Advanced Placement Specialty Conference TEACHING THE ......Advanced Placement Specialty Conference TEACHING THE IDEAS BEHIND POWER SERIES Presented by LIN McMULLIN Sequences and Series

Post on 22-Mar-2021

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Adv

ance

d P

lace

men

t Spe

cial

ty C

onfe

renc

e

TE

AC

HIN

G T

HE

IDE

AS

BE

HIN

D

PO

WE

R S

ER

IES

Pre

sent

ed b

y

LIN

McM

ULL

IN

S

eque

nces

and

Ser

ies

in P

reca

lcul

us

P

ower

Ser

ies

In

terv

als

of C

onve

rgen

ce &

Con

verg

ence

Tes

ts

E

rror

Bou

nds

G

eom

etric

Ser

ies

N

ew S

erie

s fr

om O

ld

P

robl

em

s

Q &

A

Fro

m th

e C

ours

e D

escr

iptio

n

*IV

. Pol

ynom

ial A

ppro

xim

atio

ns a

nd S

erie

s *

Con

cept

of s

erie

s. A

ser

ies

is d

efin

ed a

s a

sequ

enc

e of

par

tial s

ums,

an

d co

nver

genc

e is

def

ined

in te

rms

of th

e lim

it of t

he s

eque

nce

of

part

ial s

ums.

Tec

hnol

ogy

can

be u

sed

to e

xplo

re c

onverg

ence

or

dive

rgen

ce.

* S

erie

s of

con

stan

ts.

+ M

otiv

atin

g ex

ampl

es, i

nclu

ding

dec

imal

exp

ansi

on.

+ G

eom

etric

ser

ies

with

app

licat

ions

. +

The

har

mon

ic s

erie

s.

+ A

ltern

atin

g se

ries

with

err

or b

ound

. +

Ter

ms

of s

erie

s as

are

as o

f rec

tang

les

and

thei

r re

latio

nshi

p to

im

prop

er in

tegr

als,

incl

udin

g th

e in

tegr

al te

st a

nd it

s us

e in

test

ing

the

conv

erge

nce

of p-se

ries.

+

The

rat

io te

st fo

r co

nver

genc

e an

d di

verg

ence

. +

Com

parin

g se

ries

to te

st fo

r co

nver

genc

e or

div

ergen

ce.

* T

aylo

r se

ries.

+

Tay

lor

poly

nom

ial a

ppro

xim

atio

n w

ith g

raph

ical

dem

onst

ratio

n of

co

nver

genc

e. (

For

exa

mpl

e, v

iew

ing

grap

hs o

f var

ious T

aylo

r po

lyno

mia

ls o

f the

sin

e fu

nctio

n ap

prox

imat

ing

the s

ine

curv

e.)

+ M

acla

urin

ser

ies

and

the

gene

ral T

aylo

r se

ries

cente

red

at x

= a

. +

Mac

laur

in s

erie

s fo

r th

e fu

nctio

ns,

x e, s

in x

, cos

x, a

nd

1

1x

− .

+ F

orm

al m

anip

ulat

ion

of T

aylo

r se

ries

and

shor

tcuts

to c

ompu

ting

Tay

lor

serie

s, in

clud

ing

subs

titut

ion,

diff

eren

tiatio

n, a

ntid

iffer

entia

tion,

an

d th

e fo

rmat

ion

of n

ew s

erie

s fr

om k

now

n se

ries.

+

Fun

ctio

ns d

efin

ed b

y po

wer

ser

ies.

+

Rad

ius

and

inte

rval

of c

onve

rgen

ce o

f pow

er s

eries.

+

Lag

rang

e er

ror

boun

d fo

r T

aylo

r po

lyno

mia

ls.

Pre

calc

ulus

Seq

uenc

es a

nd s

erie

s:

Sig

ma

nota

tion,

• R

ecur

sive

and

non

-rec

ursi

ve d

efin

ition

s of

seq

uenc

es,

• B

asic

fo

rmul

as

for

the

sum

s of

si

mpl

e se

quen

ces

(2

11

1

con

stan

t,,

nn

n

kk

k

kk

==

=∑

∑∑

, etc

.).

