YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

Kaonic Quantum Erasers

Gianni GarbarinoUniversity of Torino, Italy

Quantum Theory: Reconsideration of Foundations – 4 (QTRF4)

Vaxjo (Sweden), June 11–16, 2007

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 1) Gianni Garbarino

University of Torino, Italy

Page 2: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

OUTLINE

F Introduction

F Quantitative Complementarity

F The Quantum Eraser

F Conclusions

Albert Bramon (Universitat Autonoma de Barcelona)

Beatrix C. Hiesmayr (University of Vienna)

[1] Quantum marking and quantum erasure for neutral kaons,A. Bramon, G. G. and B. C. Hiesmayr, Phys. Rev. Lett. 92 (2004) 020405.

[2] Active and passive quantum erasers for neutral kaons,A. Bramon, G. G. and B. C. Hiesmayr, Phys. Rev. A 69 (2004) 062111.

[3] Quantitative duality and neutral kaon interferometry,A. Bramon, G. G. and B. C. Hiesmayr, Eur. Phys. J C 32 (2004) 377.

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 2) Gianni Garbarino

University of Torino, Italy

Page 3: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

Introduction

F Bohr’s Complementarity

– Quantum systems have properties which are equally real but mutuallyexclusive =⇒ Wave–Particle duality: depending on the experimentalconditions, a quantum system behaves either like a wave (interference fringes)or like a particle (“which way” information)

– Here we will also consider intermediate cases with simultaneous wave andparticle knowledge: Quantitative Complementarity

F Feynman’s Lectures on Physics

– On the Double–Slit Experiment : “In reality, it contains the only mystery”

Interference patterns are observed if and only if it is impossible to know, even

in principle, which way the particle took.Interference disappears if there is a way to know —Quantum Marking— whichway the particle took.But, if that which way mark is erased by a suitable measurement —QuantumErasure—, interference reappears.

– On the Neutral Kaon System : “If there is any place where we have a chance

to test the main principles of quantum mechanics in the purest way —doesthe superposition of amplitudes work or doesn’t it?— that is it”

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 3) Gianni Garbarino

University of Torino, Italy

Page 4: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

Quantitative Complementarity

Quantum system in a two–path interferometer

|Ψ(φ)〉 = a|ψI〉 + b eiφ|ψII〉

a, b ≥ 0 a2 + b2 = 1 〈ψI |ψII〉 = 0

Interference patterns: I±(φ) ≡ |〈ψ±|Ψ(φ)〉|2 =1

2[1 ± V0 cosφ]

|ψ±〉 =1√2

[|ψI〉 ± |ψII〉]

Fringe Visibility V0 ≡ Imax − Imin

Imax + Imin= 2 a b

Path Predictability [D. Greenberger and A. Yasin, Phys. Lett. A 128 (1988) 391]

P ≡ |wI − wII | = |a2 − b2|

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 4) Gianni Garbarino

University of Torino, Italy

Page 5: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

=⇒ Quantitative Complementarity Relation

P2 + V20 = 1

F Modern and Quantitative statement of Bohr’s Complementarity

F Wave vs Particle information not governed by an Uncertainty Principle but bya single parameter (a)

F Even with P = 0.98 a non–negligible visibility, V0 = 0.20, is observable

F Symmetric interferometer: a = b = 1/√

2, V0 = 1, P = 0

F V0 = 0 and P = 1 ⇐⇒ either a = 0 or a = 1

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 5) Gianni Garbarino

University of Torino, Italy

Page 6: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

The Neutral Kaon System

F Kaons are “strange” mesons, discovered in “V” events (1946)

– θ-τ puzzle =⇒ violation of Parity conservation in weak interactions (1957)

– weak interactions also violate CP (Charge Conjugation × Parity) (1964)

– signals of physics beyond the Standard Model

– tests of Quantum Mechanics and Local Realism (Bell’s inequalities)

F Particle physics two–level quantum system analogous to polarized photons andspin 1/2 particles

F Differences due to kaon time evolution (decay), strangeness oscillations,internal symmetries, only two alternative measurement bases: Strangeness{K0, K0} and Lifetime {KS ,KL}

