Transcript

ANANSYSSYS®®//CivilCivilFEMFEM®®HighHigh--End Solutions for Advanced Civil EngineeringEnd Solutions for Advanced Civil Engineering

INGECIBER, s.a.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

What is ANSYS/CivilFEM ?® ®

ANSYS/CivilFEM is a comprehensive finite element analysis and design software package for structural engineering projects.

It combines the state-of-the art general purpose structural analysis features of ANSYS with high-end specific civil engineering-specific structural analysis capabilities of CivilFEM

As both programs are completely integrated, CivilFEM supports all types of advanced analysis supported by ANSYS running as a unique software and executable.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

CivilFEM adds more than 350 new features and specific utilities for the Civil engineering field.

ANSYS

PREPROCESSOR

SOLUTION

POSTPROCESSOR

PREPROCESSOR

ADITIONAL OR COMPLEMENTARY ANALYSIS

POSTPROCESSOR

CivilFEM INTRO

+Specific Modules

ANSYS CivilFEM (Features added to Ansys by CivilFEM)

ANSYS + CivilFEM “BUNDLE”(Bundle product)

What is ANSYS/CivilFEM ?

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

CivilFEM Product LineANSYS+CivilFEM (Unlimited) Bundle Products

Specialized Modules

Geotech

Bridges and Civil Non Linearities

Advanced Prestressed Concrete

Others

Ansys/Multiphisics+CivilFEM INTRO Unlimited

Ansys/Mechanical+CivilFEM INTRO Unlimited

Ansys/Structural +CivilFEM INTRO Unlimited

Ansys/Professional +CivilFEM INTRO Unlimited

Ansys/Structural High Option(128,000 nodes/elements)

Ansys/Structural OPT I+CivilFEM Intro OPT II(32,000 nodes/elements)

Ansys/Structural OPT II+CivilFEM Intro OPT III(8,000 nodes/elements)

CAE for Civil Engineering

Only one software to cover all the industry needs and requirements.

Software for Dams

Software for Geotechnical

Software for Bridges

Software for Concrete/Steel Building/Power

Plants Structures Software for

Composite Structures

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

ANANSYSSYS®®//CivilCivilFEMFEM®®Setup, material, cross sections, elementsSetup, material, cross sections, elements

INGECIBER, s.a.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

CivilFEM Material Library

– CEB-FIP Model code– Eurocode No.2– Eurocode No.3– ACI– AISC– British Standard– ASTM– EHE– EA– Chinese code

Simply pick one materialand all properties will be

automatically defined

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Birth timeof materials

User materialname

Concrete material library

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Prestressed material libraryWhen selecting a material from

the library all properties areautomatically defined Any property used for

prestressing losses calculation can be easily

modified

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Soils and rocks library• Library with mechanical, elastic

and plastic properties of characteristics soils and rocks

• Correlations among geotechnical parameters from tests results (elasticity module versus SPT, etc)

See geotechnical module presentation

for more details.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

CivilFEM Sections Explorer

Compose cross sections by merge

Definition of any type ofcross sections using a single

window

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Hot Rolled Shapes Library

“More than 4,000 shapes in Library”

Addittion of user hot rolled shapes

Quick search of adequate shape

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Steel Sections by PlatesAny generic cross

section shape can be defined

User friendly definitionof plate properties that

form the section

RECTANGULAR BOX T

ICIRCULARPIPECivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Predefined concrete sections

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Mixed – generic sections

Each tessellum adopts initiallythe same material assigned

to its corresponding element

An easy way to define any beamgeneric composite section from a 2D

ANSYS meshed drawing. Each element correspond to a tessellaYou can change

the tessella material

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Section Merge• A section as a composition of two existing sections.• The merged section will take into account all the properties of the

two initial sections.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Offsets + variable cross sections

Relative element node position

defined by the user

The user can define offsets when the

section’s gravity center does not coincide with

the node location

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Capturing Solid SectionsIt allows checking & design beam cross sections captured

from a 3D solid model

Automatic generationof cross section

ANSYS 3D model

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Concrete Shell Reinforcement • Variable depth• Variable reinf amount in X & Y directions and in Top/Bottom faces for each vertex• Non orthogonal reinforcements and variable orientation• Tx, Ty, Txy, Mx, My, Mxy, Nx, Ny Reinforcement

ANANSYSSYS®®//CivilCivilFEMFEM®®ModelingModeling

INGECIBER, s.a.

