A> T3 :Pm 4w1 s$L...HI WQJUHIX 111K=-162 3d I G -:89 6 I 1898 *(20K)I 4.3H Dewarb,c GJoule-Thomson 1908\_T]I (4.2K)H ... or chirality associated with the domain. No one had yet seen

Post on 02-Aug-2020

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

�4E�j khfdlf bgefic�� (�4E�A ()&�] ���� ��4E�J�

�. �4E��\mT��:P (A>)

�/11m�/18m�/25m�/2

�. T3�:Pm�4w1�s$L (�n))

�/9m�/16m�/23 ��/�7 <8 �����C

�. �4�� (������ut) (`/)

5/30m6/6m6/13m(6/20x7&OH)

�. �4E�sY��� (Z��w^�mT��mT3�) (,6)

� /2�m7/�m7/11 � �/18 �_�M�

�4E�B (Z&5] 201� (9vT��sqw"={�!v)��8RwB#sT��

(��^�G�W1^�G�%poT��8Rzr) (�*)2�8RwT���'0T��� ( X)3�T��"=I (T��BA�-B2aMRIyw"=) (FI)4�T��"=II (}��~�QKm^�UVm?^yw"=) (@�)5�T��"=III (T��Y�B+Nw�;8<�yw"=) (D>) 6. B#I ��B�s�48#� (.>)7. B#II ([w�B#wS5sB#�w��|�"=� (�*)

3=��.��,� 3. 1 ��#�.��3. 2 �$�0.�

����� ��������������&� " (tel>075-753-3755)sasaki@scphys.kyoto-u.ac.jp

!�-�'+6948/http://www.ltm.kyoto-u.ac.jp/lecturenote2375;:<8��1*%��-(���)'%

3=��.��,�

3p�7^0�['ENLM �7I(^0�

��VeT[^#>qt.1&P17^�P��^4<a2^Oe�%]DS\W�^2_�XP^Q@�RfSu

��VeT[^#>rt9F^�^��2n6�o⇒3n��o]bd)YH`�-m�$^�R�?m�9F^��R�-/cQPK�g��Ve[C8]UaVP

��VeT[^#>st�� !G�^��K�^�Bm����=Am :9^5"^��hlkijn�� !G�_7��,]�UZ*+J+;]�Veo

3c�)K'�H�0:89 �)5�K'�

U`[VY�K/#d���K.2J*�O>J��@A*(�&%=�MRF;Q

W\_Xb ε

-� ��

f

7)

�)

W\_XbεT�E-�K� L]_Z^a��G�<ORQ *�O>d

+1K%�-�KW\_XbL)�J��@A��T�CI=O�J�R$SDF�R;F;Q

��.2",�

!,�

6�UNP7;W\_XbT�E-�B?=��.2T34

f ∝exp − εkBT

⎝ ⎜

⎠ ⎟ �

v ∝ exp −UkBT

⎛ ⎝ ⎜ ⎞

⎠ ⎟

U

7

eghfi

3Q��G��C�&0./ ��,�G��

��=L:CG�$RS��K7N�;8<A�)��GN !=L

# -�G��H��N?>�G��5T⇒"46NoB2L:CH��G($B�%=L61��K7F�M?A+����EIJ9O+��K7P6'4A8L

D3J?A# -�F*@8G5111

3:��-��+����� ���-��

�$ 0�,�536,�1�.')�,�'0+�&(+&0�

�$��&0�,��8 ��91�#/�()!%-*��$�"0�

��&0�,��,264761�.')�1%+�&(+&0�

26476$��&0�,��8 ��91�#/�()!%-*��$�"0�

3S��B��?�#+)* ��(�B��

� A'7$E:��J"�59I?�:2@I.