F Produced in strangeness conserving Strong Interactions [pp→ K−π+K0,pp→ K+π−K0, e+e− → φ(1020) → K0K0]Decay through strangeness changing Weak Interactions [KS → 2π, KL → 3π]

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 6) Gianni Garbarino

University of Torino, Italy

Page 7: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

F Strangeness K0 = ds K0 = ds

S|K0〉 = +1|K0〉 S|K0〉 = −1|K0〉 〈K0|K0〉 = 0

F Lifetime KS and KL short– and long–lived statesEigenstates of a non–Hermitian weak interaction Hamiltonian

H |KS(L)〉 = λS(L)|KS(L)〉 H = M − i

2Γ λS(L) = mS(L) −

i

2ΓS(L)

〈KS |KL〉 = 〈KL|KS〉 = 2Re ε/(1 + |ε|2) = 3.2 × 10−3

Time evolution: |KS(L)(t)〉 = e−iλS(L)t|KS(L)〉

Lifetimes: τS = 0.9 × 10−10 s τL = 5.2 × 10−8 s ΓSΓL

' 579

Decay modes: KS → 2π KL → 3π

F The two complementary observables are maximally incompatible:

|KS〉 =1

2(1 + |ε|2)[

(1 + ε)|K0〉 + (1 − ε)|K0〉]

' 1√2

[

|K0〉 + |K0〉]

|KL〉 =1

2(1 + |ε|2)[

(1 + ε)|K0〉 − (1 − ε)|K0〉]

' 1√2

[

|K0〉 − |K0〉]

The CP violating parameter ε can be safely neglected in our discussion

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 7) Gianni Garbarino

University of Torino, Italy

Page 8: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

Quantitative Complementarity for Neutral Kaons

Suppose a K0 is produced (π−p→ K0Λ) at time t = 0:

|K0〉 =1√2

(|KS〉 + |KL〉) =⇒ |K0(t)〉 =1√2

(

e−iλSt|KS〉 + e−iλLt|KL〉)

Time evolution, normalizing to surviving kaons:

|K0(t)〉 =1√

1 + e−∆Γ t

(

|KS〉 + e−∆Γ t/2e−i∆m t|KL〉)

∆Γ = ΓL − ΓS ∆m = mL −mS |∆Γ|/∆m ' 2.0

Strangeness Oscillations

P [K0 → K0; t] ≡∣

∣〈K0|K0(t)〉∣

2=

1

2{1 + V0(t) cos(∆mt)}

P [K0 → K0; t] ≡∣

∣〈K0|K0(t)〉∣

2=

1

2{1 − V0(t) cos(∆mt)}

Time–dependent Visibility V0(t) = 1cosh (∆Γ t/2)

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 8) Gianni Garbarino

University of Torino, Italy

Page 9: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

wS(t) ≡∣

∣〈KS |K0(t)〉∣

2=

1

1 + e−∆Γ twL(t) ≡

∣〈KL|K0(t)〉∣

2=

1

1 + e∆Γ t

“Width Predictability” P(t) ≡ |wS(t) − wL(t)| = |tanh (∆Γ t/2)|

Quantitative Complementarity Relation P2(t) + V20 (t) = 1

F Strangeness Oscillations ⇐⇒ interference patterns (wave–like)

F KS and KL free–space propagation ⇐⇒ two interferometric paths (particle–like)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

t/τS

V20 (t)

P2(t)

F CPLEAR (CERN) data admit an interpretation in terms of the quantitativecomplementarity relation

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 9) Gianni Garbarino

University of Torino, Italy

Page 10: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

Entangled Neutral Kaons

F To improve the “a priori” knowledge on the kaon lifetime, P(t), a measurementmust be performed on the kaon state[B.G. Englert, Phys. Rev. Lett. 77 (1996) 2154]

F Strangeness and Lifetime measurements are completely destructive =⇒ useEntanglement

From e+e− → φ(1020) → K0K0 or pp→ K0K0 one starts at t = 0 with amaximally entangled state

|φ(0)〉 =1√2

{

|K0〉l|K0〉r − |K0〉l|K0〉r}

=1√2{|KL〉l|KS〉r − |KS〉l|KL〉r}

Two–time state, after normalizing to surviving kaon pairs:

|φ(tl, tr)〉 =1√

1 + e∆Γ(tl−tr)