CivilFEMfor

ANSYSper

ANSYS

Solid Modeling• Solid Modeling can be defined as the process of

creating solid models.

• A solid model is defined by volumes, areas, lines, and keypoints.

• Volumes are bounded by areas, areas by lines, and lines by keypoints.

• Hierarchy of entities from low to high: • keypoints < lines < areas < volumes

Volumes

Areas

Lines &Keypoints

Keypoints

Lines

Areas

Volumes

CivilFEMfor

ANSYSper

ANSYS

Bottom up modeling

Solid Modeling

• Solid modelingcomposed by Kps, Lines, Areas, Volumes

• Basic geometric operations to build solidModel

• Booleans geometric operation to modify solidmodel

FEM Modeling

CivilFEMfor

ANSYSper

ANSYS

Bottom up modeling

FEM Modeling

CivilFEMfor

ANSYSper

ANSYS

FEM Modeling

CivilFEMfor

ANSYSper

ANSYS

FEM Modeling

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

FEM Modeling

CivilFEMfor

ANSYSper

ANSYS

PERFIL P-8MODELO COMPLETO

FEM Modeling

CivilFEMfor

ANSYSper

ANSYS

FEM Modeling

CivilFEMfor

ANSYSper

ANSYS

FEM Modeling

CivilFEMfor

ANSYSper

ANSYS

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

FEM Modeling

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

FEM Modeling

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

FEM Modeling

ANANSYSSYS®®//CivilCivilFEMFEM®®Element library and types of analysisElement library and types of analysis

INGECIBER, s.a.

CivilFEMfor

ANSYSper

ANSYS

ElementTechnology

MetalInelasticity

RubberElasticity

GeotechnicalMaterials5

GeometricInstability

ElementBirth & Death

Rate-independentBehavior1

Rate-dependentBehavior2

Rate-independentBehavior3

Rate-dependentBehavior4

LinearBuckling

NonlinearBuckling

Concrete GranularMaterials

Material lawTypes of Non linearities

Static / spectrum dynamic analysis

Analysis

CivilFEMfor

ANSYSper

ANSYS

• BEAM, SHELL, LINK elements

• CP command for master slave option

• EC8 e NTC spectrum

• Winkler option for beam and shells

Static / spectrum dynamic analysis

Analysis

CivilFEMfor

ANSYSper

ANSYS

• SHELL63 + BEAM44 elements

Static non linear analysis

Analysis

CivilFEMfor

ANSYSper

ANSYS

• BEAM24 elasto-plastic element

• SHELL, SOLID with material NL capabilities

Static non linear analysis

Analysis

CivilFEMfor

ANSYSper

ANSYS

• /POST26 for post processing

• Displacement/time plot

Static non linear analysis

Analysis

CivilFEMfor

ANSYSper

ANSYS

• Special COMBIN39 non linear element

• F-d or M-rot USER defined diagrams for NL linear spring

Static non linear analysis

Analysis

CivilFEMfor

ANSYSper

ANSYS

• BEAM element with second order effect

• SHELL, SOLID elements with NL capabilities

Time History

Analysis

CivilFEMfor

ANSYSper

ANSYS

• COMBIN14 to simulate spring-damper base mechanism

• Time history analysis

• Other COMBIN elements to simulate complex mechanism

Soil structure interaction

Analysis

CivilFEMfor

ANSYSper

ANSYS

• SHELL63 element for plate foudation

• SOLID, SHELL elements with Drucker Prager material behaviour capabilities for soil-structure interation

• Use of contact element forunidirectional soilconstraint

Post Buckling

Analysis

CivilFEMfor

ANSYSper

ANSYS

• Eigenvalue buckling

• Non linear buckling

• Post buckling

• SHELL, BEAM elements for Buckling analysis

F

uPre-buckling

Post-buckling

Idealized Static Behavior

Bifurcation Point

Limit Point

3D brittle materials analysis

CivilFEMfor

ANSYSper

ANSYS

Analysis

• The concrete material is capable of directional integration point cracking and crushing

• The concrete material model predicts the failureof brittle materials.

