief valves, and optimizing transition, startup, and shutdown policies

– Enables you build your own libraries using Aspen Custom Modeler  or programming languages (User‐defined models)

Ref: Aspen Plus® Product Brochure3

More DetailedMore DetailedMore DetailedMore Detailed

• Properties analysis– Properties of pure component and mixtures (Enthalpy, density, viscosity, heat capacity,…etc)

– Phase equilibrium (VLE, VLLE, azeotrope calculation…etc)– Parameters estimation for properties models (UNIFAC method for binary parameters, Joback method for boiling points etc)points…etc)

– Data regression from experimental deta

P i l ti• Process simulation– pump, compressor, valve, tank, heat exchanger, CSTR, PFR, di till ti l t ti l b b filtdistillation column, extraction column, absorber, filter, crystallizer…etc 4

What course Aspen Plus What course Aspen Plus can be employed forcan be employed for

• MASS AND ENERGY BALANCES• PHYSICAL CHEMISTRY• CHEMICAL ENGINEERING THERMODYNAMICS • CHEMICAL REACTION ENGINEERING• CHEMICAL REACTION ENGINEERING• UNIT OPERATIONS• PROCESS DESIGN• PROCESS CONTROL

5

Lesson ObjectivesLesson ObjectivesLesson ObjectivesLesson Objectives

• Familiar with the interface of Aspen Plus• Learn how to use properties analysis• Learn how to setup a basic process simulation

6

Problem Formulation 1: Calculation Problem Formulation 1: Calculation the mixing properties of two stream the mixing properties of two stream 

1 2 3 4Mole Flow kmol/hr

WATER 10 0 ? ?BUOH 0 9 ? ?BUAC 0 6 ? ?

Total Flow kmol/hr 10 15 ? ?C 0 80 ? ?

Mass Balance

E B lTemperature C 50 80 ? ?Pressure bar 1 1 1 10

Enthalpy kcal/mol ? ? ? ?E t l/ l K ? ? ? ?

Energy BalanceEnthalpyEntropy…

Entropy cal/mol-K ? ? ? ?Density kmol/cum ? ? ? ?

7

Problem Formulation 2: Problem Formulation 2: Flash SeparationFlash Separation

120T

115

T-x T-y

Saturated Feed

T=105 CP=1atm

105

110

T (o C

)

P=1atmF=100 kmol/hrzwater=0.5 0.0 0.2 0.4 0.6 0.8 1.0

100

105

waterzHAc=0.5

What are flowrates and compositions of the two outlets?

xWater and yWater

What are flowrates and compositions of the two outlets?

Problem Formulation 3: Dehydration of Problem Formulation 3: Dehydration of Acetic Acid by Distillation Column Acetic Acid by Distillation Column 

(Optional)(Optional)

1 0

( p )( p )

0.8

1.0

Reflux

0.4

0.6

y Wat

er

ratio ?

0 0

0.2Duty ?

0.0 0.2 0.4 0.6 0.8 1.00.0

xWater

OutlineOutlineOutlineOutline

• Startup in Aspen Plus (Basic Input) (45 min)– User Interface– Basic Input: Setup, Components, Properties.

• Properties Analysis (1 hour)– Pure Component– Mixtures (phase equilibrium)

• Running Simulation (1 hour)– Blocks (Unit Operations)– Streams (flow streams)– Results

10

Introduction to Aspen Plus – Part 1Startup in Aspen Plus

11

Start with Aspen PlusStart with Aspen PlusStart with Aspen PlusStart with Aspen Plus

A Pl U I t fAspen Plus User Interface

12

Aspen Plus StartupAspen Plus StartupAspen Plus StartupAspen Plus Startup

13

Interface of Aspen PlusInterface of Aspen PlusInterface of Aspen PlusInterface of Aspen Plus

Process Flowsheet WindowsProcess Flowsheet Windows

Model Library (View| Model Library )Model Library (View| Model Library )y ( | y )

Stream

y ( | y )

Status message14

More InformationMore InformationMore InformationMore Information

Help for Commands for Controlling Simulations 15

Data BrowserData BrowserData BrowserData Browser

• The Data Browser is a sheet and form viewer with a hierarchical tree view of the available simulation input, results, and objects that have been defined

16

Status IndicatorsStatus IndicatorsStatus IndicatorsStatus Indicators

17

Basic InputBasic InputBasic InputBasic Input

• The minimum required inputs to run a simulation are:– Setup– Components Property Analysis

– Properties– Streams

Process Simulation– Blocks

Process Simulation

18

SetupSetup –– SpecificationSpecificationSetup  Setup  –– SpecificationSpecificationRun TypeRun Type

Input mode

19

SetupSetup –– Run TypeRun TypeSetup  Setup  –– Run TypeRun TypeRun Type Description Use to

A t d l d t A l d t h d t t tAssay Data Analysis A standalone assay data analysis/pseudocomponents generation run

Analyze assay data when you do not want to perform a flowsheet simulation in the same run. 

D t R iA standalone data regression run. Can contain 

t t t ti ti d t l i

Fit physical property model parameters required by Aspen Plus to measured pure component, VLE LLE d th i t d t A PlData Regression property constant estimation and property analysis 

calculations.VLE, LLE and other mixture data. Aspen Plus cannot perform data regression in a Flowsheet run. Prepare a property package for use with Aspen C M d l i h hi d i l

Properties Plus A Properties Plus setup runCustom Modeler, with third party commercial engineering programs, or with your company's in house programs. You must be licensed to use Properties Plus.P f l i b i bl

Property AnalysisA standalone property analysis run. Can contain property constant estimation and assay data analysis calculations.

Perform property analysis by generating tables of physical property values when you do not want to perform a flowsheet simulation in the same runE i h d

Property Estimation A standalone property constant estimation runEstimate property parameters when you do not want to perform a flowsheet simulation in the same run. 

