YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
  • 8/12/2019 Module I - Materials Process

    1/72

    RichardE.Eitel

    TeachingAssociateProfessor

    Email:[email protected]

    Office:Burchard307B

    DepartmentofChemical

    EngineeringandMaterials

    Science

    StevensInstitute

    of

    Technology

    E344:MaterialsProcessing

    IntroductiontoMaterialsScience

    andEngineering

    2

    Introductions

    Coursestructure&learning

    approachandobjectives.

    Thisclassperiodwillservesasanintroductiontothecourse

    andMaterials

    Science

    &

    Engineering

    discipline.

    Exploringstructure

    propertyrelationships.

    vs

  • 8/12/2019 Module I - Materials Process

    2/72

    BorninClevelandOhio:

    HOMEoftheBROWNSandtheRockandRollHallofFame!

    Undergrad:AlfredUniversity(19941998)

    B.S.in

    Ceramic

    Engineering

    SouthernTierofNewYorkState

    HomeoftheSaxons

    X

    Nowhere

    Alfred

  • 8/12/2019 Module I - Materials Process

    3/72

    PennState:19992006

    MaterialsResearchInstitute

    MaterialsResearchLaboratoryFoundedin1956:

    1stInterdisciplinaryResearchLabinMaterialsScience

    Ph.D.inMaterialsScienceand

    Engineering:

    Thesis:

    NovelPiezoelectricCeramics:DevelopmentofHigh,Temperature,HighPerformance

    Materials

    on

    the

    BasisofToleranceFactor

    UniversityofKentucky(20062013)

    Teaching: DepartmentofChemicaland

    MaterialsEngineering IntroductiontoMaterials CeramicEngineering MaterialsCharacterization ThreedifferentlabcoursesResearch:

    PiezoelectricMaterialsMicrofluidics

    MaterialsSynthesis Sensing

    Biofluidics

    CellBasedSensors

  • 8/12/2019 Module I - Materials Process

    4/72

    Pastimes:AsinthingsusedtodobeforeIstartedteaching!

    2015NYC

    Marathon?

    Yearsofeducationalresearchshowsthattheaverageanindividuals

    averageattentionspaninapassivelectureisabout15minutes.

    Learning howeverrequiresnotjustattentionbutactivethought!

    After15minuteofLecture LearninginanActiveClassroom

  • 8/12/2019 Module I - Materials Process

    5/72

    TeambasedGuidedInquiry

    9

    1. Breakinto

    groups

    of

    3or

    4.

    2. Rearrangeseatsotheyoucantalk

    comfortably.

    3. Onestudentineachgrouplogonto:

    m.socrative.com

    4. Room#129851

    GuidedInquiryI:Heat(10minutes)

    UseFigure1.1.1toanswerthefollowingquestions(workasagroup

    makesureeveryoneagreesbeforemovingtothenextquestion):

  • 8/12/2019 Module I - Materials Process

    6/72

    ConceptCheckI:

    Ahotpieceofcopperisplacedincontactwithacoldbrick?

    Ifthecopperloses5caloriesofenergy,howmuchenergy

    doesthe

    brick

    gain?

    Guided Inquiry II:

    Heat and Work (10 Minutes)

    Heat

    Transfer of energywhen there is adifference intemperature.

    Work Transfer of energywhen there is nodifference intemperature.

  • 8/12/2019 Module I - Materials Process

    7/72

    ConceptCheck:

    AccordingtotheFirstLawofthermodynamics,couldheatbetransferredfromacoldobjecttoahotobject,resultinginthehotobjectgettinghotterandthecoldobjectgettingcolder'?

    14

    GuidedInquiryIII:ActiveLearning

    (10minutes)

  • 8/12/2019 Module I - Materials Process

    8/72

    RichardE.Eitel

    AssociateProfessor

    Email:[email protected]

    Office:Burchard307B

    DepartmentofChemical

    EngineeringandMaterials

    Science

    StevensInstitute

    of

    Technology

    E344:MaterialsProcessing

    01 IntroductiontoMaterialsScience

    andEngineering

    Bytheendofthislectureyoushouldbeableto:

    Theoverallobjectistointroducethefieldofmaterials

    science

    and

    engineering.

    Appreciatetheinterdependence

    ofstructure,processing,

    properties,andperformancefor

    materialsdesignandselection.

    Classifymaterialonthebasisof

    structureandbonding.

    Beabletopredictbondingand

    materialpropertiesbasedonthe

    atomicstructure.

  • 8/12/2019 Module I - Materials Process

    9/72

    Thegoalofmaterialsscienceandengineeringistodescribethe

    structure,processing,andpropertiesrelationshipwhichdictatethe

    performanceofamaterialforaspecificengineeringapplication.

    Acompletestructuraldescriptionofanengineeringmaterial

    may

    span

    length

    scales

    from

    the

    nano to

    the

    macro.AtomicStructure:

    10 m

    BondingandCrystalStructure:

    10 10 m

    Macrostructure:

    10

    Microstructure:

    10 10 m

  • 8/12/2019 Module I - Materials Process

    10/72

    Materialspropertiesarecharacteristicswhichareintrinsic

    tothematerialandformthebasisformaterialsselection.

