Arno smets tu delft presentation arnhem

Post on 13-Jun-2015

905 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

Matchmaking bijeenkomst op 13 september 2012. GAAT DE ZON VOOR NIETS OP (HET NET)?

Transcript

Challenge the future

DelftUniversity ofTechnology

Picture Source: www.nasa.gov

Solar Electricity

Arno Smets and Miro Zeman

Delft University of Technology

About myself

1974 born in Netherlands

1992-1997 Physics at TU Eindhoven

1998-2002 PhD TU Eindhoven

2002-2004 Post-doctoral Reseacher Helianthos Project

2005-2010 Researcher at AIST, Japan

2010-now Assistant professor at TU Delft

Photovoltaic Materials and Devices

Arno Smets

People

Photovoltaic Materials and Devices

Scientific Staff

4 Post docs 4 TechniciansSecretary

18 PhD students

Guests

~30 MSc students (15 final MSc project, 15 traineeship)

Challenge the future

DelftUniversity ofTechnology

Picture Source: www.nasa.gov

Outline

Introduction

Photovoltaics

PV Systems

PV technology

Summary

1INTRODUCTION

Humanity’s ten top problems

Source: Lecture Prof. R.E. Smalley (Rice University) at 27th

Illinois Junior Science & Humanities Symposium, 2005

for next 50 years

1. ENERGY2. WATER3. FOOD4. ENVIRONMENT 5. POVERTY6. TERRORISM & WAR7. DISEASE8. EDUCATION9. DEMOCRACY10. POPULATION

Humanity’s ten top problems

Source: Lecture Prof. R.E. Smalley (Rice University) at 27th

Illinois Junior Science & Humanities Symposium, 2005

for next 50 years

1. ENERGY2. WATER3. FOOD4. ENVIRONMENT 5. POVERTY6. TERRORISM & WAR7. DISEASE8. EDUCATION9. DEMOCRACY10. POPULATION

The Energy ProblemGrowing world

population

Increasing living standard:

Energy Shortage

Energy consumption per capita

Results in pressureon economy:

1900 1920 1940 1960 1980 2000

0

20

40

60

80

100

120

Ann

. ave

rg. o

il pr

ice

(in 2

008

US

D)

Time

Jeopardizing our habitats:

Somalia

PakistanMexico

Russia

Climate change

“The weather makers”, Tim Flannery

The Energy Problem

Energy transition

Source: Lecture Prof. Moniz (MIT) at TUD 2010

50 years

is a characteristic time scale for change in energy mix

oilcoalgasnuclear powerhydroelectricitybiomass (traditional)biomass (advanced)

solar power (photovoltaics

(PV) & solar thermal generation (CSP)

solar thermal (heat only)other renewablesgeothermal

wind energy

year2000 2020 2040

200

600

1000

1400

2100

EJ/a

PV & CSPPV & CSP

Energy transition scenario

Source: German Advisory Council on Global Change, 2003, www.wbgu.de

Nuclear Gravitational

Hydro-tidal

Wind

Thermal

Chemical

Mechanical Electrical

Coal, oil, gas, biomass, hydrogen

Heat engines

Electric generators

Fuel Cells

η=90%

η<60% η=90%

Source: L. Freris, D. Infield, Renewable Energy in Power Systems, Wiley 2008

Electricity generation

Nuclear Gravitational

Hydro-tidal

Wind

Thermal

Chemical

Mechanical Electrical

SolarCoal, oil, gas, biomass, hydrogen

Heat engines

Electric generators

Photovoltaics

Fuel Cells

Solar thermal

η=90%

η<60% η=90%

Electricity generation

Source: L. Freris, D. Infield, Renewable Energy in Power Systems, Wiley 2008

oilcoalgasnuclear powerhydroelectricitybiomass (traditional)biomass (advanced)

solar power (photovoltaics (PV) & solar thermal generation (CSP)