A Flowsheet run (including sensitivity studies and 

Flowsheet

( g yoptimization). also include the following calculations: Property estimation, Assay data analysis and Property analysis

Perform process simulations

20

ComponentsComponents –– SpecificationSpecificationComponents  Components  –– SpecificationSpecification

I t tInput componentswith Component name or Formula

21

Input componentsInput componentsInput componentsInput components

Remark: If available, are

22

SpecificationSpecificationSpecificationSpecification

To do this Click this buttonFind components in the databanks FindDefine a custom component that is not in a databank

User Defined

Generate electrolyte components and reactions from components you entered

Elec Wizard

Reorder the components you have specified

Reorder

Review databank data for components you have specified (Retrieved physical property parameters from databanks )

Review

property parameters from databanks.)

23

Find ComponentsFind ComponentsFind ComponentsFind Components

Click “Find”

24

Find Components (cont’d)Find Components (cont’d)Find Components (cont d)Find Components (cont d)Input Component name or Formula or CAS numberp p

25

NIST ChemistryNIST Chemistry WebBookWebBookNIST Chemistry NIST Chemistry WebBookWebBook

26

PropertiesPropertiesPropertiesProperties

Process type(narrow the number ofProcess type(narrow the number ofmethods available)

Base method: IDEAL NRTL UNIQAC UNIFACBase method: IDEAL, NRTL, UNIQAC, UNIFAC…

27

Property Method SelectionProperty Method Selection –– AssistantAssistantProperty Method Selection  Property Method Selection  –– AssistantAssistant

Interactive help in choosing a property method

28

Assistant WizardAssistant WizardAssistant WizardAssistant Wizard

Specify Component typeChemical Systems

Is the system at high pressure?(NO)

Two liquid phases

29

30Reference: http://www.et.byu.edu/groups/uolab/files/aspentech/

Thermodynamic ModelThermodynamic Model –– NRTLNRTLThermodynamic Model Thermodynamic Model –– NRTLNRTL

Vapor EOS

NRTL Liquid gammaLiquid enthalpyLiquid volumeLiquid volume

31

Modify Property ModelModify Property ModelModify Property ModelModify Property Model

Check “Modify Property Model”y p y

Specify New Method Namep y

32

NRTLNRTL –– Binary ParametersBinary ParametersNRTL NRTL –– Binary ParametersBinary Parameters

Cli k “NRTL” d th b ilt i bi tClick “NRTL” and then built-in binary parameters appear automatically if available.

33

Access Properties Models and Access Properties Models and ParametersParameters

Review Databank Data

34

Review Databank DataReview Databank DataReview Databank DataReview Databank DataIncluding:Ideal gas heat of formation at 298.15 KgIdeal gas Gibbs free energy of formation at 298.15 KHeat of vaporization at TBNormal boiling pointStandard liquid volume at 60°FStandard liquid volume at 60 F….

Description of each parameter35

Pure Component Databank ParametersPure Component Databank ParametersPure Component Databank ParametersPure Component Databank Parameters

Help for Pure Component Databank Parameters 36

Pure Component Pure Component TemperatureTemperature‐‐Dependent PropertiesDependent Properties

CPIGDP‐1 ideal gas heat capacity

CPSDIP‐1 Solid heat capacity

DNLDIP‐1 Liquid density

DHVLDP‐1 Heat of vaporization 

PLXANT 1 Extended Antoine EquationPLXANT‐1 Extended Antoine Equation

MULDIP Liquid viscosity

KLDIP Liquid thermal conductivityq y

SIGDIP Liquid surface tension

UFGRP UNIFAC functional group

37

Example: PLXANTExample: PLXANT‐‐1 1 (Extended Antoine Equation)(Extended Antoine Equation)

Corresponding Model

?

Click “↖?” and then click where you don’t know

?

38

Example: CPIGDPExample: CPIGDP‐‐1 1 (Ideal Gas Heat Capacity Equation)(Ideal Gas Heat Capacity Equation)

Corresponding Model

??

39

SummarySummarySummarySummary

So far, we have finished the basic settings including setup, components, and properties.This is enough to perform properties

l ianalysis.

40

File Formats in Aspen PlusFile Formats in Aspen PlusFile Formats in Aspen PlusFile Formats in Aspen Plus

File Type Extension Format Description

Document *.apw Binary File containing simulation input and results andi t di t i f tiintermediate convergence information

Backup *.bkp ASCII Archive file containing simulation input andresults

History *.his Text Detailed calculation history and diagnosticmessages

Problem * appdf Binary File containing arrays and intermediate

41

Problem Description

.appdf Binary File containing arrays and intermediateconvergence information used in the simulationcalculations

File Type CharacteristicsFile Type CharacteristicsFile Type CharacteristicsFile Type Characteristicsf l• Binary files

– Operating system and version specific– Not readable not printableNot readable, not printable

• ASCII files– Transferable between operating systems– Upwardly compatible– Contain no control characters, “readable”

N i d d b i d– Not intended to be printed• Text files

– Transferable between operating systemsTransferable between operating systems– Upwardly compatible– Readable, can be edited– Intended to be printed

42

Introduction to Aspen Plus – Part 2Properties Analysis in Aspen Plus

43

Overview of Property AnalysisOverview of Property AnalysisOverview of Property AnalysisOverview of Property AnalysisUse this form To generateUse this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary maps showing phase envelope tie lines and azeotropes of ternaryTernary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of componentscomponents. 

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Ti li V B ili iTie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures 

(Generic without flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

44

RemindingRemindingRemindingReminding

• When you start properties analysis, you MUST specify components , properties model, and p y p p pcorresponding model parameters. (Refer to Part I)Part I)

45

Properties AnalysisProperties Analysis –– Pure ComponentPure ComponentProperties Analysis Properties Analysis –– Pure Component Pure Component Use this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systemsy systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components. 

