YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
Page 1: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Intron number evolution and alternative splicing functioning as

bridge in evolution

Kemin Zhou, Ph.D.

April 22, 2011

Page 2: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Splicing pre-mRNA

5’SS 3’SSBranch

Poly Pyrimidine Track

Intron

mRNA

A

Page 3: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Input Data: 16 Fungal Genomes

Database Species

Aspni1 Aspergillus niger

Mycfi1 Mycosphaerella fijiensis

Mycgr1 Mycosphaerella graminicola

Necha2 Nectria haematococca

Picst3 Pichia stipitis

Trire2 Trichoderma reesei

Trive1 Trichoderma virens

copci1 Coprinus cinereus

cryneo1 Cryptococcus neoformans

Lacbi1 Laccaria bicolor

Phchr1 Phanerochaete chrysosporium

Pospl1 Postia placenta

Sporo1 Sporobolomyces roseus

ustma1 Ustilago maydis

Phybl1 Phycomyces blakesleeanus

Batde5 Batrachochytrium dendrobatidis

Asc

omyc

ota

Bas

idio

myc

ota

Phylum

Chytridiomycota

Zygomycota

Page 4: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

0.04

-0.14

0.62

0.05

0.28

0.05

-0.020

-1.07

-3.48

-0.04

-1.21

-0.01

-0.02 -0.003

0.01-0.03

0.01

64

80 ustma1

Picst3

Necha2

Trive1Trire2Aspni1

Mycgr1

Mycfi1

Phybl1

Batde5

Sporo1

cryneo1

copci1Lacbi1

Pospl1

Phchr1

0.1

-0.40

0.1

-0.04 -2.33

0

-0.28

0-5.57

-0.03

0.07

-0.23

1.68

7.08

6.90

7.89

7.32

7.29

7.21

1.44

3.33

3.353.313.76

2.48

2.49

6.18

5.9

7.25

Ascomycota

Basidiomycota

Pezizomycotina

Saccharomycotina

EurotiomycetesSordariomycetes

Dothideomycetes

Ustilaginomycotina

PucciniomycotinaAgaricomycotina

Tremellom

ycetes

Agaricomycetes

Zygomycota

Chytridiomycota

Page 5: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Conservative Estimated Number of Exons

Ascomycota

Basidiomycota

Zygomycota

Chytridiomycota7.25

-3.48

0

-1.07

3.77

7.25

6.18

0.0

5.90

6.18

Page 6: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Reverse TranscriptaseRNA-dependent DNA polymerase

is a DNA polymerase enzyme that transcribes single-stranded RNA into double-stranded DNA. It also helps in the formation of a double helix DNA once the RNA has been reverse transcribed into a single strand cDNA.

RNA

DNA

Page 7: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Reverse Transcriptase Enzymology

R2 RT 1094-nt RNA R2 RT 4.0 x 10E-3/nt AMV RT 9.3 x 10E-3/nt590-nt RNA R2 RT 2.6 x 10E-3/nt AMV RT 5.4 x 10E-3/ntpoly(rA) R2 RT 0.4 x 10E-3/nt AMV RT 1.5 x 10E-3/nt

0 500 1000 1500 2000

0.00

000.

0010

0.00

20

Nucleotides

Den

sity

lambda0.00260.0010.0005

Exponential Distributionfall-off rate=lambda

Arkadiusz Bibillo and Thomas H. EickbushJ. Biol. Chem. 2002

Page 8: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Intron Loss by Homologous Recombination

Genomic DNA

mRNA

Partial cDNA

Homologous recombination

RNA Polymerase II

Reverse Transcriptase

Page 9: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

RT Foot Prints (RTFP)

Length (Nucleotides)

Cou

nts

0 2000 4000 6000

02

46

810

Aspni1

0 2000 4000 6000

020

40

Mycfi1

0 2000 4000 6000

05

1015

20 Mycgr1

0 2000 4000 6000

02

46

810

Necha2

0 2000 4000 6000

02

46

810

Picst3

0 2000 4000 6000

02

46

810

Trire2

0 2000 4000 6000

02

46

810

Trive1

0 2000 4000 6000

02

46

810

copci1

0 2000 4000 6000

02

46

810

cryneo1

0 2000 4000 6000

02

46

810

Lacbi1

0 2000 4000 60000

24

68

10

Phchr1

0 2000 4000 6000

010

2030

40

Pospl1

0 2000 4000 6000

02

46

810

Sporo1

0 2000 4000 6000

02

46

810

ustma1

0 2000 4000 6000

02

46

810

Batde5

0 2000 4000 6000

02

46

810

Phybl1

Page 10: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Intron Relative Location