• G

iven

a s

eque

nce

they

sho

uld

be a

ble

to w

rite

the

form

ula

for

the

nth t

erm

; gi

ven

the

nth t

erm

the

y sh

ould

be

able

to

writ

e th

e te

rms

of th

e se

quen

ce.

• D

efin

ition

of

conv

erge

nce

of a

ser

ies

as t

he li

mit

of

the

asso

ciat

ed

sequ

ence

of p

artia

l sum

s.

Typ

es o

f Ser

ies

Arit

hmet

ic s

erie

s,

• G

eom

etric

ser

ies,

Alte

rnat

ing

serie

s,

• H

arm

onic

ser

ies,

Alte

rnat

ing

harm

onic

ser

ies,

p-se

ries

Dec

imal

s

( ((() )))

( ((() )))

( ((() )))

( ((() )))

01

23

0.33

33...

0.3

0.03

0.00

30.

003

0.3

100.

310

0.3

100.

310

0.3

0.3

11

0.9

31

10

−−

−−

−−

−−

−−

−−

=+

++

+=

++

++

=+

++

+=

++

++

=+

++

+=

++

++

=+

++

+=

++

++

==

==

==

==

==

==

− −−−

⋯ ⋯⋯⋯

⋯ ⋯⋯⋯

( (((

) )))( (((

) )))( (((

) )))( (((

) )))

( ((() )))

01

23

0.99

90.

910

0.9

100.

910

0.9

10

0.9

0.9

11

0.9

110

10.

999.

..3

0.33

3...

31

3

−−

−−

−−

−−

−−

−−

=+

++

+=

++

++

=+

++

+=

++

++

==

==

==

==

==

==

− −−−

==

==

==

==

==

==

⋯ ⋯⋯⋯

10.

999.

..1.

999.

..0.

999.

..1

22

+ +++=

==

==

==

==

==

=

To

grap

h ( (((

) )))1

0.7

t

na=

−−

=−

−=

−−

=−

− in

the

plan

e:

Mod

e: P

aram

etri

c G

raph

form

at:

Do

t E

quat

ion

Edi

tor:

xt1

(t)

= t

yt1

(t)

= 1

– (

–0.7

)t̂

Win

dow

: tm

in =

1,

tm

ax

= 3

0,

ts

tep

= 1

,

xmin

= 0

,

xma

x =

31

,

xscl

= 1

,

ymin

=

0,

ym

ax

= 1

.5,

ys

cl =

1.

To

grap

h ( (((

) )))1

0.7

t

na=

−−

=−

−=

−−

=−

− o

n a

num

ber

line:

M

ode:

Par

amet

ric

Gra

ph fo

rmat

: D

ot

Equ

atio

n E

dito

r:

xt

1(t

) =

1 –

(–

0.7

)t̂

and

yt

1(t)

= 1

Win

dow

: tm

in =

1,

tm

ax

= 3

0,

ts

tep

= 1

,

xmin

= 0

,

xmax

= 2

,

xscl

= 1

,

ymin

=

0,

ym

ax =

2,

yscl

= 1

.

The

n T

RA

CE

the

grap

h an

d w

atch

it c

onve

rge.

Tay

lor

Pol

ynom

ial

If

f ha

s n d

eriv

ativ

es a

t c th

en th

e nth

Tay

lor

poly

nom

ial

for

f a

t x =

c is

( ((() )))

( ((() )))

( ((() )))( (((

) )))( (((

) ))) ( ((() )))

( ((() ))) ( (((

) ))) ( ((() )))

2

2!

!

nn

n

fc

fc

Tx

fc

fc

xc

xc

xc

n

′′ ′′′′′′′ ′′′

=+

−+

−+

+−

=+

−+

−+

+−

=+

−+

−+

+−

=+

−+

−+

+−

⋯ ⋯⋯⋯

If

c =

0, t

he nth

Mac

laur

in p

olyn

omia

l fo

r f

is

( ((() )))

( ((() )))

( ((() )))

( ((() )))

( ((() ))) ( (((

) )))2

2!