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures without flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

46

Properties AnalysisProperties Analysis –– Pure ComponentPure ComponentProperties Analysis Properties Analysis –– Pure Component Pure Component 

47

Available PropertiesAvailable PropertiesAvailable PropertiesAvailable PropertiesProperty (thermodynamic) Property (transport)

Availability Free energy Thermal conductivityConstant pressureConstant pressure heat capacity Enthalpy Surface tension

Heat capacity ratio Fugacity coefficient ViscosityConstant volume heat Fugacity coefficientConstant volume heat 

capacityFugacity coefficient pressure correction

Free energy departure Vapor pressure Free energy departure pressure correction Density

Enthalpy departure EntropyEnthalpy departure pressure correction Volume

Enthalpy of  Sonic velocitypyvaporization  Sonic velocity

Entropy departure 48

Example1: CP (Heat Capacity)Example1: CP (Heat Capacity)Example1: CP (Heat Capacity)Example1: CP (Heat Capacity)

1. Select property (CP)

4. Specify range of temperature

2. Select phase

p y g p

5 S if5. Specify pressureAdd “N-butyl-acetate”

3. Select component 6. Select property method

7. click Go to generate the results49

Example1: Calculation Results of CPExample1: Calculation Results of CPExample1: Calculation Results of CPExample1: Calculation Results of CP

Data results 50

Example2: H (Enthalpy)Example2: H (Enthalpy)Example2: H (Enthalpy)Example2: H (Enthalpy)

1. Select property (H)4. Specify range of temperature

2. Select phase

5. Specify pressure

3. Select component6 S l t t th d6. Select property method

7. click Go to generate the results51

Example: Calculation Results of HExample: Calculation Results of HExample: Calculation Results of HExample: Calculation Results of H

Data results

52

Properties AnalysisProperties Analysis –– Binary ComponentsBinary ComponentsProperties Analysis Properties Analysis –– Binary ComponentsBinary ComponentsUse this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systemsy systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components. 

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures without flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

53

Properties AnalysisProperties Analysis –– Binary ComponentsBinary ComponentsProperties Analysis Properties Analysis –– Binary ComponentsBinary Components

Binary Component Properties AnalysisBinary Component Properties AnalysisBinary Component Properties AnalysisBinary Component Properties Analysis

Use this Analysis type To generate

Txy Temperature‐compositions diagram at constant pressure

Pxy Pressure‐compositions diagram at Pxy constant temperatureGibbs energy of mixing diagram as a function of liquid compositions. The A Ph i l P S hiGibbs energy of mixing Aspen Physical Property System uses this diagram to determine whether the binary system will form two liquid phases at a given temperature and pressureat a given temperature and pressure.

Example: TExample: T XYXYExample: TExample: T‐‐XYXY1. Select analysis type (Txy) 2. Select phase (VLE, VLLE)y yp ( y)

2. Select two component 5. Specify pressure

3. Select compositions basis

6 Select property method4. Specify composition range

6. Select property method

7. click Go to generate the results

Example: calculation result of TExample: calculation result of T XYXYExample: calculation result of TExample: calculation result of T‐‐XYXY

Data results

Example: Generate XY plotExample: Generate XY plotExample: Generate XY plotExample: Generate XY plot

Click “plot wizard” to generate XY plot

Example: Generate XY plot (cont’d)Example: Generate XY plot (cont’d)Example: Generate XY plot (cont d)Example: Generate XY plot (cont d)

Shortcoming of Binary AnalysisShortcoming of Binary AnalysisShortcoming of Binary AnalysisShortcoming of Binary Analysis

120Water-BuOH

100

110

90

100

T (o C

)

?0.0 0.2 0.4 0.6 0.8 1.0

70

80 ?

Bi A l i t t LLE d t b l t

Mole Fraction (Water)

Binary Analysis cannot generate LLE data below azeotrope.

Property AnalysisProperty Analysis –– GenericGenericProperty Analysis Property Analysis –– GenericGenericUse this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systemsy systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components. 

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures without flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

61

Properties AnalysisProperties Analysis –– TernaryTernaryProperties Analysis Properties Analysis –– TernaryTernary

Ternary MapTernary MapTernary MapTernary Map

1 Select three component4. Select phase (VLE, LLE)

1. Select three component

5. Specify pressure2. Specify number of tie line

3. Select property method6. Specify temperature

(if LLE is slected)

7. click Go to generate the results

Calculation Result of Ternary Map (LLE)Calculation Result of Ternary Map (LLE)Calculation Result of Ternary Map (LLE)Calculation Result of Ternary Map (LLE)

D t ltData results

Property AnalysisProperty Analysis –– GenericGenericProperty Analysis Property Analysis –– GenericGenericUse this form To generate

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary systemsy systems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components. 

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures without flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

Generic analysis is used if properties analysis of mixture is performed.65

When to Use Generic AnalysisWhen to Use Generic AnalysisWhen to Use Generic Analysis When to Use Generic Analysis 

Enthalpy of Mixtures?Water-BuOH

100

110

120

80

90

100

T (o C

)

LLE? Specific composition?660.0 0.2 0.4 0.6 0.8 1.0

70

80

Mole Fraction (Water)

LLE? Specific composition?

Property AnalysisProperty Analysis –– GenericGenericProperty Analysis Property Analysis –– GenericGeneric

Select Property analysis

67

Add New AnalysisAdd New AnalysisAdd New AnalysisAdd New Analysis

Select Generic

68

Specification of SystemSpecification of SystemSpecification of SystemSpecification of System

. Select “flash calculation” or not 3. Specify component flow

2. Select phase (VLE, LLE)

4 S if th di iti4. Specify the corresponding composition

69

Determine Adjusted VariablesDetermine Adjusted VariablesDetermine Adjusted VariablesDetermine Adjusted Variables

Specify feed condition

TemperaturePressureVapor fractionVapor fractionMole flowMass flowStdVol flowMole fractionMass fractionStdVol fraction

Specify range of adjusted variables70

Specify PropertySpecify Property‐‐Sets for Sets for Calculation ResultsCalculation Results

71

Add New PropertyAdd New Property Set (UserSet (User Defined)Defined)Add New PropertyAdd New Property‐‐Set (UserSet (User‐‐Defined)Defined)

Select Physical Property

Description72

Add New PropertyAdd New Property Set (cont’d)Set (cont’d)Add New PropertyAdd New Property‐‐Set (cont d)Set (cont d)If the system requires VLLE calculationIf the system requires VLLE calculation…

Select “Vapor” “1st liquid” “2nd liquid”

73

Specify PropertySpecify Property SetsSetsSpecify PropertySpecify Property‐‐SetsSets

74

Run Properties AnalysisRun Properties AnalysisRun Properties AnalysisRun Properties Analysis

Click ► to generate the resultsClick ► to generate the results

Check “simulation status”“Results Available” means convergency“Results Available” means convergency.