    PERFOMANCEREQUIREMENT:

    Supporta6000poundtruck TensileStrengthofHardenedSteel:250,000PSI

    Materialspropertiesareinputsinordertodesignacomponentto

    achievesuitableperformanceinagivenapplication.

    HighTensionWire:

    PerformanceSpec:90%lighttransmission

    MaterialProperty:

    TotalHipReplacement:

    PerformanceSpec:20yearlife

    MaterialProperty:

  • 8/12/2019 Module I - Materials Process

    11/72

    Processingincludestheentirehistoryofamaterialrequired

    toforminintoacomponentwiththerequiredperformance.

    ProcessingimpactBOTHtheSTUCUTREandthePROPERTIES

    Theperformanceofamaterialinagivenapplicationisa

    consequenceofcarefulmaterialsselectionandengineeringofthe

    materialinto

    acomponent.

  • 8/12/2019 Module I - Materials Process

    12/72

    Materialsclassificationmaydependonwhetherwearetryingto

    developunderstandingofselectamaterialsforagivenapplication.

    StructuralClassification ApplicationsBasedClassification

    Structural

    Classification

    Ceramics

    Polymers

    Composites

    Metals

    Thetraditionalclassificationofmaterialintoceramics,polymers,

    metals,andcompositionisprimarilyonthebasisofatomicbonding

    andstructure. Ceramics:

    Inorganic,nonmetallicsolids

    composedofasleastone

    metallicandonenon

    metallicatom.

    Polymers:Macromoleculesformedby

    covalentbondingofsimpler

    molecularrepeatunits.

    Metals:

    Pureandalloyedatomic

    speciesheldtogetherby

    metallicbonding.

    Composites:

    Twoormoreoftheabovecombined

    toproduceanewmaterialwith

    uniquepropertiesorcombinations.

  • 8/12/2019 Module I - Materials Process

    13/72

    Metals

    Consistofpureandalloyedatomsheldtogetherbydelocalizedelectronsthatovercomethemutualrepulsionbetweentheioncores(MetallicBonding)Excellentstructuralmaterials:

    high strength, toughness

    (resistance to impact)

    Electrical,thermalconductors

    Atomsarrangedinregularlydefined,

    repeatingpositionsthroughoutstructure

    Steel:An alloy of iron, containing various amounts of carbon,manganese, and one or more other elements, such as sulfur,

    nickel, silicon, phosphorus, chromium, molybdenum, andvanadium. These elements, when combined with iron, formdifferent types of steels with varying properties.

    Metals?

  • 8/12/2019 Module I - Materials Process

    14/72

    CeramicsandInorganicGlassesInorganic,nonmetallicsolids,composedofacombinationofoneormoremetallic

    andoneormorenonmetallicatoms:

    Al2O3 (alumina);

    SiO2 (quartz, glass)

    Mixedatomicbonding(ionicandcovalent)

    Highstrength(compression),butbrittle

    Excellent(electrical)insulators

    Highthermalresistance;resistancetochemicalattack

    High-end application: ceramic

    tiles for use as heat shield inaerospace vehicles (> 1600C)

    Ceramics?

  • 8/12/2019 Module I - Materials Process

    15/72

    PolymersMacromoleculesformedbycovalentbondingofsimplermolecularrepeatunits(mers)Easilyprocessedtoawiderangeofshapes,dimensions

    Moderatestrength;goodductility. Lightweight.

    Usuallynotsuitableforhightemperatureapplications

    (>100to200C)

    polyethylene

    polypropylene polystyrene PVC

    Polymers?

  • 8/12/2019 Module I - Materials Process

    16/72

    CompositesTwoormorematerialscombinedtoproduceanewmaterialwith

    desiredproperties(newpropertiesareaveragedvaluesof

    components)

    Lowtechexamples:

    plywood(panelcomprised

    ofmultiplelayersofwood

    veneer,plusadhesive;grain

    laidat90angles)

    concrete(cement[binder]

    plussandandgravel)

    steelbeltedtires(steel

    belts,polyestercord,

    rubber)

    Hightechexamples:

    carbonfiber

    epoxy

    composites

    ceramicfibermetalmatrix

    composites(SiC fibersinAl)

    Innovation:

    Boeings new 787 DREAMLINER is bepredominantly carbon fiber epoxylaminate, yielding a savings of ~20% infuel costs owing to weight reduction.

    Alternativelymaterialsmaybeclassifiedandselectedbasedon

    theirfunctionorsuitabilitytoaparticularengineeringneed.

  • 8/12/2019 Module I - Materials Process

    17/72

    RichardE.Eitel

    AssociateProfessor

    Email:[email protected]

    Office:Burchard307B

    DepartmentofChemical

    EngineeringandMaterials

    Science

    StevensInstitute

    of

    Technology

    E344:MaterialsProcessing

    02 GuidedInquiryAtomicBonding

    Bytheendofthislectureyoushouldbeableto:

    Theoverallobjectiveofthesesessionistodescribehow

    atomic

    structure

    leads

    to

    bonding

    in

    materials.