ΔX=T0 ΔSQ��R→��D

��"�QV→WR

��!QU→VR

��J��A6=-�

ΔS = 0

KOLNMPY

�� TT0T1

A

BC

ΔS

Q V R

Q V, R

��0GB�B��J�;="�

���T��AFHT=0>S=0T=0A%<3I1�&8I4?C@/

10 TT →

32��*��(��

" ! ��� *��

��

A

BC

D

Th 0�1Tc

0�1

0 ���� 1

QC Qh

Q = 0

Q = 0

0 ���� 1

0 ��� 1

0+&%-(���)1

0 ��� 1

�� Th(��)

Tc(��)

��3Tc→0'Qc→0

'#.$,

*���/��

ΔSA→B =−Qh

ThQh > 0( )

ΔSB→C = 0

ΔSC→D =Qc

TcQc > 0( )

ΔSD→A = 0

ΔS = ΔSA→B + ΔSB→C

+ ΔSC→D + ΔSD→A = 0

Qc =TcThQh

3U�!E��B�*534 �!0�E��

$� �AF� ��DBHC8!���FC796�� �AF��1&�%E>GD6-,!���AF� 2�A��=IS+<:F# �E�'�J�"<@:?;7T

N2 600K4He 40K

T1 , P1��

T2 , P2��

/KNPLR��V �E<>��

)KQMPOR(H=U+PV).(

-,!�

U2 −U1 = P1V1 − P2V2

3Z��<�9�#,*+ ��(�<�

19C�) ��E� 47��82CA/;:651

&�@��=3<��8=��82:065.

=\ ����9>D5

1877 &�<��(90K=-183℃);��

CailletetWNRUIX;��GKSU-110℃8��200��0B"�

PictetWIFIX;��SO2-10℃Y��CO2-80℃<[���

1883 ��&�-��(77K=-196℃)<�'$%;��

Wroblewski, OlczewskiWPVRULX

!�-��&���8��<��(20K);��

OTMUHIW��8?8.5��8��X

�� �HIWQJUHIX111K=-162℃

3d��I��G�-:89 ��6�I��

1898 � �*(20K)I�4.3H�� Dewarb,c

�GJoule-Thomson�

1908 \_T]I� (4.2K)H��

U^aX ^SZaIKamerlingh Onnes

1868 �7I�HNO\_T]I��$/

1895 \_T]<5&�NO$/>QP

�"�I��'(�<� �#�OR%�@

1!+��I5&R2;�ME =DK?E

360_Y[`I\_T]VWR��?AOnnes<

�#�OBCAbDewarJ�)!� F0LCAc

3?��3��2 ".,- ��(�3��

Dewar313�3�!

1891 ��% 3��5�#

1892 89;<�3��

+��

�&��6:7�

1905 ����=���>3�#

DIFA�*B'HGEJ$�C)@K

��=�5�/4��5�0>

3G�!;�:�-423 �!1�;�

4.2K

��(3K):�87<6

�96

$��������!".*#/0E� �!".'�&(>C?DF ���+;He �KIIL��E�%F (+�5��)

�@B=A JI�LH�

�), LI�LH�

38��(��& �

��� ����(��

1922 ��14/3(����')*1K.�� Onnes

��(He.250%����"#+&

��!-,$ ��(��!�!+250

��14/3

0 1 2 3 4 50.3 T [ K ]

�6P7

1 �

1/100 �

1/1000 �

[ ���� ]

6 L : �� 7

��

��

RTLeP −∝

He3

He4

3?��/�.��'%& ��#�/�

1908 Onnes ���- ��5:180�,+(��*)

1911 Onnes �"/ ����=19134<6;�>

1938 Kapitza, Allen 5:18/ ����

F. London ��.7<2��/$!0��

Tisza �����93;/��

1947 Landau ���93;/� =19624<6;�>

1957 Bardeen, Cooper, Schrieffer �����

=19724<6;�>

3O�*E( C�5?=> 4�<�FE��

1933 �����3HeE16M0.1ppmN

50����@G&;1E0,CAB�:/03HE�(�)%12.5�N >> 3He

1951 H.London �9��E�.H2�

1962 H.London �9��E73�.H �

1965 Taconis��9��'�-(0.22K)

1978 Frossatti IKJL+�!�E1# "mKD8

1999 Lancaster� $�*�1.5mK

3T�#K� H�.746 +�3�MK��

!�3He?O��3HeJ,&R ,��L 6.4 % 3HeJ(� S

��@/BPR�1��S

6.4 %

< �1���K�% =

#�

[ K ]

R��')*S

R T, X S

R T;, XC; SR T;, X S

0�

��

$� [ % ]

(26.4 %Q�N

V W 0 K G6.4 % 3HeQ�N4He!�LU��I"�!