CivilFEMfor

ANSYSper

ANSYS

Construction process

Cross Sections

8 m 8 m12 m 12 m 8 m 8 m12 m 12 m10 m 10 m15 m 15 m

Section 2 Section 2 Section 2 Section 2Section 1

Linear transition

Section 1

Linear transition

Section 1

Linear transition

Phases

50 m 30 m50 m

Phase 1 Phase 2 Phase 3

Geometry

40 m 40 m50 m

Section 1

Section 2

Analysis

• Use of BIRTH and DEATH option for each type of element

• Birth/death option also for cables

Normal Procedure

Y

X

Puente construido mediante dovelas yuxtapuestas: Situación después del step #3

Y

Z

Pile Section: AreaU, I , I , AreaB, I ,I , HyyU

z

Bridge plant

Not builded zone

10 11 12 13

Sections

12

Steps

Live cable

7 8 9 14 15 161 2 3 4 5 6

2 3

112

3

H

Live pile support

Not live support

zzU yyB zzB

Pile section axis

Bridge section axis

X

Y

Z

-.160E+08

-.979E+07 -.355E+07 .268E+07 .892E+07 .152E+08 .214E+08 .276E+08 .339E+08 .401E+08

Phase 1:Bending Moment MZ

X

Y

Z

-.152E+09

-.118E+09 -.837E+08 -.493E+08 -.149E+08 .195E+08 .538E+08 .882E+08 .123E+09 .157E+09

Phase 2:Bending Moment MZ

X

Y

Z

-.196E+09

-.155E+09 -.115E+09 -.738E+08 -.331E+08 .766E+07 .484E+08 .891E+08 .130E+09 .171E+09

Phase 3:Bending Moment MZ

Construction process

CivilFEMfor

ANSYSper

ANSYS

Analysis

• Actions for each phase

• Checking for each phase

CivilFEMfor

ANSYSper

ANSYS

Prestressed Structures

Analysis

• Possibility to input prestressed effects using BEAM or SOLID

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

• Element Birth and Death capability (non-linear construction sequence analysis)

Underground structures (tunnels)

CivilFEMfor

ANSYSper

ANSYS

Contact Analysis

Analysis

• Elements used:• SOLID65• CONTAC52 • BEAM4

Frequency analysis

Analysis

CivilFEMfor

ANSYSper

ANSYS

• Elements used:• SHELL43, deck• LINK8, cables• BEAM4, piles

Other types of analysis

• Tensile structures analysis• Design Optimization• Fracture mechanics• Fatigue analysis• Etc…

Analysis

CivilFEMfor

ANSYSper

ANSYS

ANANSYSSYS®®//CivilCivilFEMFEM®®Smart Combination ModuleSmart Combination Module

INGECIBER, s.a.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Load Combinations: basic• Where must be located the two engines to obtain the maximum

stresses at point P ?

• What is the maximum bending moment at section A-A ?• Which are the concomitant values?

P

A ---- A

? ?

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Load Combinations: basics

...Q ψ γQ ψ γ

Q γG γG γ E

Thermal k,Thermal 0,ThermalQ, Windk, Wind0, WindQ,

Live k,Live Q,Dead k,Dead G,Gravity k,Gravity G,

+++

++=

γG = 1.00 or 1.35 ?γQ = 1.00 or 0.00 ?

Scheme of combinations in Eurocodes

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Load Combinations: Targets• Targets are results that have to be maximized or minimized

• Strains, stresses, forces, moments, displacements or reactions are TARGETS

• TARGETS may be maximum, minimum or maximum in absolute value

• You can define as many TARGETS as you wish; each one will generate its own results for eachcombination

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Load Combinations: Comb rules

TYPE Coefficient Number of Start States to add

Maximum Minimum

ADD C1∗ C2 = C1 ALL

ADDVC C1∗ C2∗ ALL

INCOMPAT 0 1 1

COMPATIB 0 1 ALL

OPTION 1 1 1

OPOSED 1 -1 ALL

SELECT 1 1 NADD∗

SELECTVC C1∗ C2∗ NADD∗

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Load Combination Explorer• Comb Explorer to quickly and easily simulated any scenarios

You can be sure of covering all the

possibilities

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Load Comb.: Envelope

Target Number

The program obtains the results by combining the start states in different ways

Combination Rule

• Obtain the envelop of maximum vertical displacements at all nodes

The program obtains the results by combining the start states in different ways

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Load comb.:Enquiry• Search the worst combination of loads for the displacement of node 3

The program obtains the results by combining the start states in different ways

ANANSYSSYS®®//CivilCivilFEMFEM®®

Post Processing

INGECIBER, s.a.