Percent Relative Location from 5’-End

Co

un

t

0 20 40 60 80 100

100

200

300

400

Aspni1

0 20 40 60 80 100

100

150

200

250

Mycfi1

0 20 40 60 80 100

100

150

200

250

300

Mycgr1

0 20 40 60 80 100

200

300

400

500 Necha2

0 20 40 60 80 100

1030

5070

Picst3

0 20 40 60 80 100

100

200

300

400 Trive1

0 20 40 60 80 100

5015

025

035

0

Trire2

0 20 40 60 80 100

300

500

700 copci1

0 20 40 60 80 100

100

200

300

400

cryneo1

0 20 40 60 80 100

400

600

800

1000 Lacbi1

0 20 40 60 80 10020

030

040

050

0 Phchr1

0 20 40 60 80 100

200

300

400

500

Pospl1

0 20 40 60 80 100

5015

025

035

0

Sporo1

0 20 40 60 80 100

4060

8010

0

ustma1

0 20 40 60 80 100

100

200

300

400

Batde5

0 20 40 60 80 100

200

400

600

800

Phybl1

Page 11: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Number of Exons of Ancestor

Mean Relative Intron Location

Mea

n N

umbe

r of

Exo

ns

0.40 0.42 0.44 0.46 0.48 0.50

12

34

56

78

Aspni1

Batde5

copci1

cryneo1

Lacbi1

Mycfi1Mycgr1

Necha2

Phchr1

Phybl1

Picst3

Pospl1

Sporo1

Trire2Trive1

ustma1

7.66

Page 12: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Exon Length As a Function of Intron Number

Number of Introns

Ave

rag

e E

xo

n L

eng

thT

ota

l E

xon

Len

gth

5.1988961.11.1060 7812.0 xeL x

020

060

010

00

)1( xLG

0 10 20 30 40 50 60 70

2000

4000

6000

8000

Page 13: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Fungal Exon Length Distribution

80 1600 100 200 300 400 500

050

010

0015

0020

0025

0030

00

Exon Length

Cou

nt

0 2800671 2069102 206494

Page 14: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Proc. Natl. Acad. Sci. USAVol. 93, pp. 14632–14636, December 1996Evolution

Intron positions correlate with module boundaries inancient proteins (intron evolutionyintrons-early)SANDRO JOSE DE SOUZA*, MANYUAN LONG, LLOYD SCHOENBACH, SCOTT WILLIAM ROY, AND WALTER GILBERTDepartment of Molecular and Cellular Biology, Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138

Phylogenetically Older Introns Strongly Correlate With Module Boundaries in Ancient ProteinsAlexei Fedorov,1,2 Scott Roy,1 Xiaohong Cao,1,3 and Walter Gilbert1,41Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA

2003

Average Module Size 25 aa1996

Page 15: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Protein Length 400 aadbname meanl stdl Mean(log) Std(log) Median len

Aspni1 499.2 379.8 6.010 0.631 419

Batde5 465.7 405.0 5.882 0.719 359

copci1 476.6 355.6 5.933 0.691 385

cryneo1 547.6 368.6 6.104 0.654 467

Lacbi1 388.6 318.1 5.679 0.769 308

Mycfi1 446.9 345.3 5.850 0.745 377

Mycgr1 457.3 343.0 5.892 0.701 379

Necha2 487.5 336.3 6.014 0.591 421

Phchr1 460.9 328.0 5.929 0.639 378

Phybl1 408.8 331.1 5.777 0.679 326

Picst3 504.1 351.1 6.020 0.647 429

Pospl1 440.3 310.4 5.883 0.638 357

Sporo1 575.5 479.8 6.070 0.763 438

Trire2 503.8 455.5 6.005 0.657 418

Trive1 489.3 461.3 5.976 0.647 402

ustma1 643.0 456.1 6.243 0.682 534

mean 487.2 376.6 6.0 0.7 399.8

median 482.0 353.3 6.0 0.7 393.5

F-test on log(protein length): p-value = 2.2e-16 Exp(6)=403.4

Page 16: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Ancestral number of exons

75 nt/exon

1200 nt/gene= 16 exons/gene

A General Tendency for Conservation of Protein Length Across Eukaryotic KingdomsDaryi Wang,* Mufen Hsieh,* and Wen-Hsiung Li**Computational and Evolutionary Genomics, Center for Genomics Research, Academia Sinica, Taipei, Taiwan; andDepartment of Ecology and Evolution, University of Chicago

2005

400 aa

Page 17: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

9 10 11 12 13 14

23

45

67

log(Total RTFP Length)

Ave

rag

e N

EP

G

Aspni1

Batde5

copci1

cryneo1

Lacbi1

Mycfi1

Mycgr1Necha2

Phchr1

Phybl1

Picst3

Pospl1

Sporo1

Trire2

Trive1

ustma1

Intercept: 9.69 ± 1.99Slope: -0.30 ± 0.16

Intercept: 4.04 ± 0.35Slope: -0.11 ± 0.03

Intron number by RT effect

4.04

9.69

Page 18: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Conserved Genes Have More Introns

