1. Inverse Z-transform - Partial Fraction - Moudgalya

Post on 11-Sep-2021

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

Transcript

1. Inverse Z-transform - Partial Fraction

1. Inverse Z-transform - Partial Fraction

Find the inverse Z-transform of

G(z) =2z2 + 2z

z2 + 2z − 3

1. Inverse Z-transform - Partial Fraction

Find the inverse Z-transform of

G(z) =2z2 + 2z

z2 + 2z − 3G(z)

z=

2z + 2

(z + 3)(z − 1)

1. Inverse Z-transform - Partial Fraction

Find the inverse Z-transform of

G(z) =2z2 + 2z

z2 + 2z − 3G(z)

z=

2z + 2

(z + 3)(z − 1)

=A

z + 3+

B

z − 1

1. Inverse Z-transform - Partial Fraction

Find the inverse Z-transform of

G(z) =2z2 + 2z

z2 + 2z − 3G(z)

z=

2z + 2

(z + 3)(z − 1)

=A

z + 3+

B

z − 1Multiply throughout by z+3 and let z = −3 to get

1. Inverse Z-transform - Partial Fraction

Find the inverse Z-transform of

G(z) =2z2 + 2z

z2 + 2z − 3G(z)

z=

2z + 2

(z + 3)(z − 1)

=A

z + 3+

B

z − 1Multiply throughout by z+3 and let z = −3 to get

A =2z + 2

z − 1

∣∣∣∣z=−3

1. Inverse Z-transform - Partial Fraction

Find the inverse Z-transform of

G(z) =2z2 + 2z

z2 + 2z − 3G(z)

z=

2z + 2

(z + 3)(z − 1)

=A

z + 3+

B

z − 1Multiply throughout by z+3 and let z = −3 to get

A =2z + 2

z − 1

∣∣∣∣z=−3

=−4

−4= 1

Digital Control 1 Kannan M. Moudgalya, Autumn 2007

2. Inverse Z-transform - Partial Fraction

2. Inverse Z-transform - Partial Fraction

G(z)

z=

A

z + 3+

B

z − 1

2. Inverse Z-transform - Partial Fraction

G(z)

z=

A

z + 3+

B

z − 1

Multiply throughout by z − 1 and let z = 1

2. Inverse Z-transform - Partial Fraction

G(z)

z=

A

z + 3+

B

z − 1

Multiply throughout by z − 1 and let z = 1 to get

B =4

4= 1

2. Inverse Z-transform - Partial Fraction

G(z)

z=

A

z + 3+

B

z − 1

Multiply throughout by z − 1 and let z = 1 to get

B =4

4= 1

G(z)

z=

1

z + 3+

1

z − 1|z| > 3

2. Inverse Z-transform - Partial Fraction

G(z)

z=

A

z + 3+

B

z − 1

Multiply throughout by z − 1 and let z = 1 to get

B =4

4= 1

G(z)

z=

1

z + 3+

1

z − 1|z| > 3

G(z) =z

z + 3+

z

z − 1|z| > 3

2. Inverse Z-transform - Partial Fraction

G(z)

z=

A

z + 3+

B

z − 1

Multiply throughout by z − 1 and let z = 1 to get

B =4

4= 1

G(z)

z=

1

z + 3+

1

z − 1|z| > 3

G(z) =z

z + 3+

z

z − 1|z| > 3

↔ (−3)n1(n) + 1(n)Digital Control 2 Kannan M. Moudgalya, Autumn 2007

3. Partial Fraction - Repeated Poles

3. Partial Fraction - Repeated Poles

G(z) =N(z)

(z − α)pD1(z)

3. Partial Fraction - Repeated Poles

G(z) =N(z)

(z − α)pD1(z)

α not a root of N(z) and D1(z)

3. Partial Fraction - Repeated Poles

G(z) =N(z)

(z − α)pD1(z)

α not a root of N(z) and D1(z)

G(z) =A1

z − α +A2

(z − α)2+ · · ·+ Ap

(z − α)p+G1(z)

3. Partial Fraction - Repeated Poles

G(z) =N(z)

(z − α)pD1(z)

α not a root of N(z) and D1(z)

G(z) =A1

z − α +A2

(z − α)2+ · · ·+ Ap

(z − α)p+G1(z)

G1(z) has poles corresponding to those of D1(z).

3. Partial Fraction - Repeated Poles

G(z) =N(z)

(z − α)pD1(z)

α not a root of N(z) and D1(z)

G(z) =A1

z − α +A2

(z − α)2+ · · ·+ Ap

(z − α)p+G1(z)

G1(z) has poles corresponding to those of D1(z).Multiply by (z − α)p

3. Partial Fraction - Repeated Poles

G(z) =N(z)

(z − α)pD1(z)

α not a root of N(z) and D1(z)

G(z) =A1

z − α +A2

(z − α)2+ · · ·+ Ap

(z − α)p+G1(z)

G1(z) has poles corresponding to those of D1(z).Multiply by (z − α)p

(z − α)pG(z) = A1(z − α)p−1 +A2(z − α)p−2 + · · ·+Ap−1(z − α) +Ap +G1(z)(z − α)p

Digital Control 3 Kannan M. Moudgalya, Autumn 2007

4. Partial Fraction - Repeated Poles

4. Partial Fraction - Repeated Poles

(z − α)pG(z) = A1(z − α)p−1 +A2(z − α)p−2 + · · ·+Ap−1(z − α) +Ap +G1(z)(z − α)p

4. Partial Fraction - Repeated Poles

(z − α)pG(z) = A1(z − α)p−1 +A2(z − α)p−2 + · · ·+Ap−1(z − α) +Ap +G1(z)(z − α)p

Substituting z = α,

4. Partial Fraction - Repeated Poles

(z − α)pG(z) = A1(z − α)p−1 +A2(z − α)p−2 + · · ·+Ap−1(z − α) +Ap +G1(z)(z − α)p

Substituting z = α,

Ap = (z − α)pG(z)|z=α

4. Partial Fraction - Repeated Poles

(z − α)pG(z) = A1(z − α)p−1 +A2(z − α)p−2 + · · ·+Ap−1(z − α) +Ap +G1(z)(z − α)p

Substituting z = α,

Ap = (z − α)pG(z)|z=α

Differentiate and let z = α:

4. Partial Fraction - Repeated Poles

(z − α)pG(z) = A1(z − α)p−1 +A2(z − α)p−2 + · · ·+Ap−1(z − α) +Ap +G1(z)(z − α)p

Substituting z = α,

Ap = (z − α)pG(z)|z=α

Differentiate and let z = α:

Ap−1 =d

dz(z − α)pG(z)|z=α

4. Partial Fraction - Repeated Poles

(z − α)pG(z) = A1(z − α)p−1 +A2(z − α)p−2 + · · ·+Ap−1(z − α) +Ap +G1(z)(z − α)p

Substituting z = α,

Ap = (z − α)pG(z)|z=α

Differentiate and let z = α:

Ap−1 =d

dz(z − α)pG(z)|z=α

Continuing,

4. Partial Fraction - Repeated Poles

(z − α)pG(z) = A1(z − α)p−1 +A2(z − α)p−2 + · · ·+Ap−1(z − α) +Ap +G1(z)(z − α)p

Substituting z = α,

Ap = (z − α)pG(z)|z=α

Differentiate and let z = α:

Ap−1 =d

dz(z − α)pG(z)|z=α

Continuing, A1 =1

(p− 1)!

dp−1

dzp−1(z − α)pG(z)|z=α

Digital Control 4 Kannan M. Moudgalya, Autumn 2007

5. Repeated Poles - an Example

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

× (z − 2),

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

× (z − 2), let z = 2, to get B = 20.