75

Example1: Calculation of Enthalpy Example1: Calculation of Enthalpy Change Change for binary mixturesfor binary mixtures

-60000 Molar ratio of Butanol/Water=1:1

-56000Temperature = 50oC

66000

-64000

-62000

/mol

)

Liquid Vapor

-64000-62000-60000-58000

mol

)

Liquid Vapor

-70000

-68000

-66000

Ent

halp

y (c

al/

-72000-70000-68000-66000

Ent

halp

y (c

al/m

40 50 60 70 80 90 100-74000

-72000

0.0 0.2 0.4 0.6 0.8 1.0-78000-76000-74000

ETemperature (oC) Mole fraction of Water in BuOH and Water

76

Search Physical Properties for Search Physical Properties for Enthalpy of Mixtures (HMX) Enthalpy of Mixtures (HMX) 

Select HMX. Others are optimal.

Add Property-Set

77

Calculate Calculate of Enthalpy Change As of Enthalpy Change As Temperature Temperature VariesVaries

21 2

3

4

78

ReadRead Calculation ResultsCalculation ResultsRead Read Calculation ResultsCalculation Results

79

ExerciseExerciseExerciseExercise

-58000-56000

Temperature = 50oC

-66000-64000-62000-60000

cal/m

ol)

Liquid Vapor

-74000-72000-70000-68000

Ent

halp

y (c

0.0 0.2 0.4 0.6 0.8 1.0-78000-76000

Mole fraction of Water in BuOH and Water

80

Example 2: Example 2: Calculation of Calculation of LLE LLE for for Binary systemBinary system

120Water-BuOH

100

110

90

100

T (o C

)

80

0.0 0.2 0.4 0.6 0.8 1.070

Mole Fraction (Water)

81

Add New PropertyAdd New Property Set (cont’d)Set (cont’d)Add New PropertyAdd New Property‐‐Set (cont d)Set (cont d)

Select “Vapor” “1st liquid” “2nd liquid”

Specify System Variable and PropertySpecify System Variable and Property SetSetSpecify System, Variable and PropertySpecify System, Variable and Property‐‐SetSet1 2

Select Vapor-liquid-liquid

3

4

Calculation ResultsCalculation ResultsCalculation ResultsCalculation Results

110

120Water-BuOH

90

100

110

T (o C

)

0.0 0.2 0.4 0.6 0.8 1.070

80

Mole Fraction (Water)

Property AnalysisProperty Analysis –– Conceptual DesignConceptual DesignProperty Analysis Property Analysis –– Conceptual DesignConceptual DesignUse this form To generate

(Optional)

Pure Tables and plots of pure component properties as a function of temperature and pressure

Binary Txy Pxy or Gibbs energy of mixing curves for a binary systemBinary Txy, Pxy, or Gibbs energy of mixing curves for a binary system

Residue Residue curve maps

Ternary Ternary maps showing phase envelope, tie lines, and azeotropes of ternary Ternary y p g p p , , p ysystems

Azeotrope This feature locates all the azeotropes that exist among a specified set of components. p

Ternary MapsTernary diagrams in Aspen Distillation Synthesis feature: Azeotropes, Distillation boundary, Residue curves or distillation curves, Isovolatility curves, Tie lines Vapor curve Boiling pointTie lines, Vapor curve, Boiling point

Generic

Tables and plots of properties of either multi‐phase mixtures (for example, VLE, VLLE, LLE) resulting from flash calculations, or single‐phase mixtures without flash calculations Properties analysis of multi‐components (morewithout flash calculations. Properties analysis of multi‐components  (more than three) is  also included.

85

Conceptual DesignConceptual DesignConceptual DesignConceptual Design

Conceptual DesignConceptual DesignConceptual DesignConceptual Design

• Conceptual design enables the user to:1. Locate all the azeotropes (homogeneous and 

heterogeneous) present in any multicomponent mixture2. Automatically compute distillation boundaries and 

id f t i tresidue curve maps for ternary mixtures3. Compute multiple liquid phase envelopes (liquid‐liquid 

and vapor liquid liquid) for ternary mixturesand vapor‐liquid‐liquid) for ternary mixtures4. Determine the feasibility of splits for distillation columns

Azeotrope AnalysisAzeotrope AnalysisAzeotrope AnalysisAzeotrope Analysis

Azeotrope AnalysisAzeotrope AnalysisAzeotrope AnalysisAzeotrope Analysis

1. Select components (at least two) 2. Specify pressure

3. Select property method

4 Select phase (VLE LLE)

6. click Report to generate the results

4. Select phase (VLE, LLE)

5. Select report Unit

Error MessageError MessageError MessageError Message

Close analysis input dialog box (pure or binary analysis)

Azeotrope Analysis ReportAzeotrope Analysis ReportAzeotrope Analysis ReportAzeotrope Analysis Report

Ternary MapsTernary MapsTernary MapsTernary Maps

Ternary MapsTernary MapsTernary MapsTernary Maps3 Select property method4. Select phase (VLE, LLE)1. Select three components3. Select property method

2. Specify pressure 5. Select report Unit

6. Click Ternary Plot to generate the results

6. Specify temperature of LLE (If liquid-liquid envelope is selected)

Ternary MapsTernary MapsTernary MapsTernary MapsChange pressure or temperaturetemperature

Ternary Plot Toolbar:Add Tie line, Curve, , ,Marker…

Introduction to Aspen Plus – Part 3 Running Simulation in Aspen Plus

95

Example 1: Calculate the mixing Example 1: Calculate the mixing properties of two stream properties of two stream 

1 2 3 4Mole Flow kmol/hr

WATER 10 0 ? ?BUOH 0 9 ? ?BUAC 0 6 ? ?

Total Flow kmol/hr 10 15 ? ?C 0 80 ? ?Temperature C 50 80 ? ?

Pressure bar 1 1 1 10Enthalpy kcal/mol ? ? ? ?E t l/ l K ? ? ? ?Entropy cal/mol-K ? ? ? ?Density kmol/cum ? ? ? ?