{

|KL〉l|KS〉r − ei∆m(tl−tr)e12∆Γ(tl−tr)|KS〉l|KL〉r

}

m

|Ψ(∆φ)〉 =1√2

{

|H〉l|V 〉r − ei∆φ|V 〉l|H〉l}

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 10) Gianni Garbarino

University of Torino, Italy

Page 11: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

φ

t l

object meter

t r0

S M = S or L

For the object kaon we want to introduce a “Which Width Knowledge”:

KM(tl) ≥ P(tl) ≡ | tanh(∆Γ tl/2)|

M = S or L ⇐⇒ measurement on the meter kaon

and a Visibility of the object kaon strangeness oscillations:

VM(tl) ≤ V0(tl) ≡ 1/ cosh(∆Γ tl/2)

such that they satisfy the Quantitative Complementarity Relation

K2M(tl)+V2

M(tl) = 1

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 11) Gianni Garbarino

University of Torino, Italy

Page 12: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

F M = LP (Kl,Kr) with Kl = K0 or K0 and Kr = KS or KL show no strangenessoscillations:

VL(tl) = 0

KL(tl) ≡∣

∣P (KS(tl),KS(t0r)) − P (KL(tl),KS(t0r))∣

+∣

∣P (KS(tl),KL(t0r)) − P (KL(tl),KL(t0r))∣

∣ = 1

=⇒ K2L(tl) + V2

L(tl) = 1

F M = SP (Kl,Kr) with Kl,r = K0 or K0 show the tl–dependent strangenessoscillations with visibility:

VS(tl) = 1/ cosh(

∆Γ (tl − t0r)/2)

KS(tl) ≡∣

∣P [KS(tl),K0(t0r)] − P [KL(tl),K

0(t0r)]∣

+∣

∣P [KS(tl), K0(t0r)] − P [KL(tl), K

0(t0r)]∣

=∣

∣tanh(

∆Γ(tl − t0r)/2)∣

=⇒ K2S(tl) + V2

S(tl) = 1

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 12) Gianni Garbarino

University of Torino, Italy

Page 13: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

The Quantum Eraser

F Proposed in[M.O. Scully and K. Druhl, Phys. Rev. A 25 (1982) 2208],[M.O. Scully, B.G. Englert and H. Walter, Nature 351 (1991) 111]

F Implemented experimentally using:

– Entangled Photons[T.J. Herzog, P.G. Kwiat, H. Weinfurter and A. Zeilinger, Phys. Rev. Lett. 75

(1995) 3034],[Yoon-Ho Kim, R. Yu, S.P. Kulik, Y. Shih and M.O. Scully, Phys. Rev. Lett. 84

(2000) 1],[T. Tsegaye and G. Bjork, Phys. Rev. A 62 (2000) 032106],[A. Trifonov, G. Bjork, J. Soderholm and T. Tsegaye, Eur. Phys. J. D 18 (2002)

251],[S.P. Walborn, M.O. Terra Cunha, S. Padua and C.H. Monken, Phys. Rev. A 65

(2002) 033818],[H. Kim, J. Ko and T. Kim, Phys. Rev. A 67 (2003) 054102]

– Atom Interferometers[S. Durr, T. Nonn and G. Rempe, Nature 395 (1998) 33],[S. Durr and G. Rempe, Optics Communications 179 (2000) 323]

– Neutron Interferometers[G. Badurek and H. Rauch, Physica B 276-278 (2000) 964]

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 13) Gianni Garbarino

University of Torino, Italy

Page 14: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

Time and the Quantum: Erasing the Past and Impacting the FutureY. Aharonov and M. S. Zubairy, Science 307 (2005) 875

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 14) Gianni Garbarino

University of Torino, Italy

Page 15: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

T.J. Herzog, P.G. Kwiat, H. Weinfurter and A. Zeilinger, Phys. Rev. Lett. 75 (1995) 3034