    DefineElectronegativity

    Predictthedistributionof

    electronsinabond.

    Predictthetypesofbonds

    formedindifferentatomsand

    theirproperties

  • 8/12/2019 Module I - Materials Process

    18/72

    Thestructureofmaterialsandtheircorrespondingpropertiesarise

    duetotheelectronicstructureoftheconstituentatoms.

    Electronicstructure

    inmetals

    allows

    planesofatomsto

    slidepasteachother

    Electronconfigurationina

    hightemperature

    superconductor.

    In1913Bohrclarifiedthestructureoftheatombytheorizing

    electronswereconfinedtospecificallowedstates(orbits).

    Explainssimpleemissionspectraofgases.

    Allowedenergylevelsina

    hydrogenlikeatomarelimitedto

    integralvaluesofn:

    Where:

    h PlanksConstant

    massof

    an

    electron

    q fundamentalcharge

    permittivityoffreespace

    n energylevel(shell)

  • 8/12/2019 Module I - Materials Process

    19/72

    Electrontransitionsbetweenallowedstatesareaccompaniedby

    theadsorptionoremissionofaquantaorpacketofenergy,for

    exampleinthefromofaphoton.

    Ionizationenergy(IE)requiredto

    removeaboundelectroninthestateyieldingafreeelectron

    Allowedenergylevelsinasingle

    electronatomwith

    effectiveatomic

    numberZ:

    8

    Atomswithmorethanhalffilledoutershellswill

    tendtoATTRACTmoreelectronstocreateafull

    outershell:Electronegative

    Atomswithlessthanhalffilledoutershellswill

    tendtogetridofouterelectrons:Electropositive

    These

    outer

    VALANCE

    electrons

    lead

    BONDING.

    Emptyandcompletelyfilledshellshavelowerenergythanpartially

    filledshells.ThusVALANCEelectronintheoutermostorpartially

    filledshell

    tend

    to

    be

    particularly

    active.

  • 8/12/2019 Module I - Materials Process

    20/72

    Therelativetendencyofanelementtogainorlooseelectronsis

    quantifiedaccordingtoitselectronegativity .

    Atomswith

    relatively

    high

    values

    of

    :

    __________________

    Atomswithrelativelylowvaluesof:__________________

    Electronegativity=affinityofatomsforelectrons

    Atomwithhigherelectronegativityhasastrongerpullonelectrons.

    Electrons are closer to atom with higher electronegativity

    GuidedInquiryI:Electronegativity

    (10

    minutes)

    m.socrative.comRoom#129851

  • 8/12/2019 Module I - Materials Process

    21/72

    A. FeBr

    B.BrBr

    C. KBr

    D.CBr

    E. Idontknow

    ConceptCheck#1:In which of the following bonds are the electronsmost strongly pulled to one of the atoms?

    m.socrative.comRoom#129851

    A. FeBr

    B.BrBr

    C. KBr

    D.CBr

    E. Noneof

    the

    above.

    F. Idontknow.

    ConceptCheck#2:

    In which of the following bonds are the electronsdistributed evenly between the two atoms?

  • 8/12/2019 Module I - Materials Process

    22/72

    GuidedInquiryII:TypesofBond

    (12minutes)

    A.Covalent

    B.Ionic

    C.Metallic

    D.Idontknow

    ConceptCheck#3:

    What are the primary bonds in the compoundCaF2?

    m.socrative.comRoom#129851

  • 8/12/2019 Module I - Materials Process

    23/72

    A.Covalent

    B.Ionic

    C.Metallic

    D.Idontknow

    ConceptCheck#4:What are the primary bonds in the compoundGaN?

    m.socrative.comRoom#129851

    GuidedInquiryIII:BondCharacter(12minutes)

    %IonicCharacter % :

    OnlyConsidersIonicand

    CovalentBonding

    Type of Bond How do you know?

    % 100% 1 exp

    4

    ElectronegativityDifference

    :

    BondTypeTriangle:

    ElectronegativityDifferenceover

    AverageElectronegativity

  • 8/12/2019 Module I - Materials Process

    24/72

    A. 0%ionic

    B. 22%ionic

    C. 68%ionic

    D. 100%Ionic

    E. Idontknow

    ConceptCheck#5:What is the ionic character of the bond formed inthe compound FeBr2?

    m.socrative.comRoom#129851

    A. Ionic

    B. Covalent

    C. Metallic

    D. Idontknow

    ConceptCheck#6:

    What is dominant primary bond type in thecompound FeBr2?

    m.socrative.comRoom#129851

  • 8/12/2019 Module I - Materials Process

    25/72

    RichardE.Eitel

    TeachingAssociateProfessor

    Email:[email protected]

    Office:Burchard307B

    DepartmentofChemical

    EngineeringandMaterials

    Science

    StevensInstitute

    of

    Technology

    E344:MaterialsProcessing

    03 Crystallography:

    lattices,directions&planes

    Identifythesevencrystal

    systems.

