2015-03-Final Bench to Bedside Talk - Revised - Shortened.pptx

Post on 30-Jan-2017

214 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

Nutrient  Sensing,  Acetyla2on,  Mitochondrial    Quality  Control  and  Pathology  

Michael  N.  Sack  Cardiovascular  and  Pulmonary  Branch  Na4onal  Heart,  Lung  and  Blood  Ins4tute  

   

Talk  Outline  

•  Caloric  Load,  Sirt3  and  the  Regula2on  of  Protein                Acetyla2on  •  Fas2ng  and  Tylenol  Liver  Toxicity    

•  Sirtuin  Biology  and  Mitochondrial  Quality  Control  •  The  Role  of  Fas2ng  and  Sirt3  on  NLRP3                Inflammasome  Biology  

Nutrient  excess,  obesity  and  disease  burden  

Malik  et  al,  Nat.  Rev.  Endocrinology  2013  

Nutrient  overload  orchestrate  growth  programing,    in  part,  via  protein  acetyla2on  and  glycosyla2on  

Wellen  and  Thompson,  Nature  Reviews  Mol.  Cell.  Biol.  2012  

Lysine  Acetyla2on:  an  emerging    post-­‐transla2onal  modifica2on  

Timeline        

1968-­‐acetyla4on  of  histones  discovered  

1997:  1st  non-­‐histone  acetylated  protein-­‐p53  

Before  2006:  <90  proteins  are  known  to  be  acetylated  

2006:  195  acetylated  proteins  (Kim  et  al.  Mol.  Cell)  

2009:  1750  acetylated  proteins  (Choudhary  et  al.  Science)  

2013:  >  2000  acetylated  proteins   133  mitochondrial  proteins  (195  total)    20%  of  mitochondrial  proteins  

Nutrient  availability  dependent  mitochondrial  protein  acetyla2on  

I  

Kendrick  et  al,  Biochem.  J.  2011  

High  Fat  Feeding  

Hepa2c  Mitochondrial  Proteins  

Fed/Fas2ng  Comparison  

Kim  et  al,  Molecular  Cell,  2006  

Acetyla2on  and  deacetyla2on  are    enzyma2cally  regulated  

ScoX  (2012)  Essays  Biochem.  

Sirtuins:  NAD+-­‐dependent  deacetylases  

Mammals  express  seven  Sirtuins  (Sirt  1-­‐7)  

Various  cellular  localiza2ons:  

Sirt1  &  2:  nuclear  and  cytosolic  Sirt3-­‐5:  mitochondrial  Sirt6  &  7:  nuclear  

 NAD+-­‐dependent  deacetyla2on  ADP  Ribosyla2on  ac2vity  (Sirt4  

&  6)      

Yang XJ et al, Nat Review Mol. Cell Biol. 2008;9:206-18

Sirt3  func2ons  as  the  nutrient-­‐sensi2ve    mitochondrial  lysine  deacetylase  

Hirschey  et  al,  Nature  (2010)  

Bao  J  et  al.  Free  Radical  Biol.  and  Med.  (2010)  

Lombard  et  al.  (2007)  Mol.  Biol.  Cell  

Recent fasting was more common than recent alcohol use among those who suffered hepatotoxicity after a dose of 4 to 10 g of acetaminophen per day (P=.02). Recent alcohol use was more common in the group who took more than 10 g/d than in those who took 4 to 10 g/d (P=.004). Conclusion: Acetaminophen hepatotoxicity after a dose of 4 to 10 g/d was associated with fasting and less commonly with alcohol use. Patients who developed hepatoxicity after taking acetaminophen doses of greater than 10 g/d for therapeutic purposes were alcohol users. Acetaminophen hepatotoxicity after an overdose appears to be enhanced by fasting in addition to alcohol ingestion.

Acetaminophen  toxic  metabolites  can  bind  to  lysine  residues  

   

Whether  this  plays  a  role  in  hepatotoxicity  is  unknown  

NAPQI  -­‐  N-­‐acetyl-­‐p-­‐benzoquine-­‐imine    

Hypothesis    

The  level  of  mitochondrial  protein  acetyla2on  modulates  suscep2bility  to  acetaminophen  

liver  injury    

This  may  be  mediated  in  part  by  modula2ng  NAPQI  binding  to  mitochondrial  proteins?  