/POST1

CivilFEMfor

ANSYSper

ANSYS

• Local Global Contour plotting

• Vector plotting

• Isosurface plotting

• Animations

CivilFEMfor

ANSYSper

ANSYS

/POST26

100kg

25kg

k = 36kN/m

F

⎩⎨⎧

<>

=0,0

0,4000t

tNF

k = 36kN/m

y

CivilFEMfor

ANSYSper

ANSYS

From

To

Path Operations

• User defined pathcomposed by points

• PATH creation and plot over a graph or model

• Results coordinate systems

Result coordinate systems

CivilFEMfor

ANSYSper

ANSYS

Default orientation RSYS,0

Local cylindrical system RSYS,11

Global cylindrical system RSYS,1

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Connection with MS-EXCEL• Any array parameter defined in ANSYS/CivilFEM.

• CivilFEM utility for exporting families of arrays.

• Automatic graphic generation in Excel.

• Configuration options of Excel graphic from CivilFEM windows.

Time History Analysis - Initial Structure

-20

0

20

40

60

80

100

0 5 10 15 20 25 30 35 40 45 50

TIME -1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

STRESSX STRESSZ STRAINY

CivilSYS

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Beam & Shell Utilities• Automatic output of forces and moments• Direct plot and list of results

– Forces– Moments– Stresses– Strains

• HTML and Excel format for listing

• Stress and strain distribution inside any ANSYS beam cross section

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Forces and Moments

An icon showing sign criterion and results description

is always displayed

Results title automatically

displayed

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Stresses & Strains

The icon shows the actual section

and the stress point location

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Beam Section Results

Stress and strains inside beam cross

sections of any beam created in CivilFEM,

thanks to the discretization of the cross section into

tessellas

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Concrete Checking & Design• Codes

– EUROCODE 2– ACI 318 – EHE– CEB-FIP (Model Code)– British Standard 8110– Australian code (AS 3600)– Chinese code (GB-50010)– Russian + Brazilian + AASHTO (NEW)

• Capabilities– Axial+Biaxial Bending Interaction

Diagram (3D)– Axial+ Biaxial Bending Checking– Axial+ Biaxial Bending Design– Shear & Torsion Checking– Shear & Torsion Design– Shell Reinforcement

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Concrete Checking

Fd = 100 kNw

10.0 m

X

Y60 cm

90 c

m

5 φ20 mm

φ8 mm / 20 cmY

Z

4 φ16 mm

• Simple example: a cantilever

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Concrete Checking

Red elements do notpass the code for the

check performed

• After modeling and solution: Bending Checking, OK/ No OK

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Concrete Checking • After modeling and solution: CRT_TOT

Elements withCriterium < 1

are O.K.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Concrete 2D Checking • After modeling and solution: 2D AX + BIAX BENDING

Elements withCriterion < 1

are O.K.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

3D Axial+Biaxial Checking• Checks with initial reinforcement amount • Elements that are OK and NO OK according to code specifications• Safety factors

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Axial + Biaxial Bending Design• All the scalable reinforcements (defined by the user) are

multiplied by an optimization factor ω that makes the safety factor of the section as closer as possible to 1.00

• The ω factor is searched in a range of values specified by the user

ωmin < ω < ωmax

• The results of a reinforcement design with CivilFEM are the obtained reinforcement amount and the ω factor for each element end

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Axial + Biaxial Bending Design

Reinforcement factor

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Shear and Torsion Design

a

q

b

c c c c

p

2*M

M M M M

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Cracking Checking• CivilFEM automatically checks the structure against cracking

according to codes.