solar thermal (heat only)other renewablesgeothermal

wind energy

ELECTRICITY GENERATION

15%

16%

19%

40%

10%

1/3

ELECTRICITY CONSUMPTION

residential

industry

transmission losses

40%

47%

13%

conversion losses

2/3

oil

coal

gas

nuclear

hydro

Electricity generation 2007

fossiloilcoalgasnuclear powerhydroelectricitybiomass (traditional)biomass (advanced)

solar power (photovoltaics

(PV) & solar thermal generation (CSP)

solar thermal (heat only)other renewablesgeothermal

wind energy

65%

Electricity generation 2007

87%

World

oil

coal

gas

hydro 19%

nuclear 16%

oil

2%

coal

26%

gas 59%

wind 3%nuclear 4%biomass 6%

Netherlands20 202 TWh 103 TWh

Sorce: Eurostat

2009 edition , BP Statistical Review Full Report (http://www.bp.com/images)

25 Nuclear power plants

(0.5 GW)

Electricity:

20-25 kWh/d/p

Total Energy:

(gas,oil,etc.)

125 kWh/d/p

Energy transition scenario

Electricity as energy carrier

Living on renewables?

David JC MacKay“Sustainable Energy:Without the hot air”

Population density:

Netherlands: 16400000 41500 395 2530

Living on renewables?

Population density:

Netherlands: 16400000 41500 395 2530

0.016 W/m2

0.028 W/m2

0.067 W/m2

0.068 W/m2

0.22 W/m2

0.32 W/m2

0.57 W/m2

0.70 W/m2

1.2 W/m2

1.9 W/m2

2.0 W/m2

125 kWh/day/p

Requiredenergy per m2

Living on renewables?

Population density:

Netherlands: 16400000 41500 395 2530

0.016 W/m2

0.028 W/m2

0.067 W/m2

0.068 W/m2

0.22 W/m2

0.32 W/m2

0.57 W/m2

0.70 W/m2

1.2 W/m2

1.9 W/m2

2.0 W/m2

125 kWh/day/p

Requiredenergy per m2

0.11 %0.19 %0.45 %0.45 %

1.5 %2.1 %3.8 %4.6 %8.0 %12.7 %13.3 %

125kWh/day/pSurface area

required with 15 W/m2

technology

Living on renewables?

Netherlands: 16400000 41500 395 2530

0.016 W/m2

0.028 W/m2

0.067 W/m2

0.068 W/m2

0.22 W/m2

0.32 W/m2

0.57 W/m2

0.70 W/m2

1.2 W/m2

1.9 W/m2

2.0 W/m2

125 kWh/day/p

Requiredenergy per m2

Living on renewables?

0.11 %0.19 %0.45 %0.45 %

1.5 %2.1 %3.8 %4.6 %8.0 %12.7 %13.3 %

125kWh/day/pSurface area

required with 15 W/m2

technology

http://visibleearth.nasa.gov

Global demand 2010: 16 TWGlobal demand 2050: 32 TWSolar energy: 120 000 TW

Solar cell with 10% efficiency:1250 1250 km2

Solar Resources

2PHOTOVOLTAICS

Sun Solar radiation

Solar module

Electricity

Photovoltaics

(PV)

Source: A. Poruba

Solar cell

Solar cell

sunlight

electricityheat

Efficiency=Maximum electrical power out

Light power in

Photovoltaic industry

MW

Source: Photon International, March 2012

Global solar cell production

0

10000

20000

30000

40000

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

mono c-Sipoly c-Siribbon c-SiTF-SiCdTeCISrest

560 750 1257 181534% 68% 45%

69%2536

40%

4279

27381

85%

791056%

12464118%

37185

36%Thin-film

solarcells

Scaling production volume

Historical development of cumulative PV power:

EPIA

2009: Global Market Outlook For Photovoltaics

Until 2013

Photovoltaics

2000 2002 2004 2006 2008 20100

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

29.6

39.5

3

22.9

0

15.6

6

9.49

6.98

5.40

3.96

2.84

2.26

1.79

Cum

ulat

ive

Inst

alle

d P

V C

apac

ity (G

W)

Year

China APEC Rest of World North America Japan European Union

1.46

Nederland 2003:46 MW (1.6 %)

Nederland 2010:97 MW (0.24 %)

Trend in installed power technologies

The European Wind Energy Association: Wind in power: 2011 European Statistics, 2012

EU power capacity mixSummary

The European Wind Energy Association: Wind in power: 2011 European Statistics, 2012

in MW in MW

Total ~580 GW Total ~896 GW

2010 Installed Cumulative Installed Capacity Share

(MW, %)

Photovoltaics

Nederland 2010 ~60 MW (0.15%)

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Source: EPIA

PV module supply and demandsWorld wide supply -

demand

Moving from local markets to fast changing global markets

Source: EPIA

PV powerLatest news

The Guardian: May 30, 2012

Wednesday, May 30, 2012 May 30 –

Guardian: Solar power generation world record set in GermanyGerman solar power plants produced a world record 22 gigawatts

of electricity –

equal to 20 nuclear power stations at full capacity –

through the midday hours of Friday and Saturday, the head of a renewable energy think tank has said.

This met nearly 50% of the nation’s midday electricity needs.

The record-breaking amount of solar power shows one of the world’s leading industrial nations was able to meet a third of its electricity needs on a work day, Friday, and nearly half on Saturday when factories and offices were closed.

Electricity network of today

28 power stations in Netherlands

Future electricity network

3PV SYSTEMS

PV system

Two main types:

=~

Stand-alone system Grid-connected system

DC loadsPV

generator

Charge controller

Storagedc/ac

invertor

Grid

PV generator

=~

dc/ac invertor

AC loads

AC loads

PV system

Power electronics

The highly varying environmental conditions and nonlinear nature of the photovoltaic (PV) generator make the utilization of PV energy a challenging task:

Power electronics converters:

Reliable operating interface between renewable energy resources and the electrical power grid.

PV system

Markets/applications:

Grid-connected(building-)integrated

(1 kWp

1 MWp)

Rural

stand-aloneand local grid(10 Wp

10 kWp)

Power plants(1 MWp

-

1 GWp)

Source: W Sinke, Solar Academy

PV systems

Terminology and definitions

(Average) ac system efficiency

(STC) dc module efficiencyTypically 0.75 –

0.85

hours ac peak power per year

hours per yearTypically 0.09 –

0.11 in NL/DE

Power

(of cells, modules and systems) in Watt-peak (Wp

)

Performance ratio

=

Electricity yield

in kWh/kWp

(usually per year)

Capacity factor

=

Typically 750 –

900 kWh/kWp

for c-Si modules in NL

Grid-connected PV system

Overview biggest PV installations:

Power Location Description Commissioned Picture

100 MWp Ukraine,

Perovo

Perovo I-V PV power plant

Constructed by: Activ Solar

2011

97 MWp Canada,

Sarnia

Sarnia PV power plant 2009-2010

84 MWp Italy,

Montalto di Castro

Montalto di Castro PV

power plant

Constructed by: SunPower, SunRay

Renewable

2009-2010

82 MWp Germany,

Senftenberg

Solarpark Senftenberg II,III

Constructed by: Saferay

2011 http://www.pvresources.com/PVPowerPlants/Top50.aspx

Solar

Thermal

Power plants

Photovoltaics

Wind

Hydro

Biomass

Geothermal

Source: DESERTEC foundation

DESERTEC project

=~ AC

Components: 3×150 Wp

modules

M. Zeman, Delft

Grid-connected PV system

Grid-connected home PV system:

Solar irradiation on Earth

2 3 4 5 62 3 4 5 6

The Netherlands:

2.7 sun hours/day/year

Solar irradiation: solar irradiance integrated over a period of time

05

101520253035404550556065

1 2 3 4 5 6 7 8 9 10 11 12

Gen

erat

ed e

nerg

y [k

Wh]

Month

Year 2010386.0 kWh

Grid-connected PV system

M. Zeman, Delft

Grid-connected home PV system: 3×150 Wp

modules

Cost in 2012:

Costs grid-connected PV System

M. Workum, PVMD, TU Delft

PV system is nowadays good investment!