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

× (z − 2), let z = 2, to get B = 20. × (z − 1)2,

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

× (z − 2), let z = 2, to get B = 20. × (z − 1)2,

11z2 − 15z + 6

z − 2= A1(z − 1) +A2 +B

(z − 1)2

z − 2

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

× (z − 2), let z = 2, to get B = 20. × (z − 1)2,

11z2 − 15z + 6

z − 2= A1(z − 1) +A2 +B

(z − 1)2

z − 2

With z = 1, get A2 = −2.

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

× (z − 2), let z = 2, to get B = 20. × (z − 1)2,

11z2 − 15z + 6

z − 2= A1(z − 1) +A2 +B

(z − 1)2

z − 2

With z = 1, get A2 = −2.Differentiating with respect to z and with z = 1,

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

× (z − 2), let z = 2, to get B = 20. × (z − 1)2,

11z2 − 15z + 6

z − 2= A1(z − 1) +A2 +B

(z − 1)2

z − 2

With z = 1, get A2 = −2.Differentiating with respect to z and with z = 1,

A1 =

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

× (z − 2), let z = 2, to get B = 20. × (z − 1)2,

11z2 − 15z + 6

z − 2= A1(z − 1) +A2 +B

(z − 1)2

z − 2

With z = 1, get A2 = −2.Differentiating with respect to z and with z = 1,

A1 =(z − 2)(22z − 15)− (11z2 − 15z + 6)

(z − 2)2

∣∣∣∣z=1

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

× (z − 2), let z = 2, to get B = 20. × (z − 1)2,

11z2 − 15z + 6

z − 2= A1(z − 1) +A2 +B

(z − 1)2

z − 2

With z = 1, get A2 = −2.Differentiating with respect to z and with z = 1,

A1 =(z − 2)(22z − 15)− (11z2 − 15z + 6)

(z − 2)2

∣∣∣∣z=1

= −9

5. Repeated Poles - an Example

G(z) =11z2 − 15z + 6

(z − 2)(z − 1)2=

A1

z − 1+

A2

(z − 1)2+

B

z − 2

× (z − 2), let z = 2, to get B = 20. × (z − 1)2,

11z2 − 15z + 6

z − 2= A1(z − 1) +A2 +B

(z − 1)2

z − 2

With z = 1, get A2 = −2.Differentiating with respect to z and with z = 1,

A1 =(z − 2)(22z − 15)− (11z2 − 15z + 6)

(z − 2)2

∣∣∣∣z=1

= −9

G(z) = − 9

z − 1− 2

(z − 1)2+

20

z − 2

Digital Control 5 Kannan M. Moudgalya, Autumn 2007

6. Important Result from Differentiation

6. Important Result from Differentiation

Problem 4.9 in Text:

6. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an↔ z

z − a

6. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an↔ z

z − a =∞∑n=0

anz−n,∣∣az−1

∣∣ < 1

6. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an↔ z

z − a =∞∑n=0

anz−n,∣∣az−1

∣∣ < 1

Differentiating with respect to a,

6. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an↔ z

z − a =∞∑n=0

anz−n,∣∣az−1

∣∣ < 1

Differentiating with respect to a,

z

(z − a)2

6. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an↔ z

z − a =∞∑n=0

anz−n,∣∣az−1

∣∣ < 1

Differentiating with respect to a,

z

(z − a)2=∞∑n=0

nan−1z−n

6. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an↔ z

z − a =∞∑n=0

anz−n,∣∣az−1

∣∣ < 1

Differentiating with respect to a,

z

(z − a)2=∞∑n=0

nan−1z−n, nan−11(n)↔ z

(z − a)2

6. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an↔ z

z − a =∞∑n=0

anz−n,∣∣az−1

∣∣ < 1

Differentiating with respect to a,

z

(z − a)2=∞∑n=0

nan−1z−n, nan−11(n)↔ z

(z − a)2

Substituting a = 1, can obtain the Z-transform of n:

6. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an↔ z

z − a =∞∑n=0

anz−n,∣∣az−1

∣∣ < 1

Differentiating with respect to a,

z

(z − a)2=∞∑n=0

nan−1z−n, nan−11(n)↔ z

(z − a)2

Substituting a = 1, can obtain the Z-transform of n:

n1(n)↔ z

(z − 1)2

6. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an↔ z

z − a =∞∑n=0

anz−n,∣∣az−1

∣∣ < 1

Differentiating with respect to a,

z

(z − a)2=∞∑n=0

nan−1z−n, nan−11(n)↔ z

(z − a)2

Substituting a = 1, can obtain the Z-transform of n:

n1(n)↔ z

(z − 1)2

Through further differentiation,

6. Important Result from Differentiation

Problem 4.9 in Text: Consider

1(n)an↔ z

z − a =∞∑n=0

anz−n,∣∣az−1

∣∣ < 1

Differentiating with respect to a,

z

(z − a)2=∞∑n=0

nan−1z−n, nan−11(n)↔ z

(z − a)2

Substituting a = 1, can obtain the Z-transform of n:

n1(n)↔ z

(z − 1)2

Through further differentiation, can derive Z-transforms of n2,n3, etc.Digital Control 6 Kannan M. Moudgalya, Autumn 2007

7. Repeated Poles - an Example

7. Repeated Poles - an Example

G(z) = − 9

z − 1− 2

(z − 1)2+

20

z − 2

7. Repeated Poles - an Example

G(z) = − 9

z − 1− 2

(z − 1)2+

20

z − 2

zG(z) = − 9z

z − 1− 2z

(z − 1)2+

20z

z − 2

7. Repeated Poles - an Example

G(z) = − 9

z − 1− 2

(z − 1)2+

20

z − 2

zG(z) = − 9z

z − 1− 2z

(z − 1)2+

20z

z − 2

↔ (−9− 2n+ 20× 2n)1(n)

7. Repeated Poles - an Example

G(z) = − 9

z − 1− 2

(z − 1)2+

20

z − 2

zG(z) = − 9z

z − 1− 2z

(z − 1)2+

20z

z − 2

↔ (−9− 2n+ 20× 2n)1(n)

Use shifting theorem:

G(z)

7. Repeated Poles - an Example

G(z) = − 9

z − 1− 2

(z − 1)2+

20

z − 2

zG(z) = − 9z

z − 1− 2z

(z − 1)2+

20z

z − 2

↔ (−9− 2n+ 20× 2n)1(n)

Use shifting theorem:

G(z)↔ (−9− 2(n− 1) + 20× 2n−1)1(n− 1)

Digital Control 7 Kannan M. Moudgalya, Autumn 2007

8. Properties of Cont. Time Sinusoidal Signals

8. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

8. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ),

8. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞

8. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞A: amplitude

8. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞A: amplitudeΩ: frequency in rad/s

8. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞A: amplitudeΩ: frequency in rad/sθ: phase in rad

8. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞A: amplitudeΩ: frequency in rad/sθ: phase in radF : frequency in cycles/s or Hertz

Ω = 2πF

8. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞A: amplitudeΩ: frequency in rad/sθ: phase in radF : frequency in cycles/s or Hertz

Ω = 2πF

Tp =1

FDigital Control 8 Kannan M. Moudgalya, Autumn 2007

9. Properties of Cont. Time Sinusoidal Signals

9. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

9. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ),

9. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞

9. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞With F fixed, periodic with period Tp

9. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞With F fixed, periodic with period Tp

ua[t+ Tp]

9. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞With F fixed, periodic with period Tp

ua[t+ Tp] = A cos (2πF (t+1

F) + θ)

9. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞With F fixed, periodic with period Tp

ua[t+ Tp] = A cos (2πF (t+1

F) + θ)

= A cos (2π + 2πFt+ θ)

9. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞With F fixed, periodic with period Tp

ua[t+ Tp] = A cos (2πF (t+1

F) + θ)

= A cos (2π + 2πFt+ θ)

= A cos (2πFt+ θ)

9. Properties of Cont. Time Sinusoidal Signals

ua(t) = A cos (Ωt+ θ)

ua(t) = A cos (2πFt+ θ), −∞ < t <∞With F fixed, periodic with period Tp

ua[t+ Tp] = A cos (2πF (t+1

F) + θ)

= A cos (2π + 2πFt+ θ)

= A cos (2πFt+ θ) = ua[t]

Digital Control 9 Kannan M. Moudgalya, Autumn 2007

10. Properties of Cont. Time Sinusoidal Signals

10. Properties of Cont. Time Sinusoidal Signals

Cont. signals with different frequencies are different

10. Properties of Cont. Time Sinusoidal Signals

Cont. signals with different frequencies are different

u1 = cos

(2πt

8

),

10. Properties of Cont. Time Sinusoidal Signals

Cont. signals with different frequencies are different

u1 = cos

(2πt

8

), u2 = cos

(2π

7t

8

)

10. Properties of Cont. Time Sinusoidal Signals

Cont. signals with different frequencies are different

u1 = cos

(2πt

8

), u2 = cos

(2π

7t

8

)

0 0.5 1 1.5 2 2.5 3 3.5 4−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

cosw

t

10. Properties of Cont. Time Sinusoidal Signals

Cont. signals with different frequencies are different

u1 = cos

(2πt

8

), u2 = cos

(2π

7t

8

)

0 0.5 1 1.5 2 2.5 3 3.5 4−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

cosw

t

Different wave forms for different frequencies.

10. Properties of Cont. Time Sinusoidal Signals

Cont. signals with different frequencies are different

u1 = cos

(2πt

8

), u2 = cos

(2π

7t

8

)

0 0.5 1 1.5 2 2.5 3 3.5 4−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

cosw

t

Different wave forms for different frequencies.Can increase f all the way to∞ or decrease to 0.Digital Control 10 Kannan M. Moudgalya, Autumn 2007

11. Discrete Time Sinusoidal Signals

11. Discrete Time Sinusoidal Signals

u(n) = A cos (wn+ θ), −∞ < n <∞

11. Discrete Time Sinusoidal Signals

u(n) = A cos (wn+ θ), −∞ < n <∞w = 2πf

11. Discrete Time Sinusoidal Signals

u(n) = A cos (wn+ θ), −∞ < n <∞w = 2πf

n integer variable, sample number

11. Discrete Time Sinusoidal Signals

u(n) = A cos (wn+ θ), −∞ < n <∞w = 2πf

n integer variable, sample numberA amplitude of the sinusoid

11. Discrete Time Sinusoidal Signals

u(n) = A cos (wn+ θ), −∞ < n <∞w = 2πf

n integer variable, sample numberA amplitude of the sinusoidw frequency in radians per sample

11. Discrete Time Sinusoidal Signals

u(n) = A cos (wn+ θ), −∞ < n <∞w = 2πf

n integer variable, sample numberA amplitude of the sinusoidw frequency in radians per sampleθ phase in radians.

11. Discrete Time Sinusoidal Signals

u(n) = A cos (wn+ θ), −∞ < n <∞w = 2πf

n integer variable, sample numberA amplitude of the sinusoidw frequency in radians per sampleθ phase in radians.f normalized frequency, cycles/sample

Digital Control 11 Kannan M. Moudgalya, Autumn 2007

12. Discrete Time Sinusoids - Identical Signals

12. Discrete Time Sinusoids - Identical Signals

Discrete time sinusoids whose frequencies are sepa-rated by integer multiple of 2π are identical, i.e.,

cos ((w0 + 2π)n+ θ) = cos (w0n+ θ), ∀n

12. Discrete Time Sinusoids - Identical Signals

Discrete time sinusoids whose frequencies are sepa-rated by integer multiple of 2π are identical, i.e.,

cos ((w0 + 2π)n+ θ) = cos (w0n+ θ), ∀n• All sinusoidal sequences of the form,

12. Discrete Time Sinusoids - Identical Signals

Discrete time sinusoids whose frequencies are sepa-rated by integer multiple of 2π are identical, i.e.,

cos ((w0 + 2π)n+ θ) = cos (w0n+ θ), ∀n• All sinusoidal sequences of the form,uk(n) = A cos (wkn+ θ),

12. Discrete Time Sinusoids - Identical Signals

Discrete time sinusoids whose frequencies are sepa-rated by integer multiple of 2π are identical, i.e.,

cos ((w0 + 2π)n+ θ) = cos (w0n+ θ), ∀n• All sinusoidal sequences of the form,uk(n) = A cos (wkn+ θ),wk = w0 + 2kπ,

12. Discrete Time Sinusoids - Identical Signals

Discrete time sinusoids whose frequencies are sepa-rated by integer multiple of 2π are identical, i.e.,

cos ((w0 + 2π)n+ θ) = cos (w0n+ θ), ∀n• All sinusoidal sequences of the form,uk(n) = A cos (wkn+ θ),wk = w0 + 2kπ, −π < w0 < π,

12. Discrete Time Sinusoids - Identical Signals

Discrete time sinusoids whose frequencies are sepa-rated by integer multiple of 2π are identical, i.e.,

cos ((w0 + 2π)n+ θ) = cos (w0n+ θ), ∀n• All sinusoidal sequences of the form,uk(n) = A cos (wkn+ θ),wk = w0 + 2kπ, −π < w0 < π,are indistinguishable or identical.

12. Discrete Time Sinusoids - Identical Signals

Discrete time sinusoids whose frequencies are sepa-rated by integer multiple of 2π are identical, i.e.,

cos ((w0 + 2π)n+ θ) = cos (w0n+ θ), ∀n• All sinusoidal sequences of the form,uk(n) = A cos (wkn+ θ),wk = w0 + 2kπ, −π < w0 < π,are indistinguishable or identical.