    Distinguishbetweenacrystal

    system,apointlattice,anda

    crystalstructure.

    Thegoalofthislectureistodeveloptheskillsrequiredto

    describeand

    define

    the

    structure

    of

    crystalline

    solids.

    AssignMillerIndicesto

    directions[UVW]and

    planes(hkl).

    Bytheendofthislectureyoushouldbeableto:

    vs vs

  • 8/12/2019 Module I - Materials Process

    26/72

    Accuratelydescribingtheorderedstructureofcrystalline

    materialsrequiresidentifyingseverallayersofstructure.

    CrystalStructure

    space

    filling

    polyhedra

    PointLattice referencepointsdescribing

    symmetricallyequivalentpositions

    Basis Atomoratomiccomplex

    CrystalStructure

    lattice+basis

    Therearesevenunique3Dcrystalstructureswhich

    encompassall

    possible

    space

    filling

    polyhedral.

    6Lattice

    parameters:

    Edges:a,b,c

    Angles:, ,ab

    NOPOINTSinacrystalstructure!

  • 8/12/2019 Module I - Materials Process

    27/72

    The14Bravais pointlatticesincludethelocationsofthe

    symmetryequivalentpoints(referencepositions)within

    thesevencrystalsystems.

    Auguste Bravais

    18111863

    Latticepoints atoms

    Primitivelattices(P)haveexactlyonelatticepointperunit

    cell.

  • 8/12/2019 Module I - Materials Process

    28/72

    Nonprimitivelatticeshavemultiplepointsperunitcelland

    mayincludebodycentered(I),facecentered(F),andend

    centered(ABC)types.

    PPrimitive F FaceCentered I Body

    Sincealllatticepointshaveidenticalsurroundingsthe

    choiceof

    the

    origin

    is

    arbitrary.

  • 8/12/2019 Module I - Materials Process

    29/72

    Toconstructacrystalstructureamotifofbasisunitis

    assignedtoeachlatticepoint.

    Basis

    Lattice Motif (Basis) CrystalStructure+ =

    TheSAMEmotifmustbeassignedtoEVERYpointinthe

    lattice.

    BodyCenteredLatticewith

    1AtomPerPoint

    SimpleCubicLattice

    With2AtomsPerPoint

    VS.

  • 8/12/2019 Module I - Materials Process

    30/72

    Differentmotifscanproduceverydifferentcrystal

    structuresfromthesamelattice.

    Positions,directions,andplanesincrystalstructuresare

    distinguishedby

    maintaining

    aspecific

    convention

    unique

    toeach.

    Positional

    Coordinates:,1,

    Direction

    Vectors:

    Planar

    Indices:

  • 8/12/2019 Module I - Materials Process

    31/72

    Conventionistodefinearighthandedcoordinatesystemin

    whicheachoftheunitcelledgesa,b,andchaveunit

    length.

    90

    90

    Specificpositionsaredesignatedusingthecoordinatesh,k,andlwhere

    each

    value

    represents

    afraction

    of

    the

    lattice

    parametera,b,andc,respectively.

    Findthecoordinatesforthe

    following:

    PointD:

    PointC:

    PointH:

  • 8/12/2019 Module I - Materials Process

    32/72

    DirectionsarespecifiedbylowestintegersvaluesU,V,and

    Walongunitvectors,,and andenclosedinsquare

    brackets

    .

    111

    Specifiesonlydirection

    NOTmagnitude...

    Assigningdirectionalindicescanbeperformedbyfollowing

    theprocedure:

    1. Usingarighthandedcoordinatesystem,determinethe

    coordinatesoftwopointsthatlieonthedirection

    2. Subtractthepositionofthetailpointfromthecoordinatesof

    theheadpoint,toobtainthenumberoflatticeparameters

    traveledineachdirection

    3. Clearfractionsand/orreducethedifferences,togive(lowest)

    integervalues.

    4. Writeindicesinsquarebrackets[UVW] (nocommas)

    5. Indicatenegativevalueswithoverbar.

  • 8/12/2019 Module I - Materials Process

    33/72

    Practice: FindthedirectionindicesforvectorEOatleft:

    Findthedirectionalindicesfor

    thefollowingvectors(atright):

    VectorOA:

    VectorOF:

    VectorCB:

    ImportantNotesaboutDIRECTIONS:

    ADIRECTIONanditsnegative

    areNOTthesame!

    Multiplesofdirections

    AREidentical!

    (Reducebyconvention) =

    Certaingroups

    or

    familiesofdirections

    andtheiroppositesare

    equivalent.

    Cubic : , , , , , ,

  • 8/12/2019 Module I - Materials Process

    34/72

    1

    Millerindicesofplanesaredenotedbyintegersh,k,andl

    enclosedinparenthesis .