Shell Axial+Bending Design

CivilFEMfor

ANSYSper

ANSYS

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Steel Checking• Codes

– EUROCODE 3 (European)– EA (Spanish)– AISC-LRFD (American)– British Standard 5950:1985– British Standard 5950:2000– Chinese Code GB50017-2003– Others

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Eurocode 3 Checking• Types of checking

– Tension (1D)– Compression (1D)– Bending (2D)– Shear (2D)– Bending + shear (2D)– Bending + Axial (3D)– Bending + Axial + Shear (3D)– Compression Buckling (1D)– Lateral Buckling (2D)– Lateral Buckling in Bending + Tension (3D)– Buckling in Bending + Compression (3D)

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Steel Checking• Automatic checking of OK/No OK elements, criteria, etc.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

EC 3 section results

Effective cross section properties calculation (class 4 section) and

automatic consideration of its properties according to the check performed

Local buckling effect

ANANSYSSYS®®//CivilCivilFEMFEM®®

Special features and Advanced Modules

INGECIBER, s.a.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Open and Closed Frames• Pre-Design of reinforcing bars and strength verification of beams and

columns in frames and footing foundations

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Connection with SAP2000• import any SAP2000 finite

element model into ANSYS/CivilFEM

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

FLAC3D Integration

PREPROCESS

POSTPROCESS

SOLUTION

PREPROCESS

SOLUTION

POSTPROCESS

CFTOFL3D.DAT

FISH

FL3DRES.DAT

FISH

FL3DRES.EXP

ASCII

ANSYS+CivilFEM FLAC3D

• Utilities for solving complex geotechnical problems with FLAC3D (specific material behavior laws and explicit solver)

ANANSYSSYS®®//CivilCivilFEMFEM®®

Bridges and Civil Non Linearities Module

INGECIBER, s.a.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Main features• Concrete Creep and Skrinkage• Bridge layout modeling • Common bridge sections and layout design• Geometric and finite element model generation

both with Beams (1D) and Solid elements (3D)• Loads Generation

• Overloads• Moving loads (vehicle’s editor)• Utility for Prestressed forces input• User loads

• Automatic Loads combination• Simulation of construction process

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Concrete Creep and Shrinkage• Concrete Creep and Shrinkage material behavior • deformed shape as well as the forces and moments and

stresses in the model.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Bridge layout in plan view• In plan view, the mileage points line is a succession of user-

defined stretches as:• straight segments • circular arcs• clothoid arcs

Caso R = R : Definition of the section elementsi f/

(x ,y )i i

(x ,y )f f

R

αi

f

s = s + Long

R

ii

s x

y Clothoid axis

cl

cl

β

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Bridge layout in elevation view• In elevation view, the mileage points line is a succession of user-

defined stretches as:• straight segments • parabolic

Vertical fillet

si

sf

α

αβ

i

ff

L

T

∆zf

∆zi

sStraight section

Straight section

Parabolic fillet

s

si f

i i

z

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Bridge cross sections• This module includes a library of typical bridge cross sections,

which are defined by the outline of the section:• Slab cross sections (solid or hollow)• Box cross sections

Bridge Section Types

Rectangular section

Trapezoidal section

Trapezoidal section with flanges

Polygonal section with two bends

Polygonal Asymmetric with two bends Note: The upper line (deck) is alwayshorizontal. The slope must be laterdefined with the section’s bank.

B

DEPTH

RS

BTOP

BBOT

DEPTH

TTOPTS

DEPTH

BTOP

BM

BBOT

TTOP

TBOT TF

TBOT BBOT

BM2

BM1

BTOP

DEPTH

TTOP

TMPS

BBOTR

BM2R

BM1R

BTOPRBTOPL

BM1LBM2L

BBOTL

DEPTHL

TBOTL

TML

TBOTR

TTOPR

TMR DEPTHR

axis

PA

Tri-cell box section definition

a1

p11

b1

a2

t 22 t 21

t 11

p21p22

s31

1

1

p121

11

t 31

hL

vL

y

z

vCLl

hCLl

hCUl

vCUl

t 41

vUl vUr

hUl hUr

a /20

vCUr

hCUr

hCLr

vCLr

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Slab concrete sections• The sections can be symmetric or asymmetric• Sections and hole diameters might differ along the bridge

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Assigning attributes (Sections/Layout)• The defined cross sections should be assigned to the mileage

points (MP’s) that forms the bridge layout.• The sections transition between MP’s can be defined defined

using straight segments, splines and so on.