!

nn

n

fc

fc

Tx

fc

fc

xx

xn

′′ ′′′′′′′ ′′′

=+

++

+=

++

++

=+

++

+=

++

++

⋯ ⋯⋯⋯

Let

( ((() )))

32

1424

fx

xx

x=

+−

−=

+−

−=

+−

−=

+−

a.

Writ

e th

e po

wer

ser

ies

for f

cen

tere

d at

x =

2.

b. E

xpan

d th

e te

rms

of th

e po

wer

ser

ies

and

sim

plify

.

c. I

s th

is a

n ac

cide

nt o

r w

ill th

is h

appe

n w

ith a

ny p

olyn

omia

l? E

xpla

in.

( ((() )))

( ((() )))

( ((() )))

( ((() )))

23

402

27

22

fx

xx

x=

−+

−+

−+

−=

−+

−+

−+

−=

−+

−+

−+

−=

−+

−+

−+

N

ow e

xpan

d th

e bi

nom

ial t

erm

s an

d se

e w

hat y

ou g

et!

1988

BC

4: D

eter

min

e al

l val

ues

of x fo

r w

hich

the

serie

s

( ((() )))

0

2ln

2

kk

k

x k

∞ ∞∞∞ = ===+ +++

∑ ∑∑∑ c

onve

rges

.

()

()

()

()

() (

)(

)

11

2 ln3

ln2

limlim

2ln

32

ln2

By

L'H

opita

l's r

ule,

1ln

23

2lim

limlim

11

ln3

23

ln2

lim2

2ln

3 12

12

kk

kk

kk

kk

k

k

x kk

xk

x

k

kk

kk

kk

kx

xk

xx

++

→∞

→∞

→∞

→∞

→∞

→∞

+

+

=

+

+

++

+=

==

++

++

∴=

+

<⇔

<

()

()

()

0

0

0

11

Con

verg

es fo

r 2

2

11

At

, se

ries

beco

mes

2

ln2

1di

verg

es, b

y co

mpa

riso

n w

ith h

arm

on

ic s

erie

s 2

11

At

, se

ries

bec

om

es

2ln

2

con

verg

es, b

y th

e al

tern

atin

g se

ries

test

.

Ser

ie

k

k

k

k

x

xk

k

xk

∞ =

∞ =

∞ =

∴−

<<

=+

+

−=

−+

11

s co

nve

rges

for

22

x−

≤<

Mem

oriz

e th

e M

acla

urin

Ser

ies

and

the

inte

rval

of co

nver

genc

e fo

r

23

4

35

7

24

6

23

4

1

for

all

2!

3!

4!

sin

fo

r al

l 3

!5

!7

!

cos

1

for

all

2!

4!

6!

11

-11

1xx

xx

ex

x

xx

xx

xx

xx

xx

x

xx

xx

xx=

++

++

+=

++

++

+=

++

++

+=

++

++

+

=−

+−

+=

−+

−+

=−

+−

+=

−+

−+

=−

+−

+=

−+

−+

=−

+−

+=

−+

−+

=+

++

++

<<

=+

++

++

<<

=+

++

++

<<

=+

++

++

<<

− −−−

⋯ ⋯⋯⋯

⋯ ⋯⋯⋯ ⋯ ⋯⋯⋯

⋯ ⋯⋯⋯

2000

BC

3: T

he T

aylo

r se

ries

abou

t x =

5 fo

r a

cert

ain

func

tion

f co

nver

ges

to

()

fx

for

all

x in

the

inte

rval

of c

onve

rgen

ce. T

he nth

deriv

ativ

e of

f at

5x

= === is

giv

en b

y ( (((

) )))( (((

) )))(

)(

1)!

52

2

nn

n

nf

n

− −−−= ===

+ +++, a

nd

1(5

)2

f= ===

.