Costs

€1030 Saves

per year: €115(500 kWh*€0,23/kWh)

EY=877 kWh/kWp

That’s

€2875 in 25 yearsA payback

period

of 9 years!

Costs grid-connected PV System

M. Workum, PVMD, TU Delft

PV system is nowadays good investment!

Above

6000 inverters

become

relatively

cheap

Average Dutch family

(3500 kWh @ €6800)

Cheapest

system (500 kWh @ €1030)

No installation or second inverter included. One year old data, prices are now even lower (see previous sheet)

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

PV System

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

Non-modular costs

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

PV System

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

Non-modular costs

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

PV System

29% Installation18% Inverter17% Maintenance16% Racking10% Wiring10% BOS, others

Non-Modular

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

Non-modular costs

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

PV System

29% Installation18% Inverter17% Maintenance16% Racking10% Wiring10% BOS, others

Non-Modular

TF Silicon PV

4PV Technologies

Melt processing

First Generation

Sanyo, Silicon Hetero-Junction cell

Pure material: high efficiencies

Expensive processing:cost-price energy higher

PV technology: 1st

vs

2nd

generation

Plasma processing

Second Generation (thin film)

Lower quality material:lower efficiencies

Low costs processing:cost-price energy lower

NUON Helianthos

Silicon: record lab efficiency 20-27% Thin film: record lab efficiency 13-20%

PV technologies

c-Si wafer based

III-V semiconductor based

CIGS

CdTe

TF Si

1. Wafer based Si

2. Thin films

3. Cheap + efficient

Hillhouse and Beard, Curr. Opin. Colloid. In. 14, 245 (2009).

MC manufacturing costsSP average selling price

SI installed cost for a residential systemSIII installed cost for a utility scale system

PV technologies

Thin-film silicon solar cells

c-Si (180-250 μm)

p++ p++

Al Al

electron

hole

n+SiOSiO22

p-type c-Si

Al

Si-based solar cells

Solar cell

Semiconductor

hole

Si atomelectron

covalent bond

Metal front electrode

Metal back electrode

Incident light

Solar cell

Semiconductor

Incident light

hole

Si atomelectron

Metal front electrode

Metal back electrode

covalent bond

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrode

covalent bond

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrode

covalent bond

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrode

holecovalent bond

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

hole

Metal back electrode

covalent bond

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrode

P atom

covalent bond

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrodeB atom

P atom

covalent bond

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

Metal back electrodeB atom

P atom

covalent bond

hole

Solar cell

Semiconductor

hole

Si atomelectron

Metal front electrode

B atom

P atom

covalent bond

holeMetal back electrode

Solar cell

Semiconductor

Si atomelectron

Metal front electrode

B atom

P atom

covalent bond

holeMetal back electrode

Solar cell

Semiconductor

Incident light

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Si atomelectron

B atom

P atom

covalent bond

hole

Solar cell

Semiconductor

Metal front electrode

Metal back electrode

Solar cell

Semiconductor

Metal back electrode

Incident light

electron

hole

Metal front electrode ARC

Solar cell

gap energy1.1 eV

generation

recombination

light

X

X

X

Main losses

Solar cell

Semiconductor

Metal back electrode

Incident light

electron

hole

Metal front electrode ARC

Additional losses

c-Si solar cell structure

Transmission

(finite α)