Trans = 0Trans=1

Section's transition definition

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Assigning attributes (Sections/Layout)• The cross sections may have the following attributes:

• Offsets• Banks• Skew• Hollow or solid sections

z

y

Zoffs

Yoffs

MP,s line

Bank (Rotation's center P)P

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Model generation• Once the layout and cross sections are defined the geometrical

and FE model can be automatically performed by the program.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

• By using this Wizard it is possible to easily introduce the number of segments and the corresponding data to generate the entire bridge model for both 3D beams and solid elements.

Suspension Bridge wizard I

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

• Both concrete and steel truss suspension bridges are automatically performed for any generic configuration by introducing just a few parameters.

Suspension Bridge wizard II

Suspension Bridge wizard III• Any generic cross section defined from library and/or any 2D

ANSYS/CivilFEM meshed drawing (capture utility) can be used as a bridge cross section.

• Optimization of the geometry and initial tension of cables.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Arch Bridge wizard (NEW)

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Arch Bridge wizard (NEW)

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Arch Bridge wizard (NEW)

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Mixed Bridge wizard • Bridge composed by slab+ long beams (2,3,4 beams,

depending on the width of the bridge)

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Cable stayed wizard (NEW)• Fan harp, fan & harp modified• Different connections between piles and deck

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Cable force opt (NEW)• Simulation of cable+deck construction process• Evaluation of unknown cable forces respecting horiz deck conf

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

0

8

3

2

1

8

3

2

1

88838281

38333231

28242321

18131211

=

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

+

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

⎥⎥⎥⎥⎥⎥

⎢⎢⎢⎢⎢⎢

U

UUU

F

FFF

KKKK

KKKKKKKKKKKK

MM

L

MOMMM

L

L

L

[K]– deflection due to the unit cable forces

[F] – unknown cable forces

[U] – deflection due to self weight

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Loads generation• CivilFEM automatically generates the

loads corresponding to the various load hypotheses over a 2D or 3D structure, such as:• Moving loads (traffic loads)• Surface loads (Overloads)• Prestressed tendons

• Any kind of “user defined” loads• “Smart” load combination of al the load

steps generated during the analysis

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Loads generation- Traffic loads• From the vehicle's editor it is possible to create vehicles, import

from library, modify, copy, delete and list.

Property window

Vehicle’s library: just choose the vehicle and

the corresponding properties are

automatically defined

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Loads generation- Traffic loads• Allows to consider the breaking or starting load (horizontal) for

each vehicle wheel• One or more vehicles can be used at the same time

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Loads generation- Traffic loads• Two different types of vehicles: Rigid (truck) or flexible (train,

adptable to the path)• User friendly path definition: road surface and road axis are

automatically detected by the program

Trajectory definition (Rigid vehicle)

MP,s

line components

Vehicletrajectory

Assembly the bridges nodes and elements, where the loads are applied

Dist

The tangency occurs in the point (xLoc, yLoc) of the vehicle

Trayectory definition ( )adaptable to the trajectory

KP,s

Lines component

Vehicle trayectoryAssembly the bridges nodes and elements, where the loads are applied

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Loads generation- Surface loads• Definition of an overload grid over the deck• Automatic load and combination of all possible load case

scenarios

Definition of surface loads

KP,s

Lines component

Overload grid

s1

d1

d2

dm

Assembly with the bridges nodes and elements over which the surface load will be applied

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Loads generation- Prestressed cables• Definition of some point’s along the cable’s path (automatic

adjustment of the points using splines)• Introduce the tension force at specific locations of the tendon’s

path• Automatic introduction of the cable action over the structure: the

program finds an equivalent system of forces at each node of theelement that equilibrate the system

3D spline generation

P

P

PP

P 1

2

k+2k+1

N

P'1 P' N

Pk

Transmision of the cable actions to the model

OP

xR

R

MRy

z

MRz

xMR

c.d.g. Ry

Kfx

Kfy

Kfz

T1

T2

1

2

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Load generation- User Loads• In addition to the automatic loads generation explained here in,

any other “user-defined” load can be applied to the structure such as wind loads, snow, seismic (automatic definition of spectrum according to codes) and so on.