(a

) W

rite

the

third

-deg

ree

Tay

lor

poly

nom

ial f

or f

abo

ut x

= 5

.

(b

) F

ind

the

radi

us o

f con

verg

ence

of t

he T

aylo

r se

ries fo

r f

abou

t x =

5.

R

atio

test

giv

es

51

25

2

Rad

ius

is 2

x x

− −−−< <<<

−<

−<

−<

−<

23

31

11

1(

,5)(

)(

5)

(5

)(

5)

26

1640

Pf

xx

xx

=−

−+

−−

−=

−−

+−

−−

=−

−+

−−

−=

−−

+−

−−

(c

) S

how

that

the

sixt

h-de

gree

Tay

lor

poly

nom

ial f

or f ab

out x

= 5

appr

oxim

ates

( (((

) )))6f

with

err

or le

ss th

an

1

1000

.

By

the

alte

rnat

ing

serie

s te

st t

he e

rro

r is

less

tha

n

( ((() )))

( ((() )))

( ((() )))

77

77

17

!6

51

11

2(7

2)7

!2

911

5210

00

−−

−−

−−

−−

==

<=

=<

==

<=

=<

+ +++

Is th

is tr

ue a

t f(4

)? W

hy, o

r w

hy n

ot?

Legr

ange

For

m o

f the

Rem

aind

er an

d th

e Le

gran

ge E

rror

Bou

nd

Tay

lor’s

The

orem

:

If f

has

deriv

ativ

es o

f all

orde

rs o

n an

inte

rval

con

tainin

g a,

then

for

any

posi

tive

inte

ger n

and

for

all x

in th

e in

terv

al, t

here

exi

st a

num

ber c

betw

een x

and

a s

uch

that

:

( ((() )))

11

1

() (

) ()

()!c

nf

nR

xx

an

n

+ ++++ +++

=−

=−

=−

=−

+ +++

Thi

s is

cal

led

the L

egra

nge

For

m o

f the

Rem

aind

er.

( ((() )))

22

()

()

()

()

()

()(

)(

)(

)!

!

nf

af

an

fx

fa

fa

Rx

nx

ax

ax

an

′′ ′′′′′′′ ′′′

+−

+−

++

−+

−+

+−

+−

++

−+

−+

= ===+

−+

+−

++

−+

+−

+⋯

Exa

mpl

e 1:

app

lyin

g th

e th

eore

m to

the

sine

func

tion c

ente

red

at th

e or

igin

,

ther

e ex

ists

a c

betw

een x

and

zer

o su

ch th

at

35

61

11

612

06

!

35

61

11

612

072

0

35

11

612

0

sin

sin(

)

sin

(0.2

)0

.2(0

.2)

(0.2

)si

n(

)(0.

2)

sin

(0.2

)0

.2(0

.2)

(0.2

)0

.19

866

93

xx

xx

cx

c

=−

++

=−

−+

≈−

−≈

Not

ice

that

the

rem

aind

er te

rm is

not c

alcu

late

d at

x =

0, b

ut a

t som

e x =

c

in th

e in

terv

al (

0, 0

.2),

so

the

sixt

h po

wer

term

is us

ed,

61

572

0si

n()(

0.2

)R

c=

is

not z

ero.

In th

e op

en in

terv

al (

0, 0

.2)

the

larg

est th

e si

n(c)

can

be

is 1

: (N

ote:

sin

(0.2

)0.

19

8669

33.

..≈

), s

o th

e la

rges

t the

err

or c

an b

e is

68

1(1

)(0

.2)

8.8

910

72

0−

≈×

(or

6

81 72

0(0

.198

669

3)(0

.2)

1.7

71

0−≈

×).

The

act

ual

erro

r is

con

side

rabl

y le

ss, a

bout

92

.54

10−

×.

E

xam

ple

2: a

pply

ing

the

theo

rem

to x e

cent

ered

at t

he o

rigin

, the

re e

xist

s a

c be

twee

n x a

nd z

ero

such

that

The

n at

, say

, x =

0.2

:

In t

he i

nter

val

00

2[

,.