96

Example 2: Flash SeparationExample 2: Flash SeparationExample 2: Flash SeparationExample 2: Flash Separation

120T

115

T-x T-y

Saturated Feed

T=105 CP=1atm

105

110

T (o C

)

P=1atmF=100 kmol/hrzwater=0.5 0.0 0.2 0.4 0.6 0.8 1.0

100

105

waterzHAc=0.5

What are flowrates and compositions of the two outlets?

xWater and yWater

What are flowrates and compositions of the two outlets?

Example 3: Dehydration of Acetic Example 3: Dehydration of Acetic Acid by Distillation Column Acid by Distillation Column (Optional)(Optional)

1 0

0.8

1.0

Reflux

0.4

0.6

y Wat

er

ratio ?

0 0

0.2Duty ?

0.0 0.2 0.4 0.6 0.8 1.00.0

xWater

SetupSetup –– SpecificationSpecificationSetup  Setup  –– SpecificationSpecification

Select Flowsheet

99

Reveal Model LibraryReveal Model LibraryReveal Model LibraryReveal Model Library

View|| Model LibraryView|| Model Libraryor press F10

100

Model Library: Mixer/SplitterModel Library: Mixer/SplitterModel Library: Mixer/SplitterModel Library: Mixer/Splitter

Model Description Purpose Use for

Mixer Stream mixer Combines multiple streams into one stream

Mixing tees. Stream mixing operations. g pAdding heat streams. Adding work streams

FSplit Stream splitter Divides feed based on splits Stream splitters BleedFSplit Stream splitter Divides feed based on splits specified for outlet streams

Stream splitters. Bleed valves

SSplit Substream splitter Divides feed based on splits Stream splitters PerfectSSplit Substream splitter Divides feed based on splits specified for each substream

Stream splitters. Perfect fluid‐solid separators

101

Model Library: Pressure ChangersModel Library: Pressure ChangersModel Library: Pressure ChangersModel Library: Pressure Changers

102

Model Description Purpose Use forP h d li Ch t h th P d h d liPump Pump or hydraulic turbine

Changes stream pressure when the power requirement is needed or known

Pumps and hydraulic turbines

C Ch t h P l t iCompr Compressor or turbine

Changes stream pressure when power requirement is needed or known

Polytropic compressors, polytropic positive displacement compressors, isentropic compressorsisentropic compressors, isentropic turbines

Mcompr Multistage compressor or

Changes stream pressure across multiple stages with intercoolers

Multistage polytropiccompressors polytropiccompressor or 

turbinemultiple stages with intercoolers. Allows for liquid knockout streams from intercoolers

compressors, polytropicpositive displacement compressors, isentropic compressors isentropiccompressors, isentropic turbines

Valve Valve pressure drop

Models pressure drop through a valve

Control valves and pressure changersdrop valve changers

Pipe Single segment pipe

Models pressure drop through a single segment of pipe

Pipe with constant diameter (may include fittings)

Pipeline Multiple segment Models pressure drop through a Pipeline with multiplePipeline Multiple segment pipeline

Models pressure drop through a pipe or annular space

Pipeline with multiple lengths of different diameter or elevation103

Adding a MixerAdding a MixerAdding a MixerAdding a Mixer

Click “one of icons” d th li k i th fl h t i dand then click again on the flowsheet window

Remark: The shape of the icons are meaningless

104

Adding Material StreamsAdding Material StreamsAdding Material StreamsAdding Material Streams

Click “Materials” and then click again on the flowsheet windowagain on the flowsheet window

105

Adding Material Streams (cont’d)Adding Material Streams (cont’d)Adding Material Streams (cont d)Adding Material Streams (cont d)

When clicking the mouse on the flowsheet windowWhen clicking the mouse on the flowsheet window,arrows (blue and red) appear.

106

Adding Material Streams (cont’d)Adding Material Streams (cont’d)Adding Material Streams (cont d)Adding Material Streams (cont d)

When moving the mouse on the arrows, some description appears.

Blue arrow: Water decant for Free water of dirty water

Red arrow(Left) Feed (Required; one ore more if mixing material

Red arrow(Right): Product (Required; if mixing material streams)of dirty water. if mixing material

streams)mixing material streams)

107

Adding Material Streams (cont’d)Adding Material Streams (cont’d)Adding Material Streams (cont d)Adding Material Streams (cont d)

After selecting “Material Streams”, click and pull a stream line.Repeat it three times to generate three stream linesRepeat it three times to generate three stream lines.

108

Reconnecting Material Streams Reconnecting Material Streams (Feed Stream)(Feed Stream)

Right Click on the stream and select Reconnect Destination

109

Reconnecting Material Streams Reconnecting Material Streams (Product Stream)(Product Stream)

Right Click on the stream and select Reconnect Sourceselect Reconnect Source

B1

1

2

3

110

Specifying Feed ConditionSpecifying Feed ConditionSpecifying Feed ConditionSpecifying Feed Condition

Right Click on the stream and select Inputand select Input

111

Specifying Feed ConditionSpecifying Feed ConditionSpecifying Feed ConditionSpecifying Feed Condition

You must specify two of the following conditions:TemperaturepPressureVapor fraction

You can enter stream composition in terms of component flows, fractions, or concentrations.

If you specify component fractions, you must specify the total mole, If you specify component fractions, you must specify the total mole, mass, or standard liquid volume flow.

112

Specifying Feed Condition (cont’d)Specifying Feed Condition (cont’d)Specifying Feed Condition (cont d)Specifying Feed Condition (cont d)

1 2

113

Specifying Input of MixerSpecifying Input of MixerSpecifying Input of MixerSpecifying Input of Mixer

Right Click on the block and select Input

114

Specifying Input of Mixer (cont’d)Specifying Input of Mixer (cont’d)Specifying Input of Mixer (cont d)Specifying Input of Mixer (cont d)

Specify Pressure and valid phase

The corresponding description about this blank:Outlet pressure if value > 0Pressure drop if value ≦ 0

115

Run SimulationRun SimulationRun SimulationRun Simulation

Click ► to run the simulation

Run Start or continue calculations

Step Step through the flowsheet one block at a time

Stop Pause simulation calculations

Reinitialize Purge simulation results

Check “simulation status”“Required Input Complete” means the input is ready to run simualtionq p p p y

116

Status of Simulation ResultsStatus of Simulation ResultsStatus of Simulation Results Status of Simulation Results 

Message Means

Results available The run has completed normally, and results are presentpresent.