R#�@�@PHS

4HeL��J0�Mechanical Vacuum

6.4 % 3HeL�-I��RMechanical Vacuum

�J >F>P3HeS

c (

d (

59G,&CDPH78:EA@,&

He4He3

He3

He3

He3

He3

3����������� �� �����

10mK

4K4K

1.4K

0.7K

0.1K

8mK

����⇒

3'����������� ������

�������� ⇒ ( ����

$ �#�" &� %

B

B�������� ⇒ �!�!

$ �#�" &� %

S R$ T → ∞ %

,0-/.1

0.1 1μK 10 100 1mK 10 100 1 K

A

BC

) ~ 0 + 0.01 + 0.1 + 1 + ) = 10 +

*ΔS =

+0

1>>TkBB

µ

1<<TkBB

µ

32��-��,�")'( �&�.-��

$��MRI��#!0�%�� ��������1

����0.0001K( �-��-3��-31

���

�5/�*��+44/�

8mK

100μK

4K

��$6�%XIP?LW

Temperature (K)

Normal Liquid

Solid

A-Phase

B-Phase

Gas

Pressure (Bars)

3He8 �

�"/=-54:15!��

��3He9H@QK"'(T<0.3K)7;<ASFRGT>�)+( �3He9CGS8#��>�.0�,6ASFRGT>�2

��>�".3 �>�=5�*=UJMOSDNEB�V

&�����

��U��V

��UKV

���

Ssolid > Sliquid →∂PM∂T

< 0

6��PAI*�����+��(

CNAF

U2D2

��WYVXL.!�H6��PAZ��LMOB[LEN7Q�FE0��L��?��U8/KS"TR;*�����<

⇒0.0009K(0.9mK)��H1�$D=,%#3Z��,�[

,%:(NMR)L:�'�L4=>PU2D2L) 2L�@U&NRCI?H@R

)JR) 2U�G\-9L5�Z, [?�

������# U2D2��MRI�

T=500µK ; ����! �MRI�"

5mm3

������$��� ����������

2006 Kyoto University

��������� ���� �

Synopsis: Imaging Domains in SuperfluidHeliumMay 17, 2018

An MRI imaging technique reveals a structure of chiral domains in a slab of superfluid helium-3.

Magnetic resonance imaging (MRI) is best known as a medical imaging tool, but it can also beapplied to visualize microscopic features of quantum materials like superfluids andsuperconductors. A high-resolution MRI technique has now allowed Yutaka Sasaki of KyotoUniversity, Japan, and colleagues to uncover a previously hidden structure of chiral domains insuperfluid helium-3 ( ). The result suggests that MRI might be used to visualize vortices and othertopological structures in a variety of quantum materials.

When is cooled below a few millikelvin, it becomes a superfluid—a fluid that can flow with zeroviscosity. Previous experiments have led physicists to suspect that as enters this phase, it breaksup into macroscopic domains. Each domain contains superfluid atoms with a common angularmomentum, so that there is a handedness, or chirality associated with the domain. No one had yetseen these domains, but doing so would help physicists test their theoretical understanding of notonly superfluidity but also related forms of superconductivity.

Sasaki’s team investigated a thin film of superfluid at 2 mK with an MRI technique that theypreviously developed to acquire images of ultracold quantum condensates with 10 m spatialresolution. Analysis of the MRI data showed that the sample was divided into two or more

J. Kasai et al., Phys. Rev. Lett. (2018)

He3

He3

He3

He3

!

x

z

A

x

y

B

Kasai�(����)����PHYSICAL REVIEW LETTERS120, 205301 (2018)

\T[h

0h��4i5\wli��|�z

��hVTdj^oh�=_sZf�#9'vM�qX�=_sbYejgXP�;�i6FvcmnNT]depI,h�q

9�_s�P��Gv":_s�v�ugTqUh

��# fiktSTjE<i�ep�?�YJhgr`hx}�yaq�

3�/3 �����8�)�5(15%�K�&j C�& �O�B���E<�(18%hL����>$1� �-!A��+���@P*���.��

�-Qk]W2HR����ED7�����y{�

~��{

top related