] th

e la

rges

t th

at

c e c

an b

e is

0.

21.

2214

0e

≈ ≈≈≈,

so t

he

larg

est

the

erro

r ca

n be

is

( ((() )))( (((

) )))45

1 241.

2214

00.

28.

1427

10− −−−≈

×≈

×≈

×≈

×.

Thi

s is

the

Lagr

ange

Err

or B

ound

. The

act

ual e

rror

is a

bout

5

6.94

10− −−−

× ×××.

23

11

23

!4

1 4!

1x

cx

xe

xe

x=

+=

+=

+=

++ +++

++

++

++

++ ( (((

) )))( (((

) )))2

30.

25

11

26

0.2

10.

20.

20.

21.

2213

338.

1427

10

1.22

1402

7581

6...

e e

− −−−≈

++

+=

±×

≈+

++

×≈

++

+=

±×

≈+

++

×

= ===

( ((() )))

( ((() )))

( ((() )))

23

0.2

11

24

16

241

0.2

0.2

0.2

(0.2

)c e

e+

++

++

++

++ +++

=+

=+

=+

=+

1999

BC

4: T

he fu

nctio

n f h

as d

eriv

ativ

es o

f all

orde

rs fo

r all

real

num

bers

x.

Ass

ume f

(2)

= –

3, f

'(2)

= 5

, f ''

(2)

= 3

, and

f '''(

2) =

–8.

(a)

Writ

e th

e th

ird-d

egre

e T

aylo

r po

lyno

mia

l for

f a

bout

x =

2 a

nd u

se it

to

app

roxi

mat

e f(

1.5)

.

()

()

()

()

()

23

38

32

6,2

35

22

2

1.5

4.9

58

Tf

xx

x

f

=−

+−

+−

−−

≈−

(b

) T

he fo

urth

der

ivat

ive

of f

sat

isfie

s th

e in

equa

lity

(

) ()

43

fx

≤ fo

r al

l x

in th

e cl

osed

inte

rval

[1.5

, 2].

Use

the La

gran

ge e

rror

bou

nd o

n th

e ap

prox

imat

ion

to f

(1.5

) fo

und

in p

art (

a) to

exp

lain

why

(

)1

.55

f≠

−.

LEB

=

43

1.5

24

!−

=0.0

0781

25,

()

1.5

4.9

583

0.0

078

125

4.9

66

5f

>−

−=

−>

(c)

Writ

e th

e fo

urth

deg

ree

Tay

lor

poly

nom

ial,

P(x

), fo

r

()

()

22

gx

fx

=+

abou

t x =

0. U

se P to

exp

lain

why

g m

ust h

ave

a re

lativ

e m

inim

um

at x

= 0

.

()(

)(

)(

)(

)(

) ()

23

38

32

6

22

43

22

,23

52

22

,22

35

Tf

xx

xx

Tf

xx

x

=−

+−

+−

−−

+=

−+

+

an

d fr

om th

e co

effic

ient

s (

)(0

)0

an

d

00

gg

′′′

=>

ther

efor

e a

min

imu

m b

y th

e S

econ

d D

eriv

ativ

e T

est.

Geo

met

ric S

erie

s

Met

hod

1: T

he e

xpre

ssio

n 1

1x

− −−− is

sim

ilar

to 1

ar

− −−−.

If w

e ha

d a

geom

etric

serie

s w

ith a

firs

t ter

m o

f a =

1 a

nd a

com

mon

rat

io o

f x, t

hen

11

Sx

= ===− −−−

.

Tur

ning

this

aro

und,

the

pow

er s

erie

s fo

r 1

1x

− −−− m

ust b

e th

e ge

omet

ric

serie

s

and

the

inte

rval

of c

onve

rgen

ce m

ust b

e al

l x su

ch th

at

1x

< <<< o

r 1

1x

−<

<−

<<

−<

<−

<<

.

