Anu Mehra ppt - 2

Post on 21-Jun-2015

798 Views

Category:

Education

2 Downloads

Preview:

Click to see full reader

DESCRIPTION

Anu Mehra ppt - 2

Transcript

© Digital Integrated Circuits2nd Inverter

Low Power VLSI Low Power VLSI DesignDesign

The InverterThe Inverter

Dr Anu Mehra

© Digital Integrated Circuits2nd Inverter

The CMOS Inverter: A First GlanceThe CMOS Inverter: A First Glance

V in Vout

CL

VDD

© Digital Integrated Circuits2nd Inverter

CMOS InverterCMOS Inverter

Polysilicon

In Out

VDD

GND

PMOS 2

Metal 1

NMOS

OutIn

VDD

PMOS

NMOS

Contacts

N Well

© Digital Integrated Circuits2nd Inverter

Two InvertersTwo Inverters

Connect in Metal

Share power and ground

Abut cells

VDD

© Digital Integrated Circuits2nd Inverter

CMOS InverterCMOS InverterFirst-Order DC AnalysisFirst-Order DC Analysis

VOL = 0VOH = VDD

VM = f(Rn, Rp)

VDD VDD

Vin 5 VDD Vin 5 0

VoutVout

Rn

Rp

© Digital Integrated Circuits2nd Inverter

CMOS Inverter: Transient ResponseCMOS Inverter: Transient Response

tpHL = f(Ron.CL)

= 0.69 RonCL

VoutVout

Rn

Rp

VDDVDD

Vin 5 VDDVin 5 0

(a) Low-to-high (b) High-to-low

CLCL

© Digital Integrated Circuits2nd Inverter

Voltage TransferVoltage TransferCharacteristicCharacteristic

© Digital Integrated Circuits2nd Inverter

PMOS Load LinesPMOS Load Lines

VDSp

IDp

VGSp=-2.5

VGSp=-1VDSp

IDnVin=0

Vin=1.5

Vout

IDnVin=0

Vin=1.5

Vin = VDD+VGSpIDn = - IDp

Vout = VDD+VDSp

Vout

IDnVin = VDD+VGSpIDn = - IDp

Vout = VDD+VDSp

© Digital Integrated Circuits2nd Inverter

CMOS Inverter Load CharacteristicsCMOS Inverter Load Characteristics

IDn

Vout

Vin = 2.5

Vin = 2

Vin = 1.5

Vin = 0

Vin = 0.5

Vin = 1

NMOS

Vin = 0

Vin = 0.5

Vin = 1Vin = 1.5

Vin = 2

Vin = 2.5

Vin = 1Vin = 1.5

PMOS

© Digital Integrated Circuits2nd Inverter

CMOS Inverter VTCCMOS Inverter VTC

Vout

Vin0.5 1 1.5 2 2 .5

0.5

11.

52

2.5

NMOS resPMOS off

NMOS satPMOS sat

NMOS offPMOS res

NMOS satPMOS res

NMOS resPMOS sat

© Digital Integrated Circuits2nd Inverter

Switching Threshold as a function Switching Threshold as a function of Transistor Ratioof Transistor Ratio

100

101

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

MV

(V

)

Wp

/Wn

© Digital Integrated Circuits2nd Inverter

Determining VDetermining VIHIH and V and VILIL

VOH

VOL

Vin

Vout

VM

VIL VIH

A simplified approach

© Digital Integrated Circuits2nd Inverter

Inverter GainInverter Gain

0 0.5 1 1.5 2 2.5-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Vin

(V)

gain

© Digital Integrated Circuits2nd Inverter

Simulated VTCSimulated VTC

0 0.5 1 1.5 2 2.50

0.5

1

1.5

2

2.5

Vin

(V)

Vou

t(V)

© Digital Integrated Circuits2nd Inverter

Propagation DelayPropagation Delay

© Digital Integrated Circuits2nd Inverter

CMOS Inverter Propagation DelayCMOS Inverter Propagation DelayApproach 1Approach 1

dt

dVCI L

VDD

Vout

Vin = VDD

CLIav

tpHL = CL Vswing/2

Iav

∆t=CL∆V/IDS

Iav is average charging

current and ∆V is VDD/2

© Digital Integrated Circuits2nd Inverter

CMOS Inverter Propagation DelayCMOS Inverter Propagation DelayApproach 2Approach 2

VDD

Vout

Vin = VDD

Ron

CL

tpHL = f(Ron.CL)

= 0.69 RonCL

t

Vout

VDD

RonCL

1

0.5

ln(0.5)

0.36

© Digital Integrated Circuits2nd Inverter

0 0.5 1 1.5 2 2.5

x 10-10

-0.5

0

0.5

1

1.5

2

2.5

3

t (sec)

Vou

t(V)

Transient ResponseTransient Response

tp = 0.69 CL (Reqn+Reqp)/2

tpLHtpHL

© Digital Integrated Circuits2nd Inverter

Delay as a function of VDelay as a function of VDDDD

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.41

1.5

2

2.5

3

3.5

4

4.5

5

5.5

VDD

(V)

t p(nor

mal

ized

)

© Digital Integrated Circuits2nd Inverter

The Transistor as a SwitchThe Transistor as a Switch

0.5 1 1.5 2 2.50

1

2

3

4

5

6

7x 10

5

VDD

(V)

Req

(O

hm)

© Digital Integrated Circuits2nd Inverter

Design for Performance (minimum Design for Performance (minimum delay)delay)

Keep capacitances small –keep drain diffusion area small so less overlap

Increase transistor sizes watch out for self-loading!

Increase VDD –however increasing voltage beyond a level leads to reliability concern

© Digital Integrated Circuits2nd Inverter

To MAKE A SYMMETRIC INVERTER To MAKE A SYMMETRIC INVERTER tpHL=tpLHtpHL=tpLH

Reqn= 13kΩ and Reqp= 31kΩ (for 0.25µm technology)

RN= Reqn(L/W)n

RP=Reqp(L/W)p

tpLH=ln(2)RPCL

tnHL=ln(2)RNCL

© Digital Integrated Circuits2nd Inverter

In order to make

tpHL=tpLH

pn W

L

W

L

31

13

np L

W

L

W

38.2

© Digital Integrated Circuits2nd Inverter

To minimize total delayTo minimize total delay

Total delay =tpHL+tpLH Approximate load Capacitance CL= (Cdp1+Cdn1)+(Cgp2+Cgn2)+CW Let β =(W/L)p/(W/L)n Then Cdp1= βCdn1 and Cgp2=βCgn2 Total delay=tp

© Digital Integrated Circuits2nd Inverter

tp=0.69((1+β)(Cdn1+Cgn2)+CW

(Reqn+Reqp/β) tp=0.69((1+β)(Cdn1+Cgn2)+CW

Reqn(1+r/β) To minimize delay

0tp

211(

CgnCdn

Cwropt

© Digital Integrated Circuits2nd Inverter

For 0.25 technology

58.1 r

© Digital Integrated Circuits2nd Inverter

1 1.5 2 2.5 3 3.5 4 4.5 53

3.5

4

4.5

5x 10

-11

t p(sec

)

NMOS/PMOS ratioNMOS/PMOS ratio

tpLH tpHL

tp = Wp/Wn

top related