10 x WT 10 x KO

SIRT3  KO  mice  are  resistant  to    acetaminophen-­‐induced  liver  injury  

APAP 350mg/kg IP administration N-acetyl-p-aminophenol

SIRT3+/+ SIRT3-/-

*  

Iden2fica2on  and  characteriza2on  of    novel    substrates  of  SIRT3  in  the  murine  liver  

2D gel ko

2D gel wt

2D gel wt

2D gel

membrane

x-filmmembrane

x-filmmembraneblot

blot

stain

stain

cut spots

MS

2D gel ko

2D gel wt

2D gel wt

2D gel

membrane

x-filmmembrane

x-filmmembraneblot

blot

stain

stain

cut spots

MS

2D gel and MS to ID hyper-acetylated mitochondrial proteins

ID  poten2al  targets  

Representa2ve  2-­‐D  gels  employing  an  an2body  directed  against  acetylated  lysine-­‐residues  

1 2 3 4 5

6

7

8 9

10

11

12 13

14

150 75

25

kDa

pH 3 - 10

SIRT3+/+

SIRT3-/-

150 75

25

ALDH2

SIRT3+/+

SIRT3-/-

Ac- K

ALDH2

Major  ALDH2  metabolic  pathways  

Catalyze the oxidation of aldehydes

Acetaldehyde

Acetate

NAD+

NADH

trans-4-hydroxy-2-nonenal (4-HNE)

Lipid peroxidation produces α,β-unsaturated hydroxyalkenal

Ethanol oxidation

Carboxylates

Mitochondrial  ALDH2  is  a  direct  target  of  the    toxic  acetaminophen  metabolite  -­‐  NAPQI  

Landin JS, et al. Toxicology and Applied Pharmacology 1996;141:299-307

Is this interaction integral to APAP hepatotoxicity?

ALDH2  is  a  substrate  for  Sirt3  Deacetyla2on  

ALDH2  func2on  is  preserved  in  fas2ng  Sirt3  KO    mice  

Hepa2c  shRNA  knockdown  of  ALDH2  negates  acetaminophen  ‘resilience’  in  SIRT3  -­‐/-­‐  mice  

Sirt3-­‐dependent  acetyla2on  status  modulates    NAPQI  binding  to  ALDH2  

Iden2fica2on  of  ALDH2-­‐  K377  as  the  func2onal  residue    for  NAPQI  binding

Iden2fica2on  of  an  allosteric  role  of  lysine  deacetyla2on  in  fas2ng  suscep2bility  to  acetaminophen  injury  

Lu  et  al.  EMBO  Reports  2011  

Talk  Outline  

•  Caloric  Load,  Sirt3  and  the  Regula2on  of  Protein                Acetyla2on  •  Fas2ng  and  Tylenol  Liver  Toxicity    

•  Sirtuin  Biology  and  Mitochondrial  Quality  Control  •  The  Role  of  Fas2ng  and  Sirt3  on  NLRP3                Inflammasome  Biology  

SuXerwala  et  al.  (2014)  Ann  N  Y  Acad  Sci  

Inflammasome:  Mul4protein  intracellular  complex  that  sense  pathogen  /  damage  associated  molecular  paXerns  (PAMPS/DAMPs)  and  ac4vate  caspase-­‐1,  which  in  turn  cleaves/ac4vates  pro-­‐inflammatory  cytokines  IL-­‐1β  and  IL-­‐18.      

Defining  the  Inflammasome  Program  

NLRP  -­‐  Nod-­‐like  receptor  family  protein    ASC  -­‐    Adaptor  apoptosis-­‐associated  speck-­‐like                          protein  containing  a  CARD  and  pyrin  domain  (PYD)  

SuXerwala  et  al.  (2014)  Ann  N  Y  Acad  Sci  

 NLRP3  Inflammasome:  -­‐  Mul4ple  triggers    (‘sterile  inflamma2on’)  –  

asthma,  atherosclerosis,  DM  and  aging  -­‐  Regulated  at  the  transcript  and  post-­‐transla4onal  

levels:    

Priming:  Transcrip4onal  induc4on  of  genes    encoding  components  of  the  NLRP3  complex.    Ac2va2on:  Complex  ac4va4on  by  stress-­‐signals  -­‐  ATP,  nigericin,  faXy  acids  &  cholesterol  crystals.    