23

41

11

nx

xx

xx

x=

++

++

++

+=

++

++

++

+=

++

++

++

+=

++

++

++

+− −−−

⋯⋯

⋯⋯

⋯⋯

⋯⋯

Rat

iona

l Exp

ress

ions

Met

hod

2: L

ong

divi

sion

yie

lds

the

sam

e re

sult:

23 2 2 2

3

1(1

)1 1

xx

x

x x xx x x

x

++

++

++

++

++

++

− −−−− −−−

− −−−

− −−−

⋯ ⋯⋯⋯

⋯ ⋯⋯⋯

Bin

omia

l The

orem

M

etho

d 3:

Exp

and

ing ( (((

) )))11

x− −−−

− −−−b

y th

e B

ino

mia

l The

ore

m a

lso

giv

es t

he s

am

e re

sult.

( ((() )))

( ((() )))

( ((() )))( (((

) )))1

22

33

11

2et

c.2

23

nn

nn

nn

nn

nn

ab

ana

ba

ba

b−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−−

−+

=+

++

++

=+

++

++

=+

++

++

=+

++

+⋅ ⋅⋅⋅

( ((() )))

( ((() )))( (((

) ))) ( ((() )))

( ((() )))

( ((() )))( (((

) )))( ((() ))) ( (((

) )))( (((

) )))

23

21

11 4

3

23

12

(1)

1(

1)1

()

12

12

31

23

1

xx

x

x

xx

x−−

−−

−−

−−

−−

−−

−−

−−

− −−−

−−

−−

−−

−−

−=

+−

−+

−−

=+

−−

+−

−=

+−

−+

−−

=+

−−

+−

−−

−−

−−

−−

−−

−−

+−

++

−+

+−

++

−+

⋅ ⋅⋅⋅=

−+

−+

=−

+−

+=

−+

−+

=−

+−

+

⋯ ⋯⋯⋯

⋯ ⋯⋯⋯

Rat

iona

l Exp

ress

ions

Oth

er f

unc

tion

s ca

n b

e ha

ndle

d in

the

sam

e w

ays

. O

ne

wa

y to

find

the

Mac

laur

in S

erie

s fo

r an

y ra

tiona

l exp

ress

ion,

suc

h a

s 215

5xx

+ +++,

is to

arr

ange

the

term

s w

ith t

he lo

wes

t pow

er f

irst

and

per

form

a lo

ng

div

isio

n.

35

73

33

525

125

2

3 3 35

3 5

57

33

525

73 25

3

515 15

3

3

3

xx

xx

xx x

x x xx x

x x

−+

−+

−+

−+

−+

−+

−+

−+

+ ++++ +++ − −−− −

−−

−−

−−

+ +++ − −−−

⋯ ⋯⋯⋯

�����������

�����������

�����������

�����������

T

his

is a

geo

met

ric

seri

es w

ith a

firs

t ter

m o

f 3x

and

a r

atio

of

2 5xr

=−

=−

=−

=−

And

the

inte

rval

of c

onv

erge

nce

is

( ((() )))

( ((() )))

( ((() )))

( ((() )))

22

2

2

23

55

5

5

35

73

33

525

125

33

33

31

3

xx

x

x

xx

xx

x

xx

xx

=+

−+

−+

−+

=+

−+

−+

−+

=+

−+

−+

−+

=+

−+

−+

−+

−−

−−

−−

−−

=−

+−

+=

−+

−+

=−

+−

+=

−+

−+

⋯ ⋯⋯⋯

⋯ ⋯⋯⋯

2 51 5

55

x

x

x

−<

−<

−<

−<

< <<<

−<

<−

<<

−<

<−

<<( (((

) )))2

2

5

153

51

x

xx

x= ===

+ +++−

−−

−−

−−

A “

Mis

take

23

23

45

11

1

(2)

(2)

(2)

12

24

816

22

nn

nk

k

k

xx

xx

xx

xx

x

xx

xx

xx

x−

−−

−−

−−

= ===

=+

++

+=

++

++

=+

++

+=

++

++

− −−−

=+

++

++

+=

=+

++

++

+=

=+

++

++

+=

=+

++

++

+=∑ ∑∑∑

⋯ ⋯⋯⋯

⋯⋯

⋯⋯

⋯⋯

⋯⋯

The

ser

ies

is g

eom

etr

ic a

nd c

onv

erge

s w

hen

1

12

1 or

2

2x

x<

−<

<<

−<

<<

−<

<<

−<

<.