    MillerPlanesaredeterminedusing

    1. Chooseaplanethatdoesnotpassthroughtheoriginat:0,0,0moveoriginifneeded.

    2. Determinefractionalintercepts oftheplanewiththe

    crystallographicaxesx,y,andz.

    forplanesparalleltoanaxestheinterceptis

    3. Takereciprocaloftheintercepts.

    4. ClearfractionsbutDONOTREDUCEtolowestintegers.

    5. Citeplaneswithparenthesis indicatenegativevalueswithoverbar.

  • 8/12/2019 Module I - Materials Process

    35/72

    1

    ExamplesandPracticewithPlanes:

    ImportantNotesaboutMillerindicesforplanes.

    Planesandtheir

    NEGATIVES areidentical!

    PlanesandtheirMULTIPLES

    areparallelbutNOT

    identical!

    Equivalentfamiliesofplanes

    areindicated

    by

    Braces

    {hkl}:

    Family : , , , , ,

  • 8/12/2019 Module I - Materials Process

    36/72

    RichardE.Eitel

    AssociateProfessor

    Email:[email protected]

    Office:Burchard307B

    DepartmentofChemical

    EngineeringandMaterials

    Science

    StevensInstitute

    of

    Technology

    E344:MaterialsProcessing

    04 CrystallineSolids

    2

    Thegoalofthislectureistodeveloptheskillstodescribe

    andpredict

    both

    structure

    and

    properties

    of

    crystalline

    materials.Bytheendofthislectureyoushouldbeableto:

    Describethecrystalstructuresof

    severalcommonengineeringmetals

    andceramics

    Estimatedensitiesofbothmetal

    andceramicmaterialsusingonly

    theirknowncrystalstructure.

    Useatomicradiitopredictthe

    structureofsimpleionic

    compounds.

  • 8/12/2019 Module I - Materials Process

    37/72

    1.Yes

    2.No

    3.Imnotsure

    ConceptCheck:CanyouIdentifyCommonUnitCellsand

    Calculatetheirassociatedproperties(latticeparameter,

    mass,volume, density,etc)?

    GuidedInquiryI:CrystalsandGlasses

    (5

    minutes)

    Hypotheticalarrangementofatomsinacrystalandaglass.

  • 8/12/2019 Module I - Materials Process

    38/72

    1.Itwouldbedifferent.

    2.Itwouldbethesame.

    3.Idontknow.

    ConceptCheck:Aglassrodhasastiffnessof70GPa when

    pulledalongitslength.Howwouldyouexpectthestiffness

    tochangeifyoupulleditperpendiculartoitslength?

    Crystalstructuresareusedtodescribethelongrange

    periodicitypresent

    in

    crystalline

    materials.

    LongRangeOrder: ShortRangeOrder:

  • 8/12/2019 Module I - Materials Process

    39/72

    Crystallinematerialsrepresentthestablelowestenergy

    stateofanysolid.

    Dense,regular

    packing

    Typicalbondlength

    Typicalbondenergy

    Nondense,

    random packing

    Typicalbondlength

    Typicalbondenergy

    GuidedInquiryII:CrystalUnitCells

    (10

    minutes)

    SimpleCubic

    (SC)

    BodyCentered

    Cubic

    (BCC)

    FaceCentered

    Cubic

    (FCC)

  • 8/12/2019 Module I - Materials Process

    40/72

    1. 1

    2. 2

    3. 3

    4. 6

    5. Idontknow.

    ConceptCheck:Forthecrystalstructureshown,

    howmanyblueatomsarethereperunitcell(i.e.,

    withinthe

    unit

    cell)?

    1. 1

    2. 2

    3. 4

    4. 8

    5. Idontknow.

    ConceptCheck:Forthecrystalstructureshown,

    howmany

    green

    atoms

    are

    there

    per

    unit

    cell

    (i.e.,

    withintheunitcell)?

  • 8/12/2019 Module I - Materials Process

    41/72

    TheUNITCELListhesmallestessentialunitofacrystalline

    material.

    UnitCell

    of

    Cesium

    Chloride

    Keycharacteristics ofaunitcell:

    Dimensionsspecifiedbysixlattice

    parameters, ,, ,,

    Basedononeofthe14Bravais

    lattices

    Includesexactlyonebasisateach

    latticepoint

    Repeatsindefinitelyinall

    direction Canbeusedtocalculatethe

    densityofthecrystallinephase

    Mostmetaltypicallyassumeoneofthreebasiccrystal

    structures.MetalswiththeBodyCentered

    Cubic(BCC)structureinclude:

    Tungsten,chromium,iron,

    molybdenum,vanadium

    MetalswiththeFaceCentered

    Cubic(FCC)structureinclude:

    aluminum,calcium,copper,gold,

    lead,nickel,platinum,silver

    MetalswiththeHexagonalClose

    Packed(HCP)structureinclude:

    Cadmium,Titanium,Zinc,

    Magnesium,Cobalt

    BCC

    FCC

    HCP

  • 8/12/2019 Module I - Materials Process

    42/72

    GuidedInquiryIII:AtomicPackingFactor

    (10minutes)

    = lattice

    parameter

    R = atomicradius

    SC BCC FCC

    AtomicPacking

    Factor(APF):

    A. 0.52

    B. 0.68

    C. 0.74

    D. 1.00

    E. Idontknow

    ConceptCheck:Whatistheatomicpackingfactor

    (APF)for

    aSC

    unit

    cell?