Results with warnings 

Results for the run are present. Warning messages were generated during the l l i Vi h C l P l Hiesu ts t a gs calculations. View the Control Panel or History 

for messages. 

Results for the run are present. Error messages Results with errors  were generated during the calculations. View the 

Control Panel or History for messages.

Results for the run are present, but you have 

Input Changed

p , ychanged the input since the results were generated. The results may be inconsistent with the current input.

117

Control PannelControl PannelControl PannelControl Pannel

Click here

1.A message window showing the progress of the simulation by displaying the most recent messages from the calculationsrecent messages from the calculations

2.A status area showing the hierarchy and order of simulation blocks and convergenceorder of simulation blocks and convergence loops executed

118

Stream ResultsStream ResultsStream ResultsStream Results

Right Click on the block andRight Click on the block and select Stream Results

119

1 2 3Substream: MIXEDMole Flow kmol/hr

WATER 10 0 10BUOH 0 9 9BUOH 0 9 9BUAC 0 6 6

Total Flow kmol/hr 10 15 25Total Flow kg/hr 180.1528 1364.066 1544.218Total Flow cum/hr 0.18582 1.74021 1.870509Temperature C 50 80 70.08758Pressure bar 2 1 1V F 0 0 0Vapor Frac 0 0 0Liquid Frac 1 1 1Solid Frac 0 0 0

Enthalpy kcal/mol ‐67.81 ‐94.3726 ‐83.7476Pull down the list and select Enthalpy kcal/mol 67.81 94.3726 83.7476Enthalpy kcal/kg ‐3764.03 ‐1037.77 ‐1355.82Enthalpy Gcal/hr ‐0.6781 ‐1.41559 ‐2.09369Entropy cal/mol‐K ‐37.5007 ‐134.947 ‐95.6176

Pull down the list and select “Full” to show more properties results.

Entropy cal/gm‐K ‐2.0816 ‐1.48395 ‐1.54799Density kmol/cum 53.81564 8.619647 13.36534Density kg/cum 969.5038 783.851 825.5604Average MW 18 01528 90 93771 61 76874Average MW 18.01528 90.93771 61.76874

Liq Vol 60F cum/hr 0.1805 1.617386 1.797886120

Enthalpy and Entropy

Change Units of Calculation ResultsChange Units of Calculation ResultsChange Units of Calculation ResultsChange Units of Calculation Results

121

SetupSetup –– Defining Your Own Units SetDefining Your Own Units SetSetup Setup –– Defining Your Own Units Set Defining Your Own Units Set 

122

SetupSetup –– Report OptionsReport OptionsSetup Setup –– Report OptionsReport Options

123

Stream Results with Format of Stream Results with Format of Mole FractionMole Fraction

124

Add Pump BlockAdd Pump BlockAdd Pump BlockAdd Pump Block

125

Add A Material StreamAdd A Material StreamAdd A Material StreamAdd A Material Stream

126

Connect StreamsConnect StreamsConnect StreamsConnect Streams

127

PumpPump –– SpecificationSpecificationPump Pump –– Specification Specification 

2. Specify pump outlet specificati

1. Select “Pump” or “turbine”

(pressure, power)

3. Efficiencies (Default: 1)

128

Run SimulationRun SimulationRun SimulationRun Simulation

Click ► to generate the resultsClick ► to generate the results

Check “simulation status”“Required Input Complete” q p p

129

Block Results (Pump)Block Results (Pump)Block Results (Pump)Block Results (Pump)

Right Click on the block and select Results

130

131

Streams ResultsStreams ResultsStreams ResultsStreams Results

132

Calculation Results Calculation Results (Mass and Energy Balances)(Mass and Energy Balances)

1 2 3 4Mole Flow kmol/hr

WATER 10 0 10 10BUOH 0 9 9 9BUAC 0 6 6 6

Total Flow kmol/hr 10 15 25 25C 0 80 0 09 1 20Temperature C 50 80 70.09 71.20

Pressure bar 1 1 1 10Enthalpy kcal/mol -67.81 -94.37 -83.75 -83.69 E t l/ l K 37 50 134 95 95 62 95 46Entropy cal/mol-K -37.50 -134.95 -95.62 -95.46 Density kmol/cum 969.50 783.85 825.56 824.29

133

ExerciseExerciseExerciseExercise

1 2 3 4 5 6Mole Flow kmol/hrMole Flow kmol/hr

Water 10 0 0 ? ? ?Ethanol 0 5 0 ? ? ?

Methanol 0 0 15 ? ? ?Methanol 0 0 15 ? ? ?Total Flow kmol/hr 10 15 15 ? ? ?

Temperature C 50 70 40 ? ? ?Pressure bar 1 1 1 1 4 2essu e ba

Enthalpy kcal/mol ? ? ? ? ? ?Entropy cal/mol-K ? ? ? ? ? ?Density kmol/cum ? ? ? ? ? ?y

134Please use Peng-Robinson EOS to solve this problem.

Example 2: Flash SeparationExample 2: Flash SeparationExample 2: Flash SeparationExample 2: Flash Separation

120T

115

T-x T-y

Saturated Feed

T=105 CP=1atm

105

110

T (o C

)

P=1atmF=100 kmol/hrzwater=0.5 0.0 0.2 0.4 0.6 0.8 1.0

100

105

waterzHAc=0.5

What are flowrates and compositions of the two outlets?

xWater and yWater

What are flowrates and compositions of the two outlets?