• Only sinusoids in −π < w0 < π are different

12. Discrete Time Sinusoids - Identical Signals

Discrete time sinusoids whose frequencies are sepa-rated by integer multiple of 2π are identical, i.e.,

cos ((w0 + 2π)n+ θ) = cos (w0n+ θ), ∀n• All sinusoidal sequences of the form,uk(n) = A cos (wkn+ θ),wk = w0 + 2kπ, −π < w0 < π,are indistinguishable or identical.

• Only sinusoids in −π < w0 < π are different

−π < w0 < π or − 1

2< f0 <

1

2Digital Control 12 Kannan M. Moudgalya, Autumn 2007

13. Sampling a Cont. Time Signal - Preliminaries

13. Sampling a Cont. Time Signal - Preliminaries

Let analog signal ua[t] have a frequency of F Hz

13. Sampling a Cont. Time Signal - Preliminaries

Let analog signal ua[t] have a frequency of F Hz

ua[t] = A cos(2πFt+ θ)

13. Sampling a Cont. Time Signal - Preliminaries

Let analog signal ua[t] have a frequency of F Hz

ua[t] = A cos(2πFt+ θ)

Uniform sampling rate (Ts s) or frequency (Fs Hz)

13. Sampling a Cont. Time Signal - Preliminaries

Let analog signal ua[t] have a frequency of F Hz

ua[t] = A cos(2πFt+ θ)

Uniform sampling rate (Ts s) or frequency (Fs Hz)

t = nTs =n

Fs

13. Sampling a Cont. Time Signal - Preliminaries

Let analog signal ua[t] have a frequency of F Hz

ua[t] = A cos(2πFt+ θ)

Uniform sampling rate (Ts s) or frequency (Fs Hz)

t = nTs =n

Fsu(n) = ua[nTs] −∞ < n <∞

13. Sampling a Cont. Time Signal - Preliminaries

Let analog signal ua[t] have a frequency of F Hz

ua[t] = A cos(2πFt+ θ)

Uniform sampling rate (Ts s) or frequency (Fs Hz)

t = nTs =n

Fsu(n) = ua[nTs] −∞ < n <∞

= A cos (2πFTsn+ θ)

13. Sampling a Cont. Time Signal - Preliminaries

Let analog signal ua[t] have a frequency of F Hz

ua[t] = A cos(2πFt+ θ)

Uniform sampling rate (Ts s) or frequency (Fs Hz)

t = nTs =n

Fsu(n) = ua[nTs] −∞ < n <∞

= A cos (2πFTsn+ θ)

= A cos

(2πF

Fsn+ θ

)

13. Sampling a Cont. Time Signal - Preliminaries

Let analog signal ua[t] have a frequency of F Hz

ua[t] = A cos(2πFt+ θ)

Uniform sampling rate (Ts s) or frequency (Fs Hz)

t = nTs =n

Fsu(n) = ua[nTs] −∞ < n <∞

= A cos (2πFTsn+ θ)

= A cos

(2πF

Fsn+ θ

)4= A cos(2πfn+ θ)

Digital Control 13 Kannan M. Moudgalya, Autumn 2007

14. Sampling a Cont. Time Signal - Preliminaries

14. Sampling a Cont. Time Signal - Preliminaries

In our standard notation,

u(n) = A cos (2πfn+ θ)

14. Sampling a Cont. Time Signal - Preliminaries

In our standard notation,

u(n) = A cos (2πfn+ θ)

It follows that

f =F

Fs

14. Sampling a Cont. Time Signal - Preliminaries

In our standard notation,

u(n) = A cos (2πfn+ θ)

It follows that

f =F

Fsw =

Ω

Fs= ΩTs

14. Sampling a Cont. Time Signal - Preliminaries

In our standard notation,

u(n) = A cos (2πfn+ θ)

It follows that

f =F

Fsw =

Ω

Fs= ΩTs

Reason to call f normalized frequency, cycles/sample.

14. Sampling a Cont. Time Signal - Preliminaries

In our standard notation,

u(n) = A cos (2πfn+ θ)

It follows that

f =F

Fsw =

Ω

Fs= ΩTs

Reason to call f normalized frequency, cycles/sample.Apply the uniqueness condition for sampled signals

14. Sampling a Cont. Time Signal - Preliminaries

In our standard notation,

u(n) = A cos (2πfn+ θ)

It follows that

f =F

Fsw =

Ω

Fs= ΩTs

Reason to call f normalized frequency, cycles/sample.Apply the uniqueness condition for sampled signals

− 1

2< f <

1

2

14. Sampling a Cont. Time Signal - Preliminaries

In our standard notation,

u(n) = A cos (2πfn+ θ)

It follows that

f =F

Fsw =

Ω

Fs= ΩTs

Reason to call f normalized frequency, cycles/sample.Apply the uniqueness condition for sampled signals

− 1

2< f <

1

2−π < w < π

14. Sampling a Cont. Time Signal - Preliminaries

In our standard notation,

u(n) = A cos (2πfn+ θ)

It follows that

f =F

Fsw =

Ω

Fs= ΩTs

Reason to call f normalized frequency, cycles/sample.Apply the uniqueness condition for sampled signals

− 1

2< f <

1

2−π < w < π

Fmax =Fs

2

14. Sampling a Cont. Time Signal - Preliminaries

In our standard notation,

u(n) = A cos (2πfn+ θ)

It follows that

f =F

Fsw =

Ω

Fs= ΩTs

Reason to call f normalized frequency, cycles/sample.Apply the uniqueness condition for sampled signals

− 1

2< f <

1

2−π < w < π

Fmax =Fs

2Ωmax = 2πFmax = πFs =

π

TsDigital Control 14 Kannan M. Moudgalya, Autumn 2007

15. Properties of Discrete Time Sinusoids - Alias

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

• What if w0 > π?

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

• What if w0 > π?

w1 = w0

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

• What if w0 > π?

w1 = w0

w2 = 2π − w0

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

• What if w0 > π?

w1 = w0

w2 = 2π − w0

u1(n) = A cosw1n

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

• What if w0 > π?

w1 = w0

w2 = 2π − w0

u1(n) = A cosw1n = A cosw0n

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

• What if w0 > π?

w1 = w0

w2 = 2π − w0

u1(n) = A cosw1n = A cosw0n

u2(n) = A cosw2n

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

• What if w0 > π?

w1 = w0

w2 = 2π − w0

u1(n) = A cosw1n = A cosw0n

u2(n) = A cosw2n = A cos(2π − w0)n

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

• What if w0 > π?

w1 = w0

w2 = 2π − w0

u1(n) = A cosw1n = A cosw0n

u2(n) = A cosw2n = A cos(2π − w0)n

= A cosw0n

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

• What if w0 > π?

w1 = w0

w2 = 2π − w0

u1(n) = A cosw1n = A cosw0n

u2(n) = A cosw2n = A cos(2π − w0)n

= A cosw0n = u1(n)

15. Properties of Discrete Time Sinusoids - Alias

• As w0 ↑, freq. of oscillation ↑, reaches maximumat w0 = π

• What if w0 > π?