Pol. at +450

QWP

QWP

HWP 0 /90

+45 /-45

oriented at

or

0 0

0 0

meter system

object system

| + 45〉 = (|V 〉 + |H〉)/√

2 ⇐⇒ |K0〉 = (|KS〉 + |KL〉)/√

2

| − 45〉 = (|V 〉 − |H〉)/√

2 ⇐⇒ |K0〉 = (|KS〉 − |KL〉)/√

2

|Ψ(∆φ)〉 =1√2

{

|H〉object|V 〉meter − ei∆φ|V 〉object|H〉meter

}

m

|φ(∆t)〉 =1√

1 + e∆Γ∆t

{

|KL〉object|KS〉meter − ei∆m∆te∆Γ∆t/2|KS〉object|KL〉meter

}

∆t = tobject − tmeter ∆Γ = ΓL − ΓS ∆m = mL −mS

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 15) Gianni Garbarino

University of Torino, Italy

Page 16: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

Yoon-Ho Kim, R. Yu, S. P. Kulik, Y. Shih and M. O. Scully, Phys. Rev. Lett. 84 (2000) 1

D0

D4

D3

D2

D1

BSA

BSB

Position A

Position B

BSy

meter system

object system

http://strangepaths.com/the-quantum-eraser-experiment/2007/03/20/en/

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 16) Gianni Garbarino

University of Torino, Italy

Page 17: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

Quantum Eraser Protocol for Kaons

F STEP I Single (object) kaon evolution: Strangeness Oscillations

P [K0 → K0; t] =1

2

1 +cos(∆m t)

cosh(∆Γ t/2)

ff

P [K0 → K0; t] =1

2

1 − cos(∆mt)

cosh(∆Γ t/2)

ff

F STEP II Entangle the object kaon with a meter kaon ⇐⇒ Quantum Marking

|K0(t)〉 =1√

1 + e−∆Γ t

|KS〉 + e−∆Γ t/2e−i∆m t|KL〉”

=⇒

|φ(to, tm)〉 =

n

|KS〉object|KL〉meter − ei∆m(to−tm)e∆Γ(to−tm)/2|KL〉object|KS〉meter

o

√1 + e∆Γ(to−tm)

Strangeness Oscillations disappear: P [K0(to), ∗] = P [K0(to), ∗] = 12

F STEP III Object lifetime mark erased by a Strangeness Measurement on the

meter ⇐⇒ Quantum Erasure

Strangeness Oscillations restored:

P [K0(to), K0(tm)] =

1

4

1 +cos[∆m(to − tm)]

cosh[∆Γ(to − tm)/2]

ff

P [K0(to), K0(tm)] =

1

4

1 − cos[∆m(to − tm)]

cosh[∆Γ(to − tm)/2]

ff

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 17) Gianni Garbarino

University of Torino, Italy

Page 18: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

Active vs Passive Measurement procedures for Neutral Kaons

F Active Measurement

The experimenter, exerting his/her free will, either places a slab of material(strangeness) or allows for free–space kaon propagation (lifetime).

– Strangeness =⇒ strangeness conserving strong interactions: K0p→ K+n,K0n→ K−p

– Lifetime =⇒ free–space weak decay: KS ’s (KL’s) are kaons decaying before(after) ' 4.8 τS . KS-KL misidentifications O(10−3)

F Passive Measurement

Exploit only the quantum dynamics of kaon decays in free space.

– Strangeness =⇒ assuming the ∆Q = ∆S rule:K0 → π−l+νl and K0 → π+l−νl (l = e, µ)

– Lifetime =⇒ neglecting CP violation (ε = 0), KS → 2π and KL → 3π

No control on the time when the measurement occurs, nor on the basis inwhich the measurement is performed.

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 18) Gianni Garbarino

University of Torino, Italy

Page 19: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

A. Active Eraser with Active Measurements

S, tl

Source

S, tr0

T, tr0

object system

meter system

Pol. at +450

QWP

QWP

HWP 0 /90

+45 /-45

oriented at

or

0 0

0 0

meter system

object system

QUANTUM MARKING: “Which width” information

P [K0(tl),KS(t0r)] = P [K0(tl),KS(t0r)] =1

2(

1 + e∆Γ(tl−t0r))

P [K0(tl),KL(t0r)] = P [K0(tl),KL(t0r)] =1

2(

1 + e−∆Γ(tl−t0r))

QUANTUM ERASURE: Strangeness oscillations and anti–oscillations

P [K0(tl), K0(t0r)] = P [K0(tl),K

0(t0r)] =1

4

{

1 + V(tl − t0r) cos[∆m(tl − t0r)]}

P [K0(tl),K0(t0r)] = P [K0(tl), K

0(t0r)] =1

4

{

1 − V(tl − t0r) cos[∆m(tl − t0r)]}

V(tl − t0r) = 1/ cosh[∆Γ(tl − t0r)/2]

Analogous to the photon experiment by Zeilinger et al.