Reflectionn1 ≠

n2

Light TrappingSpectral Matching

Defect Engineering

Design principle of solar cells

Choice of MaterialMulti-junctions

Texture interfacesReflectors

Plasmonic Approaches

Bulk defectsInterface defects

Meta-stable defects

c-Si (180-250 μm)

p++ p++

Al Al

n+SiO2

p-type c-Si

Al

Thin-film Si (0.2 -

5 μm)

Si-based solar cells

Thin-film silicon solar cells

Thin-film Si (0.2 -

5 μm)

c-Si (180-250 μm)

p++ p++

Al Al

n+SiO2

p-type c-Si

Al

Si-based solar cells

Glass plate

TCO

p-type

Intrinsic a-Si:H

n-typeMetal electrode

a-Si (0.2-0.3 μm)

Thin-film silicon solar cells

Problem 2: mismatch single junction with solar spectrum

The a-Si:H

p-i-n

junction

Absorptiona-Si:H Does not cover entire spectrum!

The a-Si:H

p-i-n

junctionProblem 2: mismatch single junction with solar spectrum

The a-Si:H/μc-Si:H

tandem

Absorptiona-Si:H

Absorptionc-Si:H

Problem 2: mismatch with solar spectrum

Record ηst

(confirmed) 10.1% (a-Si) Oerlikon10.1% (μc-Si) Kaneka

Micromorph

(double)12.5% (a-Si/μc-Si) Oerlikon12.4% (a-Si/a-SiGe) USSC*

Triple-junction13.0% (Si/SiGe/SiGe) USSC*13.4% (a-Si/nc-Si/nc-Si) USSC13.4% (a-Si/a-Ge/nc-Si) USSC

Multi-junction approach

Glass plate

TCOp-type

Intrinsic a-Si:H

n-typeMetal electrode

a-Si/uc-Si (2.0-4.0 μm)c-Si (180-250 μm)

p++ p++

Al Al

n+SiO2

p-type c-Si

Al

Si-based solar cells

Thin-film silicon solar cells

n-typep-type

Intrinsic uc-Si:H

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant Consulting

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant ConsultingCdTe

(First Solar)

Thin Film PV:

Learning curve: PV modules, systems

10-4 10-3 10-2 10-1 100 101 102 103 104

1

10

100

PV Module

A

vera

ge g

loba

l sal

es p

rice

(US

D/W

p)

Cumulative Installations (GW)

Source: Navigant ConsultingCdTe

(First Solar)Micromorph(Oerlikon)

Thin Film PV:

½

century of manufacturing history, ~90% of 2007 market

progressing by innovation and volume

reduction of manufacturing costs is major challenge

module efficiencies:

-

12 ~ 20% (now)-

18 ~ >22% (longer term)

PV technologies

Source: W Sinke

Wafer based crystalline silicon

low-cost potential and new application possibilities

positive impact of micro-

and nanocrystalline

silicon

efficiency enhancement is major challenge

stable module efficiencies:

6 ~ 11% (now)–

11

~ 16%

(longer term)

PV technologies

Source: W Sinke

Thin-film silicon

low-cost potential (partly already demonstrated)

positive impact of development of take-back and recycling systems

efficiency enhancement is major challenge

module efficiencies:

7 ~ 11% (now)–

10 ~ 15% (longer term)

PV technologies

Source: W Sinke

Cadmium Telluride

high performance & possibilities for multi-junction devices

reduction of manufacturing costs is major challenge; work on low-cost varieties

module efficiencies:

– 9 ~ 12% (now)–15 ~ 18% (longer term)

PV technologies

Source: W Sinke

Copper-indium/gallium-selenide/sulphide (CIGS)

Efficiency development

M. Green, Progress in PV: Res. Appl. 17, 347 (2009)

Averaged cost-price elements versus abundance in ore (2004-2009)

Cost price elements vs

abundancy

a-Si:H

thin film technology

Composition of the Earth’s crust

Composition of the Earth’s crust1st generation c-Si:

Si,O,Al,N,B,P

Composition of the Earth’s crust2nd

generation CdTe: Cd,Te,S,Al,Zn,O

Ratio Te/Si: 10-9

1 m2

cell 2μm CdTe

(50% =Te)1 m2

hole having depth

of (110-6/ 110-9 )~

103

m = 1 km

Composition of the Earth’s crustIII-V: Ga,As,Al,In,P,Ge,

Composition of the Earth’s crust2nd

generation CIGS: Cu,In,Se,Ga,Al,Zn,O,Cd,S

Composition of the Earth’s crust2nd

generation Dye-sensitized: Ti,O,Sn,Pt,C,O,H,N,S,Ru,I(and many more)

Composition of the Earth’s crust2nd

generation a-Si:H: H,Si,O,Zn,Al,B,P

TF turn-key

companies

0.35 €/Wp

Module efficiency: 10.8% guaranteed Record cell: 12.5 %

Yield > 97%Output: 120 MWp

Micromorphtechnology

Thin-film Si PV technology

Glass plates:

Industry hall, Thurnau, Germany

Application

Dutch route: Temporary superstrate solar cell concept

Development of unique low-cost roll-to-roll technology for fabrication of thin-film Si solar modules (started in 1996)

Helianthos

project

Flexible substrate:

Thin-film Si PV technology

Flexible substrate:

Flexible, lightweight, monolithically series connected a-Si modules

Thin-film Si PV technology

Presented by E. Hamers at the European PV solar energy conference Hamburg 6 sept. 2011.

Thin-film Si PV technology

7SUMMARY

PV technology

Summary

Direct conversion of light to electricity (PV) is an elegant process suitable for versatile, robust, low-cost technology; the global potential is practically unlimited

A wide range of technology options is commercially available, emerging or found in the lab

The first major economic milestone on the road to very large-scale use has been reached: grid parity with retail electricity prices

PV status in 2012

Summary

Production: -

dominant c-Si PV technology, 90% market-

large production capacity in China -

difficult time for thin-film PV technologies (TF Si, CIGS, CdTe)

Installation: -

highest contribution to newly installed power capacity in EU

Price:-

<1 €/Wp

; c-Si modules: 0.8-0.9 €/Wp

expectation 0.5 €/Wp

in 2015-

grid parity reached in Germany and Netherlands

Research trends-

increasing module efficiency (c-Si modules >20%)

PV technology

Challenges for TW scale implementation

turn-key system price < 1 €/Wp

(generation costs < 3-10 c€/kWh)- low-cost modules at very high efficiency (> 30%)

- add efficiency boosters (spectrum shapers), full spectrum utilization (advanced concepts)- or: very low-cost modules (<< 0.5 €/Wp) at moderate efficiency (>10%)

- polymer solar cells, nanostructured

(quantum dot) hybrid materials- Low BOS costs

use of non-toxic, abundantly available materials(preferably use Si, C, Al, O, N, …)

-

indium replacement-

non-metallic conductors (Ag C?)-

all-silicon thin-film tandems

stability (20 to 40 years)

and

realibility-

intrinsic & extrinsic degradation of organics-based solar cells

Challenge the future

DelftUniversity ofTechnology

Picture Source: www.nasa.gov

Thank you for your attention!

+

Promising low-cost solar cell technology

+

Industrial production experience (Flat panel display industry)

-

Relatively low stabilized efficiencies (η ≈ 6-7%)

+

Double-junction micromorph solar cell (η>10%)

ideal combination of materials (a-Si:H/μc-Si:H) for converting AM1.5 solar spectrum

+

2008 production of modules 400 MWproduction capacity ~ 1000 MW

Google images

Thin-film Si PV technology

Present status:

increase in TF Si module production

complete production lines available

Thin-film Si PV technology

Current developments:

short term: optimize micromorph tandem cell

long term: optimize triple cell, breakthrough concepts for high efficiency (η>20%)

Future developments:Oerlikon

Applied Materials

top related