w1 = w0

w2 = 2π − w0

u1(n) = A cosw1n = A cosw0n

u2(n) = A cosw2n = A cos(2π − w0)n

= A cosw0n = u1(n)

w2 is an alias of w1

Digital Control 15 Kannan M. Moudgalya, Autumn 2007

16. Properties of Discrete Time Sinusoids - Alias

16. Properties of Discrete Time Sinusoids - Alias

u1[t] = cos (2πt

8),

16. Properties of Discrete Time Sinusoids - Alias

u1[t] = cos (2πt

8), u2[t] = cos (2π

7t

8),

16. Properties of Discrete Time Sinusoids - Alias

u1[t] = cos (2πt

8), u2[t] = cos (2π

7t

8), Ts = 1

16. Properties of Discrete Time Sinusoids - Alias

u1[t] = cos (2πt

8), u2[t] = cos (2π

7t

8), Ts = 1

u2(n) = cos (2π7n

8)

16. Properties of Discrete Time Sinusoids - Alias

u1[t] = cos (2πt

8), u2[t] = cos (2π

7t

8), Ts = 1

u2(n) = cos (2π7n

8) = cos 2π(1− 1

8)n

16. Properties of Discrete Time Sinusoids - Alias

u1[t] = cos (2πt

8), u2[t] = cos (2π

7t

8), Ts = 1

u2(n) = cos (2π7n

8) = cos 2π(1− 1

8)n

= cos (2π − 2π

8)n

16. Properties of Discrete Time Sinusoids - Alias

u1[t] = cos (2πt

8), u2[t] = cos (2π

7t

8), Ts = 1

u2(n) = cos (2π7n

8) = cos 2π(1− 1

8)n

= cos (2π − 2π

8)n = cos (

2πn

8)

16. Properties of Discrete Time Sinusoids - Alias

u1[t] = cos (2πt

8), u2[t] = cos (2π

7t

8), Ts = 1

u2(n) = cos (2π7n

8) = cos 2π(1− 1

8)n

= cos (2π − 2π

8)n = cos (

2πn

8) = u1(n)

16. Properties of Discrete Time Sinusoids - Alias

u1[t] = cos (2πt

8), u2[t] = cos (2π

7t

8), Ts = 1

u2(n) = cos (2π7n

8) = cos 2π(1− 1

8)n

= cos (2π − 2π

8)n = cos (

2πn

8) = u1(n)

0 0.5 1 1.5 2 2.5 3 3.5 4−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

cosw

t

Digital Control 16 Kannan M. Moudgalya, Autumn 2007

17. Fourier Transform of Aperiodic Signals

17. Fourier Transform of Aperiodic Signals

X(F ) =

∫ ∞−∞

x(t)e−j2πFtdt

x(t) =

∫ ∞−∞

X(F )ej2πFtdF

If we let radian frequency Ω = 2πF

x(t) =1

∫ ∞−∞

X[Ω]ejΩtdΩ,

17. Fourier Transform of Aperiodic Signals

X(F ) =

∫ ∞−∞

x(t)e−j2πFtdt

x(t) =

∫ ∞−∞

X(F )ej2πFtdF

If we let radian frequency Ω = 2πF

x(t) =1

∫ ∞−∞

X[Ω]ejΩtdΩ,

X[Ω] =

∫ ∞−∞

x(t)e−jΩtdt

17. Fourier Transform of Aperiodic Signals

X(F ) =

∫ ∞−∞

x(t)e−j2πFtdt

x(t) =

∫ ∞−∞

X(F )ej2πFtdF

If we let radian frequency Ω = 2πF

x(t) =1

∫ ∞−∞

X[Ω]ejΩtdΩ,

X[Ω] =

∫ ∞−∞

x(t)e−jΩtdt

x(t), X[Ω] are Fourier Transform PairDigital Control 17 Kannan M. Moudgalya, Autumn 2007

18. Frequency Response

18. Frequency Response

Apply u(n) = ejwn to g(n) and obtain output y:

18. Frequency Response

Apply u(n) = ejwn to g(n) and obtain output y:

y(n) = g(n) ∗ u(n)

18. Frequency Response

Apply u(n) = ejwn to g(n) and obtain output y:

y(n) = g(n) ∗ u(n) =∞∑

k=−∞g(k)u(n− k)

18. Frequency Response

Apply u(n) = ejwn to g(n) and obtain output y:

y(n) = g(n) ∗ u(n) =∞∑

k=−∞g(k)u(n− k)

=∞∑

k=−∞g(k)ejw(n−k)

18. Frequency Response

Apply u(n) = ejwn to g(n) and obtain output y:

y(n) = g(n) ∗ u(n) =∞∑

k=−∞g(k)u(n− k)

=∞∑

k=−∞g(k)ejw(n−k) = ejwn

∞∑k=−∞

g(k)e−jwk

18. Frequency Response

Apply u(n) = ejwn to g(n) and obtain output y:

y(n) = g(n) ∗ u(n) =∞∑

k=−∞g(k)u(n− k)

=∞∑

k=−∞g(k)ejw(n−k) = ejwn

∞∑k=−∞

g(k)e−jwk

Define Discrete Time Fourier Transform

18. Frequency Response

Apply u(n) = ejwn to g(n) and obtain output y:

y(n) = g(n) ∗ u(n) =∞∑

k=−∞g(k)u(n− k)

=∞∑

k=−∞g(k)ejw(n−k) = ejwn

∞∑k=−∞

g(k)e−jwk

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk

18. Frequency Response

Apply u(n) = ejwn to g(n) and obtain output y:

y(n) = g(n) ∗ u(n) =∞∑

k=−∞g(k)u(n− k)

=∞∑

k=−∞g(k)ejw(n−k) = ejwn

∞∑k=−∞

g(k)e−jwk

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

18. Frequency Response

Apply u(n) = ejwn to g(n) and obtain output y:

y(n) = g(n) ∗ u(n) =∞∑

k=−∞g(k)u(n− k)

=∞∑

k=−∞g(k)ejw(n−k) = ejwn

∞∑k=−∞

g(k)e−jwk

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

= G(z)|z=ejw

18. Frequency Response

Apply u(n) = ejwn to g(n) and obtain output y:

y(n) = g(n) ∗ u(n) =∞∑

k=−∞g(k)u(n− k)

=∞∑

k=−∞g(k)ejw(n−k) = ejwn

∞∑k=−∞

g(k)e−jwk

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

= G(z)|z=ejw

Provided the sequence converges absolutelyDigital Control 18 Kannan M. Moudgalya, Autumn 2007

19. Frequency Response

19. Frequency Response

y(n) = ejwn∞∑

k=−∞g(k)e−jwk

19. Frequency Response

y(n) = ejwn∞∑

k=−∞g(k)e−jwk = ejwnG(ejw)

19. Frequency Response

y(n) = ejwn∞∑

k=−∞g(k)e−jwk = ejwnG(ejw)

Write in polar coordinates: G(ejw) = |G(ejw)|ejϕ - ϕ isphase angle:

y(n) = ejwn|G(ejw)|ejϕ

19. Frequency Response

y(n) = ejwn∞∑

k=−∞g(k)e−jwk = ejwnG(ejw)

Write in polar coordinates: G(ejw) = |G(ejw)|ejϕ - ϕ isphase angle:

y(n) = ejwn|G(ejw)|ejϕ = |G(ejwn)|ej(wn+ϕ)

