An Introduction to Bioinformatics

Post on 02-Feb-2016

22 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

An Introduction to Bioinformatics. Protein Structure Prediction. Aims. Understand the use of algorithms Recognize different approaches Understand the limitations. Objectives. Predict occurrence of aspects of structure To select appropriate tools. Introduction. - PowerPoint PPT Presentation

Transcript

An Introduction to Bioinformatics

Protein Structure Prediction

Aims

• Understand the use of algorithms

• Recognize different approaches

• Understand the limitations

Objectives

• Predict occurrence of aspects of structure

• To select appropriate tools

Introduction

• Structure has several levels– 1 primary– 2 secondary– 3 tertiary– 4 quaternary

1 primary

• Amino acid sequence

NH2-MRLSWYDPDFQARLTRSNSKCQGQLEV YLKDGWHMVC SQSWGRSSKQWEDPSQASKVCQRLNCGVPLSLGPFLVTYTPQSSIICYGQLGSFSNCSHSRNDMCHSLGLTCLE-COOH

2 secondary

• Localized organisation -helices and -sheets

3 tertiary

Three-dimensional organisation

4 quaternary

Multi protein assembly

The problem…..

• The best way is by X-ray crystallography or NMR etc…

• Structure databases only hold about 10,000 + structures

• Therefore devise programs to deduce structural solutions

• Complex!

Secondary Structure prediction

• Signal peptides

• Intracellular targeting

•Trans-membrane -helices

• -helices and -sheets

•Super-secondary structure (motifs)

Signal peptides

• Short N-terminal amino acid sequences

• Direct to membrane

• Cleaved after translocation

• SignalP – Nobel Prize 1999 Günter Blobel

SignalP predicts signal peptide cleavage sites

Only first 50-70

Using neural networks

Is the sequence a signal peptide?

# Measure Position Value Cutoff Conclusion max. C 25 0.910 0.37 YES max. Y 25 0.861 0.34 YES max. S 12 0.960 0.88 YES mean S 1-24 0.892 0.48 YES# Most likely cleavage site between pos. 24 and 25: SRA-LE

Intracellular targeting

• TargetP

• Predict subcellular location of eukaryotic protein

• Presequences – Chloroplasts– Mitochondria– signal peptide

Transmembrane Domains

• Lots of programs

• TMHMM -helices– hydrophobic – helix topology– R or K +ve charge cytoplasmic

side– Hidden Markov Modelling

Paste as FASTA file

e.g Serotonin Receptor

Predicts the transmembrane domains and orientation

-helices and -sheets

• GOR algorithim• Assigns each residue to one conformational state of -helix, extended chain, reverse turn or coil• 64.4% accurate• Many other sites

• most use multiple alignments

-helices and -sheets

10 20 30 40 50 60 70 | | | | | | |MKFSWRTALLWSLPLLVVGFFFWQGSFGGADANLGSNTANTRMTYGRFLEYVDAGRITSVDLYENGRTAIcccceeeeeecccceeeeeeeeccccccccccccccccccchhhhcceeeeccccceeeeeeccccceeeVQVSDPEVDRTLRSRVDLPTNAPELIARLRDSNIRLDSHPVRNNGMVWGFVGNLIFPVLLIASLFFLFRReeccccccchhhhccccccccchhhhhhhhhccccccccceecccceeeeecccccchhhhhhhhheeecSSNMPGGPGQAMNFGKSKARFQMDAKTGVMFDDVAGIDEAKEELQEVVTFLKQPERFTAVGAKIPKGVLLcccccccccchhhhcchhhhhhhhccceeeecchhhhhhhhhhhhhhhhhhcccchhhhhcccccceeeeVGPPGTGKTLLAKAIAGEAGVPFFSISGSEFVEMFVGVGASRVRDLFKKAKENAPCLIFIDEIDAVGRQRecccccchhhhhhhhhcccccceeecccccceeeeeecccchhhhhhhhhcccccceeeecchhhhccccGAGIGGGNDEREQTLNQLLTEMDGFEGNTGIIIIAATNRPDVLDSALMRPGRFDRQVMVDAPDYSGRKEIccccccccchhhhhhhhhhhhhcccccccceeeeeeccccchhhhhhccccccceeeeecccccccchhhLEVHARNKKLAPEVSIDSIARRTPGFSGADLANLLNEAAILTARRRKSAITLLEIDDAVDRVVAGMEGTPhhhhhhhhccccccchhhhccccccccchhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhheeeccccccLVDSKSKRLIAYHEVGHAIVGTLLKDHDPVQKVTLIPRGQAQGLTWFTPNEEQGLTTKAQLMARIAGAMGcccccccchhhhhcccceeeeeecccccccceeeecccccccceeccccccccchhhhhhhhhhhhhhhhGRAAEEEVFGDDEVTTGAGGDLQQVTEMARQMVTRFGMSNLGPISLESSGGEVFLGGGLMNRSEYSEEVAhhhhhhhcccccceeeccccchhhhhhhhhhhhhhhccccccccccccccceeeecccccccccchhhhhTRIDAQVRQLAEQGHQMARKIVQEQREVVDRLVDLLIEKETIDGEEFRQIVAEYAEVPVKEQLIPQLhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhcccccchhhhhhhhhhcccccccccccc

Super-secondary Structure• Secondary structure elements

combined into specific geometric arrangements known as motifs

Beta corner

Super-secondary Structure

Several programs/websites for specific domains e.g.

• PAIRCOIL and MULTICOIL - detect coiled-coiled regions– regions separating domains

• TRESPASSER - detects Leucine Zippers– Leu-X6-Leu-X6-Leu-X6-Leu protein interaction domain

• NPS@nalysis Helix-Turn-Helix– Protein interaction/DNA binding

Integrated stucture prediction

• One stop shop!• Predict Protein at EBI

– secondary structure

– solvent accessibility globular regions

– transmembrane helices coiled-coil regions

– a multiple sequence alignment ProSite sequence motifs

– low-complexity retions

– ProDom domain assignments

Tertiary Structure Prediction

• Homology modelling

• Fold recognition

• Threading

• Model building

Protein sequence(primary structure)

Database searchingfor homologues

Homologue ofknown structure

No homologue ofknown structure

Comparativemodelling

3D-structure

Fold prediction,ab initio methods etc.

Homology Modelling

• Method of choice following BLAST search

• SWISSModel is agood WWWInterface

URL: http://www.expasy.ch/swissmod/SWISS-MODEL.html

• Requires at least one sequence of known 3D-structure with significant similarity to the target sequence.

• Compare the target sequence with database - FastA and BLAST.

• Sequences with a FastA score 10.0 standard deviations above the mean of the random scores or a P(N) lower than 10-5 (BLAST) considered for the model building

• Restrict to those which share at least 30% residue identity

Homology Modelling

Homology Modelling

• Framework construction– compare atom positions - Cs

• Build non-conserved loops

• Complete backbone - add other atoms

• Add side chains

• Refine

Insulin like gene from C.elegansRed = InsulinBlue = ILGF1

What if I have no homologue?

Ab initio methods - Threading

• Sequence of unknown structure

• Thread through a through a sequence of known structure

• Move query sequence through residue by resudue and compare computationally

– include thermodynamic criteria, solvent accessibility, secondary structure information

• Computing intensive

http://www.cs.bgu.ac.il/~bioinbgu/form.html

top related