Input ComponentsInput ComponentsInput ComponentsInput Components

Thermodynamic Model: NRTLThermodynamic Model: NRTL HOCHOCThermodynamic Model: NRTLThermodynamic Model: NRTL‐‐HOCHOC

Vapor ESHOCLiquid gammaq gLiquid enthalpyLiquid volume

Check Binary ParametersCheck Binary ParametersCheck Binary ParametersCheck Binary Parameters

Association parameters of HOCAssociation parameters of HOCAssociation parameters of HOCAssociation parameters of HOC

Binary Parameters of NRTLBinary Parameters of NRTLBinary Parameters of NRTLBinary Parameters of NRTL

Binary AnalysisBinary AnalysisBinary AnalysisBinary Analysis

TT xyxy plotplotTT‐‐xyxy plotplot

1. Select analysis type (Txy) 2. Select phase (VLE, VLLE)p ( , )

2. Select two component 5. Specify pressure

3 Select compositions basis 6. Select property method3. Select compositions basis

4. Specify composition range

7. click Go to generate the results

Calculation Result of TCalculation Result of T xyxyCalculation Result of TCalculation Result of T‐‐xyxy

Data results

GenerateGenerate xyxy plotplotGenerate Generate xyxy plotplot

GenerateGenerate xyxy plot (cont’d)plot (cont’d)Generate Generate xyxy plot (cont d)plot (cont d)

Flash SeparationFlash SeparationFlash SeparationFlash Separation

120T

115

T-x T-y

Saturated Feed

T=105 CP=1atm

105

110

T (o C

)

P=1atmF=100 kmol/hrzwater=0.5 0.0 0.2 0.4 0.6 0.8 1.0

100

105

waterzHAc=0.5

What are flowrates and compositions of the two outlets?

xWater and yWater

What are flowrates and compositions of the two outlets?

Add Block: Flash2Add Block: Flash2Add Block: Flash2Add Block: Flash2

Add Material StreamAdd Material StreamAdd Material StreamAdd Material Stream

Specify Feed ConditionSpecify Feed ConditionSpecify Feed ConditionSpecify Feed Condition

Saturated Feed(Vapor fraction=0)

P=1atmF=100 kmol/hrzwater=0.5zHAc=0.5

Block Input: Flash2Block Input: Flash2Block Input: Flash2Block Input: Flash2

Flash2: SpecificationFlash2: SpecificationFlash2: SpecificationFlash2: Specification

T=105 CP 1 tP=1atm

Required Input IncompleteRequired Input IncompleteRequired Input IncompleteRequired Input Incomplete

Connot click ► to run simulationConnot click ► to run simulation

Close binary analysis window

Required Input CompleteRequired Input CompleteRequired Input CompleteRequired Input Complete

Click ► to run simulationClick ► to run simulation

Stream ResultsStream ResultsStream ResultsStream Results

Stream Results (cont’d)Stream Results (cont’d)Stream Results (cont d)Stream Results (cont d)

42.658 kmol/hrzwater=0.501waterzHAc=0.409

T=105 CSaturated FeedP=1atmF=100 kmol/hr

P=1atm

F=100 kmol/hrzwater=0.5zHAc=0.5

57.342 kmol/hrzwater=0.432waterzHAc=0.568

Review Distillation SeparationReview Distillation SeparationReview Distillation SeparationReview Distillation Separation

1

McCabe- Thiele Graphical Method

RL D

Rectifying section: 0.8

1R

n n DR R

y x xV V

Stripping section:

0.6

y

1S

n n BS S

L By x xV V

pp g

0 2

0.4

0 0 2 0 4 0 6 0 8 10

0.2

0 0.2 0.4 0.6 0.8 1x

TradeTrade‐‐off Between off Between Capital Cost and Operating CostCapital Cost and Operating Cost

Shortcut Design:RR≈1.2×RRminNT ≈ 2×NTmin

Distillation SeparationDistillation SeparationDistillation SeparationDistillation Separation

• There are two degrees of freedom to manipulate d ll ddistillate composition and bottoms composition to manipulate the distillate andRR ? manipulate the distillate and bottoms compositions. 

• If the feed condition and theIf the feed condition and the number of stages are given, how much of RR and QR are QR ?required to achieve the specification. 

Add Block:Add Block: RadfracRadfracAdd Block: Add Block: RadfracRadfrac

Add Material StreamAdd Material StreamAdd Material StreamAdd Material Stream

FlowsheetFlowsheet Connectivity forConnectivity for RadFracRadFracFlowsheetFlowsheet Connectivity for Connectivity for RadFracRadFrac

RadFrac numbers stages from the top down, starting with the condenser (or starting with the top stage if there is no condenser).

Connect Material StreamConnect Material StreamConnect Material StreamConnect Material Stream

Specify Feed ConditionSpecify Feed ConditionSpecify Feed ConditionSpecify Feed Condition

Saturated Feed(Vapor fraction=0)

P=1.2atmF=100 kmol/hrzwater=0.5zHAc=0.5

Block Input:Block Input: RadfracRadfracBlock Input: Block Input: RadfracRadfrac

RadfracRadfrac: Configuration: ConfigurationRadfracRadfrac: Configuration: Configuration

RadfracRadfrac: Streams (Feed Location): Streams (Feed Location)RadfracRadfrac: Streams (Feed Location): Streams (Feed Location)

Types of Feed StageTypes of Feed StageTypes of Feed StageTypes of Feed Stage

Use this convention To introduce a feedAbove‐stage Between stages, above the designated stageg g , g gOn‐stage On the designated stage

On‐stage‐liquid On the designated stage, all‐liquid feed On stage liquid which is never flashed

On‐stage‐vapor On the designated stage, all‐vapor feed which is never flashedg p which is never flashed

Decanter To the decanter attached to the designated stagestage

RadfracRadfrac: Column Pressure: Column PressureRadfracRadfrac: Column Pressure: Column Pressure

Run SimulationRun SimulationRun SimulationRun Simulation

Click ► to run simulation

Check Convergence StatusCheck Convergence StatusCheck Convergence StatusCheck Convergence Status

Stream ResultsStream ResultsStream ResultsStream Results

D B

Change Reflux RatioChange Reflux RatioChange Reflux RatioChange Reflux Ratio

Click ► to run simulation

Increase RR from 2 to 2.5

D B

AgainAgainAgain…Again…

You can iterate RR until the specification is achievedYou can iterate RR until the specification is achieved.

Smarter WaySmarter WaySmarter WaySmarter Way

Aspen Plus provides a convenient function (Design Specs/Vary) which can iterate operating variables to meet the specification.