19. Frequency Response

y(n) = ejwn∞∑

k=−∞g(k)e−jwk = ejwnG(ejw)

Write in polar coordinates: G(ejw) = |G(ejw)|ejϕ - ϕ isphase angle:

y(n) = ejwn|G(ejw)|ejϕ = |G(ejwn)|ej(wn+ϕ)

1. Input is sinusoid⇒ output also is a sinusoid with followingproperties:

19. Frequency Response

y(n) = ejwn∞∑

k=−∞g(k)e−jwk = ejwnG(ejw)

Write in polar coordinates: G(ejw) = |G(ejw)|ejϕ - ϕ isphase angle:

y(n) = ejwn|G(ejw)|ejϕ = |G(ejwn)|ej(wn+ϕ)

1. Input is sinusoid⇒ output also is a sinusoid with followingproperties:

• Output amplitude gets multiplied by the magnitude ofG(ejw)

19. Frequency Response

y(n) = ejwn∞∑

k=−∞g(k)e−jwk = ejwnG(ejw)

Write in polar coordinates: G(ejw) = |G(ejw)|ejϕ - ϕ isphase angle:

y(n) = ejwn|G(ejw)|ejϕ = |G(ejwn)|ej(wn+ϕ)

1. Input is sinusoid⇒ output also is a sinusoid with followingproperties:

• Output amplitude gets multiplied by the magnitude ofG(ejw)

• Output sinusoid shifts by ϕ with respect to input

19. Frequency Response

y(n) = ejwn∞∑

k=−∞g(k)e−jwk = ejwnG(ejw)

Write in polar coordinates: G(ejw) = |G(ejw)|ejϕ - ϕ isphase angle:

y(n) = ejwn|G(ejw)|ejϕ = |G(ejwn)|ej(wn+ϕ)

1. Input is sinusoid⇒ output also is a sinusoid with followingproperties:

• Output amplitude gets multiplied by the magnitude ofG(ejw)

• Output sinusoid shifts by ϕ with respect to inputDigital Control 19 Kannan M. Moudgalya, Autumn 2007

2. At ω where |G(ejw)| is large, the sinusoid gets amplified

2. At ω where |G(ejw)| is large, the sinusoid gets amplifiedand at ω where it is small, the sinusoid gets attenuated.

2. At ω where |G(ejw)| is large, the sinusoid gets amplifiedand at ω where it is small, the sinusoid gets attenuated.

• The system with large gains at low frequencies and smallgains at high frequencies are called low pass filters

2. At ω where |G(ejw)| is large, the sinusoid gets amplifiedand at ω where it is small, the sinusoid gets attenuated.

• The system with large gains at low frequencies and smallgains at high frequencies are called low pass filters

• Similarly high pass filters

Digital Control 20 Kannan M. Moudgalya, Autumn 2007

20. Discrete Fourier Transform

20. Discrete Fourier Transform

Define Discrete Time Fourier Transform

20. Discrete Fourier Transform

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk

20. Discrete Fourier Transform

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

20. Discrete Fourier Transform

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

= G(z)|z=ejw

20. Discrete Fourier Transform

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

= G(z)|z=ejw

Provided, absolute convergence∞∑

k=−∞|g(k)e−jwk| <∞

20. Discrete Fourier Transform

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

= G(z)|z=ejw

Provided, absolute convergence∞∑

k=−∞|g(k)e−jwk| <∞⇒

∞∑k=−∞

|g(k)| <∞

20. Discrete Fourier Transform

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

= G(z)|z=ejw

Provided, absolute convergence∞∑

k=−∞|g(k)e−jwk| <∞⇒

∞∑k=−∞

|g(k)| <∞

For causal systems,

20. Discrete Fourier Transform

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

= G(z)|z=ejw

Provided, absolute convergence∞∑

k=−∞|g(k)e−jwk| <∞⇒

∞∑k=−∞

|g(k)| <∞

For causal systems, BIBO stability.

20. Discrete Fourier Transform

Define Discrete Time Fourier Transform

G(ejw)4=

∞∑k=−∞

g(k)e−jwk =∞∑

k=−∞g(k)z−k

∣∣∣∣∣∣z=ejw

= G(z)|z=ejw

Provided, absolute convergence∞∑

k=−∞|g(k)e−jwk| <∞⇒

∞∑k=−∞

|g(k)| <∞

For causal systems, BIBO stability. Required for DTFT.

Digital Control 21 Kannan M. Moudgalya, Autumn 2007

21. FT of Discrete Time Aperiodic Signals - Defi-nition

21. FT of Discrete Time Aperiodic Signals - Defi-nition

21. FT of Discrete Time Aperiodic Signals - Defi-nition

U(ejω)4=

∞∑n=−∞

u(n)e−jωn

21. FT of Discrete Time Aperiodic Signals - Defi-nition

U(ejω)4=

∞∑n=−∞

u(n)e−jωn

u(m) =1

∫ π

−πU(ejω)ejωmdω

21. FT of Discrete Time Aperiodic Signals - Defi-nition

U(ejω)4=

∞∑n=−∞

u(n)e−jωn

u(m) =1

∫ π

−πU(ejω)ejωmdω

=

∫ 1/2

−1/2

U(f)ej2πfmdf

Digital Control 22 Kannan M. Moudgalya, Autumn 2007

22. FT of a Moving Average Filter - Example

22. FT of a Moving Average Filter - Example

y(n) =1

3[u(n+ 1) + u(n) + u(n− 1)]

22. FT of a Moving Average Filter - Example

y(n) =1

3[u(n+ 1) + u(n) + u(n− 1)]

y(n) =∞∑

k=−∞g(k)u(n− k)

22. FT of a Moving Average Filter - Example

y(n) =1

3[u(n+ 1) + u(n) + u(n− 1)]

y(n) =∞∑

k=−∞g(k)u(n− k)

= g(−1)u(n+ 1)

22. FT of a Moving Average Filter - Example

y(n) =1

3[u(n+ 1) + u(n) + u(n− 1)]

y(n) =∞∑

k=−∞g(k)u(n− k)

= g(−1)u(n+ 1) + g(0)u(n)

22. FT of a Moving Average Filter - Example

y(n) =1

3[u(n+ 1) + u(n) + u(n− 1)]

y(n) =∞∑

k=−∞g(k)u(n− k)

= g(−1)u(n+ 1) + g(0)u(n) + g(1)u(n− 1)

22. FT of a Moving Average Filter - Example

y(n) =1

3[u(n+ 1) + u(n) + u(n− 1)]

y(n) =∞∑

k=−∞g(k)u(n− k)

= g(−1)u(n+ 1) + g(0)u(n) + g(1)u(n− 1)

g(−1) = g(0) = g(1) =1

3

22. FT of a Moving Average Filter - Example

y(n) =1

3[u(n+ 1) + u(n) + u(n− 1)]

y(n) =∞∑

k=−∞g(k)u(n− k)

= g(−1)u(n+ 1) + g(0)u(n) + g(1)u(n− 1)

g(−1) = g(0) = g(1) =1

3

G(ejw)

=∞∑

n=−∞g(n)z−n|z=ejw

22. FT of a Moving Average Filter - Example

y(n) =1

3[u(n+ 1) + u(n) + u(n− 1)]

y(n) =∞∑

k=−∞g(k)u(n− k)