1)  Priming:  LPS  

2)  Ac2va2on:    ATP  

The  NLRP3  Inflammasome  Program  

Mar2non,  Immunity  2012  

Mitochondrial  Disrup2on  as  a  Disease  Associated  Molecular  Pafern  (DAMP)  in  NLRP3  Ac2va2on  

Evolu2onary  endosymbionts      unmethylated  CpG  mo2fs    

(mito  rRNA  and  tRNA)  N-­‐formyl  pep2des    

     

Sirt1  and  Sirt3  Deacetylase  Enzymes  

Sack  MN  and  Finkel  T.    Cold  Spring  Harb  Perspect  Biol  2012  

Modulate  Mitochondrial  Func2on/Quality    (Caloric  Restric2on/Fas2ng)    

 

Can  Mitochondrial  Sirtuins  Regulate    the  NLRP3  Inflammasome?  

 Is  this  Dependent  on  the  

Modula2on  of  Mitochondrial  Homeostasis?  

Fas2ng  (caloric  restric2on  mime2c)  suppresses    the  NLRP3  inflammasome?  

F e d

F a s ted

0 .0

0 .5

1 .0

1 .5M o u s e p e rito n e a l m F

IL -1b

IL-1

b r

ele

as

e(r

ela

tiv

e t

o t

he

fe

d s

tate

)

*  There  is  a  40  %  decrease  in  the  release  of  IL-­‐1β  afer  fas4ng  

NLRP3  ac2va2on  is  modulated  by  Sirt3  

*  Only  the  mitochondrial  sirtuin  Sirt3  appears  to  regulate  the  NLRP3  inflammasome  in  human  THP-­‐1  macrophages.  

And  in  mouse  in  vivo:  

WT

Sirt3 K

O

WT faste

d

Sirt3 K

O faste

d

0.5

1.0

1.5Mouse peritoneal mΦ

IL-1β

Cyt

okin

e re

leas

e(r

elat

ive

to th

e W

T)

*   +                +                +                +-­‐ +                -­‐ +

LPS

WT                    Sirt3  KO

ATP

CleavedCasp-­‐1

A B C

+                +                +                +-­‐ +                -­‐ +

LPS

WT                    Sirt3  KO

ATP

CleavedCasp-­‐1

A B C

+                +                +                +-­‐ +                -­‐ +

LPS

WT                    Sirt3  KO

ATP

CleavedCasp-­‐1

A B C

+                +                +                +-­‐ +                -­‐ +

LPS

WT                    Sirt3  KO

ATP

CleavedCasp-­‐1

A B C

+                +                +                +-­‐ +                -­‐ +

LPS

WT                    Sirt3  KO

ATP

CleavedCasp-­‐1

A B C

Sirt3

IL-­‐1β

NLRP3

ASC

Actin

-­‐ +                +                    -­‐ +                  +-­‐ -­‐ +                    -­‐ -­‐ +

LPS

WT                                              Sirt3  KO

ATP

A B C

Sirt3

IL-­‐1β

NLRP3

ASC

Actin

-­‐ +                +                    -­‐ +                  +-­‐ -­‐ +                    -­‐ -­‐ +

LPS

WT                                              Sirt3  KO

ATP

A B CFasted                                                  Fed

Sirt3

IL-­‐1β

NLRP3

ASC

Actin

-­‐ +                +                    -­‐ +                  +-­‐ -­‐ +                    -­‐ -­‐ +

LPS

WT                                              Sirt3  KO

ATP

A B CFasted                                                  Fed

C o n trol

+ Sir t

3

+ H/Y

mu ta

n t0 .0

0 .5

1 .0

1 .5 T H P -1

Cy

tok

ine

re

lea

se

(re

lati

ve

to

th

e c

on

tro

l)

*  

The  role  of  Sirt3  in  NLRP3  inflammasome  regula2on  is  confirmed    in  Bone  Marrow  Derived  Macrophages