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 19) Gianni Garbarino

University of Torino, Italy

Page 20: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

B. Partially Active Eraser with Active Measurements

S, tl

Source

S, tr0

T

object system

meter system D0

D4

D3

D2

D1

BSA

BSB

Position A

Position B

BSy

meter system

object system

F The meter kaon makes the “choice” to show full “which width” information ornot

F The eraser is partially active: instability of the meter kaon, the experimenteronly chooses t0r (conditional quantum eraser)

F No control over the Marking and Erasure operations for individual kaon pairs

Analogous to the photon experiment by Scully et al.: t0r ⇐⇒ BSA/B transmittivities

t0r = 0 ⇐⇒ TA = TB = 0t0r → ∞ ⇐⇒ TA = TB = 1

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 20) Gianni Garbarino

University of Torino, Italy

Page 21: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

C. Passive Eraser with Passive Measurements on the Meter

S, tl

Source

T

object system

meter systemTS

F Strangeness K0 → π−l+νl K0 → π+l−νl (l = e, µ)Lifetime KS → 2π KL → 3π

F Kaon decays are spontaneous processes ⇐⇒ passive eraser

F Different quantum–mechanical calculation of the joint probabilities, but withthe same results of the previous erasers

No analog in any other considered two–level quantum system

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 21) Gianni Garbarino

University of Torino, Italy

Page 22: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

D. Passive Eraser with Passive Measurements

Source

T TS S

F Same quantum–mechanical predictions of the previous erasers for the jointprobabilities

F Extreme case of a passive quantum eraser!: the experimenters have no controlover individual pairs, neither on which of the two complementary observablesare measured nor when they are measured

F Which is the object? Strictly speaking not a quantum eraser!

No analog in any other considered two–level quantum system

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 22) Gianni Garbarino

University of Torino, Italy

Page 23: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

Passive Eraser at KLOE2 (DAΦNE φ–factory)

Time–dependent Asymmetry [A. Di Domenico and A. Go]

A(∆t) =P [K0,Kmeter; ∆t] − P [K0,Kmeter; ∆t]

P [K0,Kmeter; ∆t] + P [K0,Kmeter; ∆t]∆t ≡ tobject − tmeter

Toy Monte Carlo simulation with L = 50 fb−1

∆t/τS

Kmeter = K0

Kmeter = KL

Kmeter = K0

Kmeter = KS

AQM(∆t) = − cos(∆m∆t)

AQM(∆t) = 0

AQM(∆t) = +cos(∆m∆t)

AQM(∆t) = 0

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 23) Gianni Garbarino

University of Torino, Italy

Page 24: Kaonic Quantum Erasers Gianni Garbarino University of ...personalpages.to.infn.it/~garbarin/vaxjo.pdf · Kaonic Quantum Erasers Gianni Garbarino University of Torino, Italy Quantum

Conclusions

F The Neutral Kaon System does not need any kind of double–slit device.It is a double–slit: |K0〉 = 1√

2(|KS〉 + |KL〉) !

F Easily illustrates Quantitative formulations of Complementarity

F Reveals to be suitable for an optimal demonstration of Quantum Erasure

– “which width” information carried by a system (the meter kaon) distinct andspatially separated from the interfering system (the object kaon)

– =⇒ the marking/erasure operation can be easily performed in the “delayedchoice” mode (tmeter > tobject)

– quantum erasure allows one to restore the same KS-KL interferencephenomenon (strangeness oscillations) exhibited by a single kaon produced asa K0 or K0

F Different versions, Active and Passive, of Kaonic Quantum Erasers. Thepassive ones have no analog to any other two–level quantum system consideredup to date

F Experimental implementation currently under study at DaΦne, the Frascati(Rome) φ–factory

Quantum Theory: Reconsideration

of Foundations – 4 (QTRF4)

Kaonic Quantum Erasers (page 24) Gianni Garbarino

University of Torino, Italy


Related Documents