= g(−1)u(n+ 1) + g(0)u(n) + g(1)u(n− 1)

g(−1) = g(0) = g(1) =1

3

G(ejw)

=∞∑

n=−∞g(n)z−n|z=ejw

=1

3

(ejw + 1 + e−jw

)

22. FT of a Moving Average Filter - Example

y(n) =1

3[u(n+ 1) + u(n) + u(n− 1)]

y(n) =∞∑

k=−∞g(k)u(n− k)

= g(−1)u(n+ 1) + g(0)u(n) + g(1)u(n− 1)

g(−1) = g(0) = g(1) =1

3

G(ejw)

=∞∑

n=−∞g(n)z−n|z=ejw

=1

3

(ejw + 1 + e−jw

)=

1

3(1 + 2 cosw)

Digital Control 23 Kannan M. Moudgalya, Autumn 2007

23. FT of a Moving Average Filter - Example

23. FT of a Moving Average Filter - Example

G(ejω)

=1

3(1 + 2 cosw)

23. FT of a Moving Average Filter - Example

G(ejω)

=1

3(1 + 2 cosw), |G (ejw) | = |1

3(1 + 2 cosw)|

23. FT of a Moving Average Filter - Example

G(ejω)

=1

3(1 + 2 cosw), |G (ejw) | = |1

3(1 + 2 cosw)|

Arg(G) =

0 0 ≤ w < 2π

3

π 2π3≤ w < π

23. FT of a Moving Average Filter - Example

G(ejω)

=1

3(1 + 2 cosw), |G (ejw) | = |1

3(1 + 2 cosw)|

Arg(G) =

0 0 ≤ w < 2π

3

π 2π3≤ w < π

1 / / U p d a t e d ( 1 8 − 7 − 0 7 )

2 / / 5 . 3

3

4 w = 0 : 0 . 0 1 : %pi ;

5 subplot ( 2 , 1 , 1 ) ;

6 plot2d1 ( ” g l l ” ,w, abs(1+2∗cos (w) ) / 3 , s t y l e = 2 ) ;

7 l a b e l ( ’ ’ , 4 , ’ ’ , ’ Magnitude ’ , 4 ) ;

8 subplot ( 2 , 1 , 2 ) ;

9 plot2d1 ( ” g l n ” ,w, phasemag(1+2∗cos (w) ) , s t y l e = 2 , r e c t =[0.01 −0.5 10 2 0 0 ] ) ;

10 l a b e l ( ’ ’ , 4 , ’w ’ , ’ Phase ’ , 4 )

Digital Control 24 Kannan M. Moudgalya, Autumn 2007

24. FT of a Moving Average Filter - Example

24. FT of a Moving Average Filter - Example

|G (ejw) | = |13(1 + 2 cosw)|

24. FT of a Moving Average Filter - Example

|G (ejw) | = |13(1 + 2 cosw)|,

Arg(G) =

0 0 ≤ w < 2π

3

π 2π3≤ w < π

24. FT of a Moving Average Filter - Example

|G (ejw) | = |13(1 + 2 cosw)|,

Arg(G) =

0 0 ≤ w < 2π

3

π 2π3≤ w < π

10−2

10−1

100

101

10−3

10−2

10−1

100

Mag

nitu

de

10−2

10−1

100

101

0

50

100

150

200

w

Pha

se

24. FT of a Moving Average Filter - Example

|G (ejw) | = |13(1 + 2 cosw)|,

Arg(G) =

0 0 ≤ w < 2π

3

π 2π3≤ w < π

10−2

10−1

100

101

10−3

10−2

10−1

100

Mag

nitu

de

10−2

10−1

100

101

0

50

100

150

200

w

Pha

se

Digital Control 25 Kannan M. Moudgalya, Autumn 2007

25. Additional Properties of Fourier Transform

25. Additional Properties of Fourier Transform

Symmetry of real and imaginary parts for real valued sequences

25. Additional Properties of Fourier Transform

Symmetry of real and imaginary parts for real valued sequences

G(ejw)

=∞∑

n=−∞g(n)e−jwn

25. Additional Properties of Fourier Transform

Symmetry of real and imaginary parts for real valued sequences

G(ejw)

=∞∑

n=−∞g(n)e−jwn

=∞∑

n=−∞g(n) coswn− j

∞∑n=−∞

g(n) sinwn

25. Additional Properties of Fourier Transform

Symmetry of real and imaginary parts for real valued sequences

G(ejw)

=∞∑

n=−∞g(n)e−jwn

=∞∑

n=−∞g(n) coswn− j

∞∑n=−∞

g(n) sinwn

G(e−jw

)=

∞∑n=−∞

g(n)ejwn

25. Additional Properties of Fourier Transform

Symmetry of real and imaginary parts for real valued sequences

G(ejw)

=∞∑

n=−∞g(n)e−jwn

=∞∑

n=−∞g(n) coswn− j

∞∑n=−∞

g(n) sinwn

G(e−jw

)=

∞∑n=−∞

g(n)ejwn

=∞∑

n=−∞g(n) coswn+ j

∞∑n=−∞

g(n) sinwn

25. Additional Properties of Fourier Transform

Symmetry of real and imaginary parts for real valued sequences

G(ejw)

=∞∑

n=−∞g(n)e−jwn

=∞∑

n=−∞g(n) coswn− j

∞∑n=−∞

g(n) sinwn

G(e−jw

)=

∞∑n=−∞

g(n)ejwn

=∞∑

n=−∞g(n) coswn+ j

∞∑n=−∞

g(n) sinwn

Re[G(ejw)]

= Re[G(e−jw

)]

25. Additional Properties of Fourier Transform

Symmetry of real and imaginary parts for real valued sequences

G(ejw)

=∞∑

n=−∞g(n)e−jwn

=∞∑

n=−∞g(n) coswn− j

∞∑n=−∞

g(n) sinwn

G(e−jw

)=

∞∑n=−∞

g(n)ejwn

=∞∑

n=−∞g(n) coswn+ j

∞∑n=−∞

g(n) sinwn

Re[G(ejw)]

= Re[G(e−jw

)]Im

[G(ejw)]

= −Im [G(e−jw

)]Digital Control 26 Kannan M. Moudgalya, Autumn 2007

26. Additional Properties of Fourier Transform

26. Additional Properties of Fourier Transform

Recall

G(ejw)

= G∗(e−jw

)

26. Additional Properties of Fourier Transform

Recall

G(ejw)

= G∗(e−jw

)Symmetry of magnitude for real valued sequences

26. Additional Properties of Fourier Transform

Recall

G(ejw)

= G∗(e−jw

)Symmetry of magnitude for real valued sequences

|G (ejw) | = [G(ejw)G∗(ejw)]1/2

26. Additional Properties of Fourier Transform

Recall

G(ejw)

= G∗(e−jw

)Symmetry of magnitude for real valued sequences

|G (ejw) | = [G(ejw)G∗(ejw)]1/2

=[G∗(e−jw

)G(e−jw

)]1/2

26. Additional Properties of Fourier Transform

Recall

G(ejw)

= G∗(e−jw

)Symmetry of magnitude for real valued sequences

|G (ejw) | = [G(ejw)G∗(ejw)]1/2

=[G∗(e−jw

)G(e−jw

)]1/2= |G(e−jw)|

26. Additional Properties of Fourier Transform

Recall

G(ejw)

= G∗(e−jw

)Symmetry of magnitude for real valued sequences

|G (ejw) | = [G(ejw)G∗(ejw)]1/2

=[G∗(e−jw

)G(e−jw

)]1/2= |G(e−jw)|

This shows that the magnitude is an even function.