  • 8/12/2019 Module I - Materials Process

    43/72

    GuidedInquiryIV:Density

    (10minutes)

    SC BCC FCC

    A.

    B.

    C.

    D. /

    E. Idontknow

    Concept Check: What is the

    relationship between a and R for anFCC unit cell?

    FCC

  • 8/12/2019 Module I - Materials Process

    44/72

    Ceramiccrystalstructuresarebasedoneitherionicor

    covalentbondingoftheconstituentspecies.

    ConsiderCovalent

    bonding:Consider

    an

    ionically bonded

    ceramic

    GuidedInquiryV:InterstitialSites

    (10minutes)

  • 8/12/2019 Module I - Materials Process

    45/72

    1

    A. Originalatoms

    B. Interstitialatom

    C. Idont

    know

    Concept Check: Basedontherelativesizesofanionsandcations,ifthiswereanioniccompound,

    whichatoms

    would

    be

    the

    anions;

    the

    original

    atomsatthecornersoftheunitcell,orthe

    interstitialatomyouadded?

    Consideringtheclosestpackingofatomsonly74%ofthe

    spaceis

    occupied,

    these

    holes

    or

    interstices

    offer

    sites

    for

    additionalatoms...impurities,dopants,compounds...

  • 8/12/2019 Module I - Materials Process

    46/72

    1

    Inionically bondedceramicsstablecrystalstructuresmust

    balancetheelectrostaticinteractionsofoppositelycharged

    ions.

    +

    +

    +

    Cations willsurroundthemselveswiththe

    maximumnumberofoppositelycharged

    anionspossible!

    Radiusratioscanbeusedtopredictthenumberofnearest

    neighbors(Coordination

    number)

    of

    various

    sized

    cations.

  • 8/12/2019 Module I - Materials Process

    47/72

    1

    GuidedInquiryVI:DensityofCeramics

    (10minutes)

    A.

    B.

    C.

    D. +

    E. Idontknow

    Concept Check: What is the general

    formula for the lattice parameter of athe rock salt structure?

  • 8/12/2019 Module I - Materials Process

    48/72

    RichardE.Eitel

    AssociateProfessor

    Email:[email protected]

    Office:Burchard307B

    DepartmentofChemical

    EngineeringandMaterials

    Science

    StevensInstitute

    of

    Technology

    E344:MaterialsProcessing

    05 StructureandProperties

    ofPolymers

    2

    Thegoalofthisdiscussionistobeabletodescribethe

    macromolecularstructure

    of

    polymers

    and

    relate

    this

    to

    theirengineeringproperties..Bytheendofthisdiscussionyoushouldbeableto:

    Describetheroleofpolymerchain

    lengthonkeyengineering

    properties.

    Classifythebasicstructuresof

    polymerchains.

    Predicttrendsinthecrystallinity

    andpropertiesofpolymerbasedon

    theirmolecularweightandchain

    structure.

  • 8/12/2019 Module I - Materials Process

    49/72

    Polymersaregiantmacromoleculesconsistingof10sto

    many1,000sofcovalentlybondedrepeat(mer)units.

    mer

    GuidedInquiryI:AverageMolecularWeight

    (10

    minutes)

    m.socrative.comRoom#129851

  • 8/12/2019 Module I - Materials Process

    50/72

    A. 0.0012

    B. 831.75

    C. 832

    D. 1,472,800

    E. I don't know.

    ConceptCheck:What is the DP for polypropylene with amolecular weight of 35,000 g/mol?

    m.socrative.comRoom#129851

    A. B. g/C. D. It is unit less

    E. I don't know.

    ConceptCheck:

    What are the units for DP?

    m.socrative.comRoom#129851

  • 8/12/2019 Module I - Materials Process

    51/72

    Thechainlengthofpolymersischaracterizedbythedegree

    ofpolymerization(DP)andthemolecularweight.

    PolymersareALWAYSmixtureofmacromoleculesof

    varyingmolecularweights

    NumberAverageMolecularWeight

    :

    Where:

    isthemedianmolecularweightofachainintheithsizerange.

    isnumberfractionofchainsintheithsizerange isweightfractionofchainsintheithsizerangeismolecularmassoftherepeat(mer)unit

    =

    WeightAverageMolecularWeight:

    Degreeofpolymerization(DP):

    Polydispersity Index(PDI):

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    FractionalContent

    MolecularWeightRange(g/mol)

    FractionalDistrubtionofMolecularWeights

    WeightFraction(wi)

    NumberFraction(ni)

    GuidedInquiryII:MolecularWeightCalculations

    (8

    minutes)Considerasampleofplasticwhichyouknowis15mol%polymer

    moleculeswithmolecularweight500,000g/mol,and85mol%

    polymermoleculeswithmolecularweight150,000g/mol.