• The automatic load generation feature, although is inside the bridges module, can be applied to any other structure by just defining the surface over which they are to be applied.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Dynamic analysis• A transient analysis can be automatically performed.

Possibility of introducing the velocity while defining the moving loads

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Load combination• In the bridge analysis process, a great number of load steps

are generated, which later on have to be combined looking for the worst case scenario.

• In the Bridge Model is possiible to use the Smart Comb module of CivilFEM for all the loads

• The program automatically combine Moving loads them as an “incompatible” load

• The program automatically combine Prestr loads them as an “addition” load

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Checking & Design• Serviceability Limit State

• Checking of cracking according to codes

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Checking & Design• Ultimate Limit State

• Checking and design of the bridge reinforcement according to codes, taking into account all the loads applied over the structure.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Simulation of construction process• The bridges module allows to simulate different types of

construction process

Normal Procedure

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Simulation of construction process• Cantilever built bridge

Y

X

Puente construido mediante dovelas yuxtapuestas: Situación después del step #3

Y

Z

Pile Section: AreaU, I , I , AreaB, I ,I , HyyU

z

Bridge plant

Not builded zone

10 11 12 13

Sections

12

Steps

Live cable

7 8 9 14 15 161 2 3 4 5 6

2 3

112

3

H

Live pile support

Not live support

zzU yyB zzB

Pile section axis

Bridge section axis

• Wide range of postprocessing calculation: combination, any results display, check and design, etc.

Bridge postprocessing

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

CivilCivilFEMFEM®® for ANfor ANSYSSYS®®

Advanced Prestressed Concrete Module

INGECIBER, s.a.

• The first step to be able to use the Advanced Prestressed Concrete module is the model creation, where the prestressed forces will be later apply either with:- Beam elements- Solid Elements

Model Creation

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

• This entity will act as the skeleton of the model, and the prestressing cables will be defined over it.• The support beam is made of cuts and segments.• The cuts are equivalent to cross sections. They have the

information about the mechanical properties of the model.• The segments represent the way cuts are connected.

Support beam

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

SEGMENT SUPPORT BEAM

CUT

Node114

Node218

Node16

Node97

Node219

Node220

Initial Node

Cut 1 Cut 2 Cut 3 Cut 4 Cut 5 Cut 6

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

3D Tendon Geometry Editor• It allows the definition and edition of the geometric and strength

properties of all tendons of a structure. The geometry may be shown and edited either graphically or by coordinates.

Object Tree

Info/Edit Window

Plan View

Elevation View

Tool Bar

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

3D Tendon Geometry Editor• It’s possible to visualize the corresponding cross section

and the location of the tendons throughout the bridge.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

3D Tendon Geometry Editor• Graphical visualization of all prestressing losses for each

tendon throughout the bridge.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Loss of Prestress• The loss of prestress calculation allows obtaining

instant and long-term prestressing losses for the tendons defined with CivilFEM editor. • Instant losses: ∆P1, ∆P2, ∆P3, ∆Px

• Friction losses (∆P1)

α1

α2

α3

α = α + α + α 1 2 3

x

P0

P = P - P∆x 0 1

Friction losses

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Loss of Prestress• Pull-in Losses (∆P2)

P

x

P0

∆P (max)2

w

P(x) = P - P (x)∆0 1Loss due to thepull-in of weges

Anchored end

Jack force

Loss due to pull-in (theoretical approach)

∆P (x)2

∆P (x)1S (w)p

• Elastic concrete deformation (∆P3)• Others (∆Px)

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Loss of Prestress• Apart from the instant losses, the program also calculate the

following long-term losses:• Concrete shrinkage (∆P4)• Creep (∆P5)• Steel creep (∆P6)

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Loss of Prestress• The tendon properties or calculated losses can be listed in an

HTML document.

View Results

Calculate lossesList

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

• Prestressing actions for both isostatic and hyperstatic effects

Prestressed forces & moments

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

• Stresses in the support and in the middle of span.

Prestressed forces & moments

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Checking of prestressed structures• Checking of cracking according to codes taking into

account the prestressing cables

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

• Ultimate Limit State (Axial+Bending checking)

Checking of prestressed structures

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Other utilities• Although the prestressed utilities are oriented to the bridge

calculation, it’s also possible to make use of them to other type of structures such as prestressed slabs, silos, etc.