26. Additional Properties of Fourier Transform

Recall

G(ejw)

= G∗(e−jw

)Symmetry of magnitude for real valued sequences

|G (ejw) | = [G(ejw)G∗(ejw)]1/2

=[G∗(e−jw

)G(e−jw

)]1/2= |G(e−jw)|

This shows that the magnitude is an even function. Similarly,

26. Additional Properties of Fourier Transform

Recall

G(ejw)

= G∗(e−jw

)Symmetry of magnitude for real valued sequences

|G (ejw) | = [G(ejw)G∗(ejw)]1/2

=[G∗(e−jw

)G(e−jw

)]1/2= |G(e−jw)|

This shows that the magnitude is an even function. Similarly,

Arg[G(e−jw

)]= −Arg [G (ejw)]

26. Additional Properties of Fourier Transform

Recall

G(ejw)

= G∗(e−jw

)Symmetry of magnitude for real valued sequences

|G (ejw) | = [G(ejw)G∗(ejw)]1/2

=[G∗(e−jw

)G(e−jw

)]1/2= |G(e−jw)|

This shows that the magnitude is an even function. Similarly,

Arg[G(e−jw

)]= −Arg [G (ejw)]

⇒ Bode plots have to be drawn for w in [0, π] only.

Digital Control 27 Kannan M. Moudgalya, Autumn 2007

27. Sampling and Reconstruction

27. Sampling and Reconstruction

u(n) = ua(nTs), −∞ < n <∞

27. Sampling and Reconstruction

u(n) = ua(nTs), −∞ < n <∞Fast sampling:

27. Sampling and Reconstruction

u(n) = ua(nTs), −∞ < n <∞Fast sampling:

Fs

2Ts

Ft

−B B

−Fs

2−32Fs

32Fs

Ua(F )

ua(nT ) = u(n) U(

FFs

)

1

Fs

ua(t)

t F

Fs

2

F0 + Fs

F0 − Fs

F0

Digital Control 28 Kannan M. Moudgalya, Autumn 2007

28. Slow Sampling Results in Aliasing

28. Slow Sampling Results in Aliasing

FtTs

−Fs

2Fs

2

u(n)

FtTs

−Fs

2Fs

2

t F−B B

ua(t)Ua(F )

Fs

Fs

U(

FFs

)

U(

FFs

)

Digital Control 29 Kannan M. Moudgalya, Autumn 2007

29. What to Do When Aliasing Cannot be Avoided?

29. What to Do When Aliasing Cannot be Avoided?

Ua(F )

1Fs

U(

FFs

)

Ua(F )Ua(F + Fs) Ua(F − Fs)

29. What to Do When Aliasing Cannot be Avoided?

Ua(F )

1Fs

U(

FFs

)

Ua(F )Ua(F + Fs) Ua(F − Fs)

U ′a(F − Fs)

U ′a(F )

1Fs

U ′(

FFs

)

Ua(F )U ′a(F + Fs)

Digital Control 30 Kannan M. Moudgalya, Autumn 2007

30. Sampling Theorem

30. Sampling Theorem

• Suppose highest frequency contained in an analogsignal ua(t) is Fmax = B.

30. Sampling Theorem

• Suppose highest frequency contained in an analogsignal ua(t) is Fmax = B.

• It is sampled at a rate Fs > 2Fmax = 2B.

30. Sampling Theorem

• Suppose highest frequency contained in an analogsignal ua(t) is Fmax = B.

• It is sampled at a rate Fs > 2Fmax = 2B.

• ua(t) can be recovered from its sample values:

30. Sampling Theorem

• Suppose highest frequency contained in an analogsignal ua(t) is Fmax = B.

• It is sampled at a rate Fs > 2Fmax = 2B.

• ua(t) can be recovered from its sample values:

ua(t) =∞∑

n=−∞ua(nTs)

sinπTs

(t− nTs)

πTs

(t− nTs)

30. Sampling Theorem

• Suppose highest frequency contained in an analogsignal ua(t) is Fmax = B.

• It is sampled at a rate Fs > 2Fmax = 2B.

• ua(t) can be recovered from its sample values:

ua(t) =∞∑

n=−∞ua(nTs)

sinπTs

(t− nTs)

πTs

(t− nTs)• If Fs = 2Fmax, Fs is denoted by FN , the

Nyquist rate.

30. Sampling Theorem

• Suppose highest frequency contained in an analogsignal ua(t) is Fmax = B.

• It is sampled at a rate Fs > 2Fmax = 2B.

• ua(t) can be recovered from its sample values:

ua(t) =∞∑

n=−∞ua(nTs)

sinπTs

(t− nTs)

πTs

(t− nTs)• If Fs = 2Fmax, Fs is denoted by FN , the

Nyquist rate.

• Not causal: check n > 0Digital Control 31 Kannan M. Moudgalya, Autumn 2007

31. Rules for Sampling Rate Selection

31. Rules for Sampling Rate Selection

• Minimum sampling rate = twice band width

31. Rules for Sampling Rate Selection

• Minimum sampling rate = twice band width

• Shannon’s reconstruction cannot be implemented,have to use ZOH

31. Rules for Sampling Rate Selection

• Minimum sampling rate = twice band width

• Shannon’s reconstruction cannot be implemented,have to use ZOH

• Solution:

31. Rules for Sampling Rate Selection

• Minimum sampling rate = twice band width

• Shannon’s reconstruction cannot be implemented,have to use ZOH

• Solution: sample faster

31. Rules for Sampling Rate Selection

• Minimum sampling rate = twice band width

• Shannon’s reconstruction cannot be implemented,have to use ZOH

• Solution: sample faster

– Number of samples in rise time = 4 to 10

31. Rules for Sampling Rate Selection

• Minimum sampling rate = twice band width

• Shannon’s reconstruction cannot be implemented,have to use ZOH

• Solution: sample faster

– Number of samples in rise time = 4 to 10

– Sample 10 to 30 times bandwidth

31. Rules for Sampling Rate Selection

• Minimum sampling rate = twice band width

• Shannon’s reconstruction cannot be implemented,have to use ZOH

• Solution: sample faster

– Number of samples in rise time = 4 to 10

– Sample 10 to 30 times bandwidth

– Use 10 times Shannon’s sampling rate

31. Rules for Sampling Rate Selection

• Minimum sampling rate = twice band width

• Shannon’s reconstruction cannot be implemented,have to use ZOH

• Solution: sample faster

– Number of samples in rise time = 4 to 10

– Sample 10 to 30 times bandwidth

– Use 10 times Shannon’s sampling rate

– ωcTs = 0.15 to 0.5, where,ωc = crossover frequency

Digital Control 32 Kannan M. Moudgalya, Autumn 2007

top related