*  

Mitochondrial  Homeosta2c    Role  of  Sirt3  

Gira

lt    A  et  a

l.  Bioche

m  J,  201

2  

Improve  Energe2cs  Decrease  ROS  MPT  Resistance  

Diminished  Apoptosis  Enhanced  Mitophagy  

WT L

P S

WT L

P S + A

T P

S ir t3 K

O L

P S

S ir t3 K

O L

P S + A

T P

0

2

4

6

8

1 0

Cy

tos

olic

mtD

NA

(F

old

ch

an

ge

)

*  

U n t L P S + A T P R o te n o n e0

1

2

3

4

5

Mit

os

ox

in

ten

sit

y

S c rshRNAS ir t3shRNA

The  counter-­‐regulatory  control  of    mitochondrial  protein  acetyla2on  

Sirt3  levels  are  increased  with  fas2ng  

Hirschey  et  al,  Nature  2010  

 Gcn5L1  levels  are  decreased  with  fas2ng  

Webster  B  et  al.  J.  Cell  Science  (2013)  

Sirt3

Gcn5L1

ScoX  I,  et  al.  Biochem  J.  2012  

Counter-­‐regulatory  roles  of  Gcn5L1  and  Sirt3  on  mitochondrial  acetyla2on  and  func2on  

ScoX  I,  et  al.  Biochem  J.  2012  

Mitochondrial  Protein  Acetyla2on  

Webster  B,  ScoX  I.  J  Cell  Sci  2013  

Modula2on  of  Mitophagy    

Gcn5L1  and  Sirt3  deple2on  have  counter-­‐regulatory  effects  on  the  NLRP3  inflammasome  

Traba  J,  et    al.  Unpublished  Data  

J774A.1  cells  

Mitochondrial  phenotype  in  J774A.1  macrophages  

Traba  J,  et    al.  Unpublished  Data  

CLINICAL  RESEARCH  PROJECT        Protocol  #  14-­‐H-­‐0103                      

NHLBI  Protocol:  Pilot  Study  to  Evaluate  the  Effect  of  Fas5ng  on  the  NLRP3  Inflammasome    

00 .1 1

0

1

2

3

4

5IL -1b

L P S (n g /m L )

Cy

tok

ine

re

lea

se

(re

lati

ve

to

th

e f

as

ted

sta

te)

F a s te d

F e d 1 h

F e d 3 h

0 .1 1

0 .8

1 .0

1 .2

1 .4 IL -1b

L P S (n g /m L )

Cy

tok

ine

re

lea

se

(re

lati

ve

to

th

e f

as

ted

sta

te)

F a s te d

F e d 1 h

F e d 3 h

Fas2ng  Blunts  the  NLRP3  inflammasome  in  Human  Subjects

Conclusions  

•       The  NLRP3  inflammasome  is  blunted  by  fas2ng    

•       NLRP3  inflammasome  ac2va2on  is  nutrient-­‐level  dependent            and  appears  to  be  modulated,  in  part,  by  the  Sirt3  -­‐Gcn5L1            regulatory  program    

•  Preliminary  data  suggest  that  that  fas2ng  and  the              mitochondrial  acetyla2on  regulatory  program  modifies            the  role  of  mitochondria  as  a  DAMP  in  NLRP3  ac2va2on    

•  This  nutrient-­‐sensing  program  is  opera2onal  in  healthy              human  subjects        

Mito  protein  

   SIRT3  

AC  

Ac  ↓  

GCN5L1  

Mitochondrial  Homeostasis  

↑  SIRT3  

Ac  Fas2ng  or  

CR  

Acknowledgements  

NHLBI  Laboratory  of  Mitochondrial  Biology  Kim  Han  

Shahin  Hassanzadeh  Javier  Traba  Komudi  Singh  Lingdi  Wang  Jing  Wu  Jessica  Li  

Miriam  Kwarteng-­‐Siaw    

Prior  Laboratory  Members  Zhongping  Lu  Iain  ScoX  

Brad  Webster    

NIAMS    Richard  Siegel  

 NHLBI  

Marjan  Gucek  Lance  Pohl  

   

Expert Opin. Drug Metab. Toxicol. (2008) 4(11)

NAPQI adducts covalently bind to cysteine residues on mitochondrial proteins contributing to hepatic

toxicity

NAPQI adducts increase The mass of a peptide by 149Da

top related