Add New Design SpecsAdd New Design SpecsAdd New Design SpecsAdd New Design Specs

Design Specs: SpecificationDesign Specs: SpecificationDesign Specs: SpecificationDesign Specs: Specification

Input current mole purity first

Design Specs: ComponentsDesign Specs: ComponentsDesign Specs: ComponentsDesign Specs: Components

Design Specs: Feed/Product StreamsDesign Specs: Feed/Product StreamsDesign Specs: Feed/Product StreamsDesign Specs: Feed/Product Streams

Add New VeryAdd New VeryAdd New VeryAdd New Very

Very: SpecificationsVery: SpecificationsVery: SpecificationsVery: Specifications

Not all variables cane be selected

Specify the range of the adjusted variable

Not all variables cane be selected.In this case, only reflux ratio and reboiler duty can be used.

Selection of Adjusted VariablesSelection of Adjusted VariablesSelection of Adjusted VariablesSelection of Adjusted Variables

The options of adjusted variables mustThe options of adjusted variables must correspond to the operating specification.

Run SimulationRun SimulationRun SimulationRun Simulation

Click ► to run simulationClick ► to run simulation

Check Convergence StatusCheck Convergence StatusCheck Convergence StatusCheck Convergence Status

Change Target of Mole PurityChange Target of Mole PurityChange Target of Mole PurityChange Target of Mole Purity

Click ► to run simulation

Increase Target from 0.95229424 to 0.99

Check Convergence StatusCheck Convergence StatusCheck Convergence StatusCheck Convergence Status

D B

Column Performance SummaryColumn Performance SummaryColumn Performance SummaryColumn Performance Summary

Summary of CondenserSummary of CondenserSummary of CondenserSummary of Condenser

I l d d d t di till t t fl t fl tiInclude condenser duty, distillate rate, reflux rate, reflux ratio

Summary ofSummary of ReboilerReboilerSummary of Summary of ReboilerReboiler

I l d b il d t b tt t b il t b il tiInclude reboiler duty, bottoms rate, boilup rate, boilup ratio

Column Profile: TPFQColumn Profile: TPFQColumn Profile: TPFQColumn Profile: TPFQ

Column Profile: Vapor CompositionColumn Profile: Vapor CompositionColumn Profile: Vapor CompositionColumn Profile: Vapor Composition

Column Profile: Liquid CompositionColumn Profile: Liquid CompositionColumn Profile: Liquid CompositionColumn Profile: Liquid Composition

Plot Wizard for Column ProfilePlot Wizard for Column ProfilePlot Wizard for Column ProfilePlot Wizard for Column Profile

Plot Wizard for Column Profile (cont’d)Plot Wizard for Column Profile (cont’d)Plot Wizard for Column Profile (cont d)Plot Wizard for Column Profile (cont d)

After entering the block, “Plot” appears.g , pp

Plot WizardPlot WizardPlot WizardPlot Wizard

Plot TypesPlot TypesPlot TypesPlot Types

Steps for Composition PlotSteps for Composition PlotSteps for Composition PlotSteps for Composition Plot

Composition ProfilesComposition ProfilesComposition ProfilesComposition Profiles

Temperature ProfilesTemperature ProfilesTemperature ProfilesTemperature Profiles

INTRODUCTION TO ASPEN PLUSINTRODUCTION TO ASPEN PLUSSome Tips and Others

202

Tips: NextTips: NextTips: NextTips: Next

Invokes the Aspen Plus expert system. Guides you through the steps required to complete your simulation.p q p y

Status message MeaningFlowsheet Not Complete

Flowsheet connectivity is incomplete. To find out why, click the Next button in the toolbar.

Required Input Not C l

Input specifications for the run are incomplete. Click Next h lb fi d h l h iComplete on the toolbar to find out how to complete the input 

specifications, and to go to sheets that are incomplete.

203

Example: “NEXT”Example: “NEXT”Example:  NEXTExample:  NEXT

204

Tips: “What’s this”Tips: “What’s this”Tips:  What s thisTips:  What s this

Cli k “↖?” d th li k h d ’t kClick “↖?” and then click where you don’t know

?

205

Tips: “What’s this”Tips: “What’s this”Tips:  What s thisTips:  What s this

?

206

Tips: WindowTips: WindowTips: WindowTips: Window

If you are using You shouldWorkbook mode Click the Process Flowsheet tabFlowsheet as Wallpaper Click the flowsheet in the backgroundp p gNormal View Select the Process Flowsheet window

207

Help TopicsHelp TopicsHelp TopicsHelp Topics

Go to “Help”pSelect “Help Topics”

208

Help TopicsHelp TopicsHelp TopicsHelp Topics

U it O ti M d l R f M lUnit Operation Model Reference ManualPhysical Property Methods and ModelsPhysical Property Data Reference Manual

209

Help TopicsHelp TopicsHelp TopicsHelp TopicsCalculation of Properties Using an Equation-of-State Property Method

210

File Formats in Aspen PlusFile Formats in Aspen PlusFile Formats in Aspen PlusFile Formats in Aspen Plus

File Type Extension Format Description

Document *.apw Binary File containing simulation input and results andi t di t i f tiintermediate convergence information

Backup *.bkp ASCII Archive file containing simulation input andresults

History *.his Text Detailed calculation history and diagnosticmessages

Problem * appdf Binary File containing arrays and intermediate

211

Problem Description

.appdf Binary File containing arrays and intermediateconvergence information used in the simulationcalculations

File Type CharacteristicsFile Type CharacteristicsFile Type CharacteristicsFile Type Characteristicsf l• Binary files

– Operating system and version specific– Not readable not printableNot readable, not printable

• ASCII files– Transferable between operating systems– Upwardly compatible– Contain no control characters, “readable”

N i d d b i d– Not intended to be printed• Text files

– Transferable between operating systemsTransferable between operating systems– Upwardly compatible– Readable, can be edited– Intended to be printed

212

Access Aspen Plus SoftwareAccess Aspen Plus SoftwareAccess Aspen Plus SoftwareAccess Aspen Plus Software

• Please contact  PC Teaching Assistant:Name: 侯冠宇

Phone: 02‐3366‐3005Email: chemeng@ntu edu twEmail: chemeng@ntu.edu.twOffice: 101 電腦教室

213

如何進入講義下載及填寫問卷如何進入講義下載及填寫問卷如何進入講義下載及填寫問卷如何進入講義下載及填寫問卷

top related