    NumberAverageMolecularWeight:

    WeightAverageMolecularWeight:

    Degreeofpolymerization (DP):

    Polydispersity Index(PDI):

  • 8/12/2019 Module I - Materials Process

    52/72

    A. 119,600g/mol

    B. 202,500g/mol

    C. 280,000g/mol

    D. Idontknow

    ConceptCheck:What is the number average molecular weight forthe above mixture?

    m.socrative.comRoom#129851

    A. 119,600g/mol

    B. 202,500g/mol

    C. 280,000g/mol

    D. Idontknow

    ConceptCheck:

    What is the weight average molecular weight forthe above mixture?

    m.socrative.comRoom#129851

  • 8/12/2019 Module I - Materials Process

    53/72

    A.Yes

    B.No

    C.isalwayslessthan.D.Idontknow

    ConceptCheck#3:Can belessthan?Why?

    m.socrative.comRoom#129851

    Formanysimplelinearpolymers,materialpropertiesare

    dictatedby

    chain

    length

    and

    weak

    secondary

    bonding

    betweenchains.

  • 8/12/2019 Module I - Materials Process

    54/72

    GuidedInquiryIII:MWandProperties.

    (5minutes)

    Considertwodifferentplatesofspaghetti.Oneinwhichallthe

    strandsarethefulllengthandoneinwhichthestrandhavebeencutintoshortsegments.

    A. 100,000 g/mol

    B. 200,000 g/mol

    C. Theyhavethesamestrength.

    D. Idontknow

    ConceptCheck#4:

    Which has a higher strength; polyethylene of100,000 g/mol or 200,000 g/mol?

    m.socrative.comRoom#129851

  • 8/12/2019 Module I - Materials Process

    55/72

    ConceptCheck#5:Which flows more easily; polyethylene of 100,000g/mol or 200,000 g/mol?

    m.socrative.comRoom#129851

    A. 100,000 g/mol

    B. 200,000 g/mol

    C. Theyflowequally.

    D. Idontknow

    Polymersmayalsobecharacterizedbychainlengthand

    meanend

    to

    end

    Distance.

    Total(stretchedout)chainlength(L):

    2Meanendtoenddistance(r):

    Where:

    d bondlength

    N numberofbondsinchain

    anglebetweenadjacentatoms

    =109.5o forCC

    L

  • 8/12/2019 Module I - Materials Process

    56/72

    Thepropertiesoflinearpolymerscanbemodifiedby

    introducingbranchingorcrosslinking.

    Linear

    secondary

    bonding

    Branched

    Cross-Linked Network

    Likemetalsandceramicspolymersmayexhibithighly

    orderedcrystalline

    regions.

  • 8/12/2019 Module I - Materials Process

    57/72

    1

    GuidedInquiryIV:PolymerCrystallinity.

    (10minutes)

    a) Polyethyleneorpolystyrene.

    b) Polyethylenewithmanylongbranchesorpolyethylene

    withafewshortbranches.

    c) Atactic polypropyleneorisotacticpolypropylene.

    d) Polypropyleneorpoly(ethyleneterephthalate)(PET).

    e) Polyethyleneorarandomcopolymerof50%ethylene

    repeatunitsand50%propylenerepeatunits.

    f) PETmeltedandrapidlycooledtoroomtemperatureor

    PETmelted,cooledto150 C,heldtherefor1hour,and

    thencooledtoroomtemperature.

    Reportout:

    Which of the following pairs is more crystalline?

    m.socrative.comRoom#129851

  • 8/12/2019 Module I - Materials Process

    58/72

    1

    Theproductionofmostpolymermacromoleculesfrom

    theirmonomeroccursbyoneoftwopolymerization

    routes.

    Addition(Chaingrowth)

    polymerization:

    Condensation(stepreaction)

    Polymerization

    (byproductproducedoftenwater)

    Initiatormonomer

    Polyethylene:

    Polyethyleneterephalate

    Thermoplasticpolymersaretypicallylinearorslightly

    branchedand

    soften

    on

    heating

    allowing

    them

    to

    be

    easily

    (re)formedandreadilyrecycled.

  • 8/12/2019 Module I - Materials Process

    59/72

    1

    Thermosetpolymersreactonmixingorunderactionof

    heatformingextensivecrosslinks.

    Example: Bakelitefirstcompletely

    syntheticplastic,

    1907.

  • 8/12/2019 Module I - Materials Process

    60/72

    RichardE.Eitel

    AssociateProfessor

    Email:[email protected]

    Office:Burchard307B

    DepartmentofChemical

    EngineeringandMaterials

    Science

    StevensInstitute

    of

    Technology

    E344:MaterialsProcessing

    06 MaterialsCharacterization

    Methods

    Theoverallobjectivethislectureistogiveyoutheskillstoapply

    severalofthemostwidelyusedmaterialscharacterization

    methods:

    Bytheendofthislectureyoushouldbeableto:

    Calculateinterplanar spacings inmaterialspossessingacubiccrystalstructure.

    UseBraggsLawtorelateexperimentaldiffractiondatatointerplanar spacing.

    CalculatemeangraindiameterandATSMgrainsizefrommicrostructureimages.

  • 8/12/2019 Module I - Materials Process

    61/72

    Diffractionistheapparentbendingofwavesaround smallobjects

    andthespreadingoutofwavebeyondsmallopenings.