So

the

inte

rval

of c

on

verg

enc

e is

11

22

x−

<<

−<

<−

<<

−<

<.

−6−5

−4−3

−2−1

12

34

56

7

−5−4−3−2−112345

x

y

11

22

Inte

rval

of

conv

erge

nce:

x

−<

<

func

tion

Po

wer

Ser

ies

But

wha

t if

you

do

this

?

( ((() )))

23

23

41

11

11

11

11

11

2 11

22

22

22

22

12

11

11

11

1

2

48

1632

22

nn

nn

n

xx

xx

xx

xx

xx

xx

∞ ∞∞∞

− −−−− −−−

= ===

− −−−

=

=−

−−

−−

==

−−

−−

−=

=−

−−

−−

==

−−

−−

− −−−

− −−−

− −−−=

−−

−−

−−

−−

==

−−

−−

−−

−−

==

−−

−−

−−

−−

==

−−

−−

−−

−−

=∑ ∑∑∑

⋯ ⋯⋯⋯

⋯⋯

⋯⋯

⋯⋯

⋯⋯

The

ser

ies

is g

eom

etr

ic a

nd c

onv

erge

s w

hen

1

11

or

22

xx

<<

<<

<<

<<

.

So

the

inte

rval

of c

on

verg

enc

e is ( (((

) )))( (((

) )))1

12

2,

,−∞

−∪

∞−∞

−∪

∞−∞

−∪

∞−∞

−∪

∞.

y

x−6

−5−4

−3−2

−11

23

45

67

−5−4−3−2−1123

1 2

Inte

rval

of C

onve

rgen

ce

x<

1 2

Inte

rval

of C

onve

rgen

ce

x>

New

Ser

ies

from

Old

T

reat

ing

2

11

x+ +++

as

a ge

omet

ric s

erie

s w

ith

2r

x=

−=

−=

−=

− g

ives

:

2

46

22

0

11

(1)

1

nk

k

k

xx

xx

x= ===

=−

+−

+=

−=

−+

−+

=−

=−

+−

+=

−=

−+

−+

=−

+ +++∑ ∑∑∑

⋯ ⋯⋯⋯ fo

r 1

1x

−<

<−

<<

−<

<−

<<

But

1

2

1ta

n1

dx

dxx

− −−−= ===

+ +++.

The

refo

re

2

1(

1)

13

57

21

11

13

57

21

21

1ta

n1

kn

kk

k

xdx

Cx

xx

xC

xx

− −−−− −−−

−−

−−

−−

−−

− −−−= ===

==

+−

+−

+=

+=

=+

−+

−+

=+

==

+−

+−

+=

+=

=+

−+

−+

=+

+ +++∑ ∑∑∑

∫ ∫∫∫⋯ ⋯⋯⋯

The

initi

al c

ondi

tion

( ((() )))

1ta

n0

0− −−−

= === te

lls u

s th

at C

= 0

. So

the

pow

er s

erie

s fo

r

1ta

nx

− −−− is

2

1(

1)

21

21

1

kn

kk

k

x− −−−

− −−−− −−−

− −−−= ===∑ ∑∑∑

for

11

x−

<<

−<

<−

<<

−<

<.

1993

BC

3

Let

f b

e th

e fu

nctio

n gi

ven

by

2(

)x

fx

e= ===

. (a

) Writ

e th

e fir

st fo

ur n

onze

ro te

rms

and

the

gener

al te

rm fo

r th

e T

aylo

r se

ries

expa

nsio

n of

(

)f

x a

bout

x =

0.

()

()

()

23

23

/2

23

/22

3

12

!3!

!

/2/2

/21

22

!3!

!