CivilCivilFEMFEM®® for ANfor ANSYSSYS®®

Geotechnical Module

INGECIBER, s.a.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Geotechnical module capabilities

• Geotechnical properties library for soils and rocks• Superficial Foundations• Deep Foundations• Retaining wall generation and design (Sheet Piles) • Underground structures (tunnels) • Slope stability analysis • Seepage analysis

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Soils and rocks library• The user can modify any material property Properties used in a

structural analysis with Ansys.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Soils and rocks libraryMost common

correlations among properties.

CivilFEM database of

correlations. The user can also

define his/her own correlations!

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Layered soil generation• generation of equivalent geometrical models of layered soils.

It takes into account the influence of water

level.

Definition of each layer property.

Wh

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Soil foundation stiffness• Obtaining the theoretical value of the the soil foundation

stiffness, by means of Winkler model, according to the foundation geometry and earth properties.

Ballast module distribution at each

foundation point

It allows obtaining the theoretical value of the ballast module for any foundation or earth configuration

(including those with stratum).

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Soil foundation stiffness

The soil foundation stiffness distribution for different configurations of foundations

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

• The soil foundation stiffness (ballast module) value allows approximating the soil elastic behavior (E, ν). Its use avoids the necessity of modeling the earth underneath the structure.

• Also the average, maximum and minimum values of the module throughout foundation are available

• The soil foundation stiffness values calculated by CivilFEM are automatically send to ANSYS for the later superstructure calculations with beams shells or solid elements.

Soil foundation Stiffness

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

- generation of rectangular, polygonal or circular piles- Pre-Design of the Piles’ length- Reinforcement design (punching,primary, both sides)- Rigid and non-rigid pile caps

Piles Foundations Wizard

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Retaining wall calculation and design • CivilFEM allows retaining wall calculation by means of non

linear and evolutive finite element models with excavation level.

It takes into account the soil-structure

iteration by means of non linear springs

with GAPs.

The screen may be calculated according to non linear method using the non linear module of CivilFEM.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Earth Pressures

• Dry and flooded earth • Active, Passive and at rest pressures • Pressures due to the earth weight and overload • Earth pressure for beam, shell or solid elements

Automatic earth pressures on FE Models:

1

X

Y

Z

1

X

Y

Z

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

• Starting from soil parameters, calculation of initial stress state from a given topography.

• Initial stresses are stored into an ASCII file.

Tunnels: Terrain Initial Stress

σ

σ

σ

H

H

V

The created initial stress file is

automatically introduced into the

model using the ANSYS ISFILE

command

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Tunnels:Hoek & Brown Failure Criteria

• Hoek & Brown parameters

• They can be all modified by the user.

• CivilFEM uses its own calculation routine to simulate the behavior of rock foundations following Hoek & Brown criteria.

Only for rocks

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Example of Hoek-Brown failure criteria of a cylindrical hole

Tunnels:Hoek & Brown Failure Criteria

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Slope Stability: Classic methods/FEM

Generación de familias de poligonales

x1

y12

y11

x2

y22

y21

x5

y52

y51

Polygonal for Janbu Method

R

(x ,y )o o

(v ,v )x

y

∆y

∆x

(x ,y )11 11

(x ,y )21 21

(x ,y )12 12

(x ,y )22 22

yF

Generación de familias de círculosGrid of centers for the Fellenius or Bishop

Grid of centers defined by the user.

• Calculation of the safety factor against sliding phenomena in 2D models

• Methods of Fellenius, Bishop, Morgestern-Price, Janbu methods.

• Finite elements approach

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Slope Stability: Classic methods/FEM• Wizard to define slope, circles, polygonals, water pressures, seismic

action

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Slope Stability• Graphical results according to the different available methods.

CivilFEMfor

ANSYSINGECIBER, s.a.

forANSYS

Seepage Analysis

MN

0 3.333 6.667 10 13.33316.66720 23.33326.66730

0 3.333 6.667 10 13.33316.66720 23.33326.66730

www.harpaceas.itwww.harpaceas.itwww.civilfem.comwww.civilfem.com

sattaminosattamino@@harpaceas.it harpaceas.it

INGECIBER, s.a.

top related