    Beyondan

    Opening Around

    A

    Corner

    Theapparentspreadingduetodiffractiondependsonthe

    wavelength

    of

    the

    wave

    or

    particle.

    SpreadingofWhiteLightSource DispersionofSoundWaves?

  • 8/12/2019 Module I - Materials Process

    62/72

    Youngsdoubleslitexperimentrevealedunexpected

    propertiesoflightandquicklymovingparticles.

    https://www.youtube.com/watch?feature=player_detailpage&v=Iuv6hY6zsd0

    Theperiodicityofinterferencepatternsproducedby

    diffraction

    experiments

    are

    related

    to

    the

    geometry

    of

    the

    slitorstructurecreatingthepattern.

  • 8/12/2019 Module I - Materials Process

    63/72

    GuidedInquiryI:BraggsLaw

    (10minutes)

    Ifconstructiveinterferenceoccursfromtwoplanesofatomsforascatteringangle(theta)of20.0degreeswhatisthedistance(d)betweentheplanes,ifthethewavelengthofthewavesis0.154nm?

    A. 0.450nm

    B. 0.225nm

    C. 0.119nm

    D. 0.0843nm

    E. Idontknow

    ConceptCheck:

  • 8/12/2019 Module I - Materials Process

    64/72

    Theconditionforconstructiveinterferencefromequally

    spacedlayersisgivenbyBraggsNoblePrizeWinningLaw.

    ConstructiveInterferencefor

    ABC=n*lambda

    1912@21YearsOld!

    d

    WhataretheconditionsforwhichdiffractionOccurs?

    2

    Considern=1

    2

  • 8/12/2019 Module I - Materials Process

    65/72

    Whataretypicalspacings (dspacings)betweenatomic

    planes?SimpleRelationshipsexistdepending

    onthe

    crystal

    system

    of

    the

    crystal

    structure:

    General(othorhomic)

    +

    Cubic(a=b=c):

    Tetragonal

    :

    GuidedInquiryII:Interplanar Spacings

    (10

    minutes)

  • 8/12/2019 Module I - Materials Process

    66/72

    Diffractionexperimentscanbeusedtodescribethestructureand

    atomicpositionsinbothsingleandpolycrystalmaterials.

    PowderDiffraction

    with

    Area

    DetectorSingleCrystalDiffraction

    Powderdiffractionisusedtocollectdataonthefullsetof

    interplanar spacing

    by

    equally

    sampling

    all

    orientations.

    PhotographicMethod DigitalMethod

  • 8/12/2019 Module I - Materials Process

    67/72

    GuidedInquiryIII:DiffractionExperiments

    (10minutes)

    Dependingonthecrystalstructurenotallsetofplanes

    produce

    diffraction

    events.

  • 8/12/2019 Module I - Materials Process

    68/72

    Microscopyisusetorecordgeometricalstructureand

    orientationofmaterialsatthemicroscopicscale(

  • 8/12/2019 Module I - Materials Process

    69/72

    1

    Opticalmicroscopesusevisuallighttocreateimagesand

    characterizetheopticalpropertiesofmaterials.

    PracticalResolution

    Limit:

    ~1micron

    IdentificationofMineralsbyOpticalProperties:

    BoneCancer

    Cell

    Image:Nikon2012SmallWorld

    Intransmissionelectronmicroscopyhighenergyelectrons

    are

    use

    to

    achieve

    atomic

    scale

    images

    of

    thin

    (~10nm)

    sectionsofmaterial.

    ResolutioninaTEM:

    HighEnergyElectrons:

    1

    @300KeV~ 2.0 pm

    Schematic

    PracticalResolutionlimit:

    0.08nm~1

  • 8/12/2019 Module I - Materials Process

    70/72

    1

    TEMscanbelargebutarealwaysEXPENSIVE!

    HVEMJEOL1.25MeV

    FEITitan300KeV

    >$3MILLION

    USD??

    Scanningelectronmicroscopeelectronicallyacquireanimageby

    scanning(rastering)afocusedbeamofelectronsacrossasample

    surface.

    Resolutionlimit:

    ProbeSize

    Interactionvolume

    ~1nm

  • 8/12/2019 Module I - Materials Process

    71/72

    1

    Scanningelectronmicroscopesarehavebecometheworkhorse

    microscopeofchoiceforroutinematerialscharacterization

    MinimalSample

    Prep

    CompatiblewithSizeofFeatures

    ReasonableCost:

    $100K500K

    Thechoiceofmicroscopicmethodsdependsonthescale

    and

    type

    of

    information

    the

    is

    needed!

    ThefollowingareimagesofCarbonnanotubes:

    OpticalMicroscope(Fluorescence):30Mnanotubefilamentusedforsolarenergyharvesting

    ScanningElectronMicroscope:Bundlesofnanotubes.

    TransmissionElectronMicroscope:atomicspacinginasinglemultiwallnanotube

  • 8/12/2019 Module I - Materials Process

    72/72

    MicrostructureAnalysis


Related Documents