12

22

!2

3!2

!

nx

n

x

nx

n

xx

xe

xn

xx

xx

en

xx

xx

en

=+

++

++

+

=+

++

++

+

=+

++

++

+

⋯⋯

⋯⋯

⋯⋯

(b

) Use

the

resu

lt fr

om p

art (

a) to

writ

e th

e fir

st th

ree

nonz

ero

term

s an

d th

e ge

nera

l ter

m o

f the

ser

ies

expa

nsio

n ab

out

for

x =

0 f

or

21

()

x

eg

xx− −−−

= ===.

2

3/2

23

23

23

/2 /22

1

23

12

22

!2

3!2

!

11

22

2!

23!

2!

1 11 2

22

!2

3!2

!nx

n

n

nx x

n n

xx

xx

en

xx

xx n

e

xx

ex

xx

xn−

=+

++

++

+

++

++

++

=

−=

++

++

+

⋯⋯

⋯⋯

⋯⋯

(c)

For

the

func

tion

g in

par

t (b)

, fin

d

( ((() )))2

g′ ′′′ a

nd u

se it

to s

how

that

1

14(

1)!

4n

nn

∞ ∞∞∞ = ===

= ===+ +++

∑ ∑∑∑ .

()

()

()

()

()

()

2

23

2

2

23

1

11

2

22

!2

3!2

!

11 8

24

2! 1

21

22

22

2!

23!

2!

11

1

81

24

!

41

!

n

n

n

n

n

n

n

nx

xg

xn

nx

x

n ng

nn

nn n

∞ =

−′

=+

++

+

−=

++

++

−⋅

′=

++

++

−=

++

++

=+

⋯⋯

⋯⋯

⋯⋯

⋯⋯

()

()

()(

)

()

()

()

/2

/2/2

2

1

1A

lso;

11

12 1

21

12

24

41

41

!4

x

xx

n

eg

xx

xe

eg

xx

ee

g

n n

∞ =

−=

−−

′=

⋅−

−′

==

∴=

+∑

()

21

23

1 22

2!

23!

2!

n n

xx

xg

xn−

=+

++

++

⋯⋯

Eul

er’s

For

mul

a

23

45

23

45

12

!3

!4

!5

!(

)(

)(

)(

)1

2!

3!

4!

5!

x ix

xx

xx

ex

ixix

ixix

eix

=+

++

++

+=

++

++

++

=+

++

++

+=

++

++

++

=+

++

++

+=

++

++

++

=+

++

++

+=

++

++

++

⋯ ⋯⋯⋯

⋯ ⋯⋯⋯

Exp

and

, an

d s

imp

lify

the

term

s. G

roup

tho

se te

rms

with

out

i an

d th

ose

with

i.

22

33

44

55

24

63

57

12

!3

!4

!5

!

12

!4

!6

!3

!5

!7

!

ix ix

ix

ix

ix

ix

eix

xx

xx

xx

ex

i

=+

++

++

+=

++

++

++

=+

++

++

+=

++

++

++

=−

+−

++

−+

−+

=−

+−

++

−+

−+

=−

+−

++

−+

−+

=−

+−

++

−+

−+

⋯ ⋯⋯⋯

⋯⋯

⋯⋯

⋯⋯

⋯⋯

24

63

57

12

!4

!6

!3

!5

!7

!ix

xx

xx

xx

ex

i

=

−+

−+

+−

+−

+=

−+

−+

+−

+−

+=

−+

−+

+−

+−

+=

−+

−+

+−

+−

+

⋯⋯

⋯⋯

⋯⋯

Rec

ogni

ze th

e M

acla

urin

Ser

ies

for co

s a

nd s

inx

x.

co

ssi

nix e

xi

x=

+=

+=

+=

+

F

inal

ly s

ubst

itute

xπ πππ

= === a

nd s

impl

ify a

gain

.

cos

sin

10

10

i i

i

ei

ei

e

π πππ π πππ

π πππ

ππ

ππ

ππ

ππ

=+

=+

=+

=+

=−

+=

−+

=−

+=

−+

+=

+=

+=

+=

top related