Exon Number Conserved in All Species

Exo

n N

um

ber

Sp

ecie

s-sp

ecif

ic

2 3 4 5 6 7 8

23

45

67

Aspni1

Batde5

copci1

cryneo1

Lacbi1

Mycfi1

Mycgr1

Necha2

Phchr1Phybl1

Picst3

Pospl1

Sporo1

Trire2

Trive1

ustma1

y = 0.503 x + 1.172 No Sporo1, p-val=8.196e-07

Page 19: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Number of Exon vs. Genome Size

16.5 17.0 17.5 18.0

23

45

67

8

log (genome size)

nu

mb

er o

f ex

on

s

Aspni1

Batde5

copci1cryneo1

Lacbi1

Mycfi1Mycgr1

Necha2

Phchr1

Phybl1

Picst3

Pospl1

Sporo1

Trire2Trive1

ustma1

allbetweenPhylumSpecies

p-value:0.0006588

Page 20: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Introns are getting longer for less conserved genes except for genomes with very few introns.

-20

-10

0

10

20

30

40

50

60

70

Asp

ni1

Bat

de5

copc

i1cr

yneo

1

Lacb

i1

Myc

fi1

Myc

gr1

Nec

ha2

Phc

hr1

Phy

bl1

Pic

st3

Pos

pl1

Spo

ro1

Trir

e2

Triv

e1

ustm

a1

Intr

on

Len

gth

Dif

fere

nce

(S

SG

-GC

AS

)

Page 21: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Chi-square Test Younger – Older Genes

Relative Location 1/10 (floor(reloc*10))

0 2 4 6 8

-0.0

40.

000.

04 1.204e-07

Aspni1

0 2 4 6 8

-0.0

40.

000.

04 1.482e-18

Mycfi1

0 2 4 6 8

-0.0

40.

000.

04 2.228e-10

Mycgr1

0 2 4 6 8

-0.0

40.

000.

04 1.390e-25

Necha2

0 2 4 6 8

-0.0

40.

000.

04 1.303e-03

Picst3

0 2 4 6 8

-0.0

40.

000.

04 1.397e-35

Trive1

0 2 4 6 8

-0.0

40.

000.

04 5.121e-18

Trire2

0 2 4 6 8

-0.0

40.

000.

04 4.021e-08

copci1

0 2 4 6 8

-0.0

40.

000.

04 5.447e-01

cryneo1

0 2 4 6 8

-0.0

40.

000.

04 1.770e-35

Lacbi1

0 2 4 6 8-0

.04

0.00

0.04 1.330e-01

Phchr1

0 2 4 6 8

-0.0

40.

000.

04 4.135e-02

Pospl1

0 2 4 6 8

-0.0

40.

000.

04 8.968e-02

Sporo1

0 2 4 6 8

-0.0

40.

000.

04 2.997e-03

ustma1

0 2 4 6 8

-0.0

40.

000.

04 8.028e-11

Batde5

0 2 4 6 8

-0.0

40.

000.

04 1.047e-22

Phybl1

Dif

fere

nce

of

freq

uen

cy

Page 22: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Timing of Intron Loss

• Dramatic intron loss happened during the earlier evolution of the ancestor of Ascomycota.

• Basidiomycota: – Most genomes had little intron gain loss since

divergence from common ancestor– Lacbi1 younger genes have more introns located to

both ends, indication for modern exon shuffling

• Two yeasts: Picst3 and ustma1 younger genes have more introns near 3’-end relative to older genes

Page 23: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Number of exons in ancestor

• Previous results about 5.8 exons/gene

• This study: 7.25, 7.66, 9.69, and 16

• First three methods under estimate

• 16 is the most unbiased estimated

Page 24: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Gene Birth Big Bang

• Previous evolution has generated short modules of about 25 aa on average

• In a very short time scale, genes were formed by a large scale exon-shuffling process

• This ancient gene pool has about 16 exons on average

• Subsequence evolution is dominated by intron loss

Page 25: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Ancient nature and bridging function of alternative splicing

Page 26: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Evidence-based Alternative Splicing

Genome EST

COMBEST

Gene Model with AS

+

Page 27: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Genomes Chlre4 Agabi2 Aspca3 Spoth1Source Sanger 454 454 Solexa+454

Count 309,185 1,140,141 2,466,463 42,173,117

Average len. 927.3 221.6 401.8 40.8

min/max len. 15/5159 50/1479 47/961 26/1014

Fraction Mapped 0.66 0.87 0.92 0.95

Size (mb) 112 30 36 39

Gap fraction 0.075 0.007 0.056 0.003

Num. models 16,696 10,443 11,624 8808

Exons/model 7.37 5.99 3.47 3.02

Coding fraction 0.62 0.82 0.91 0.91

GC Content 0.64 0.46 0.52 0.52

EST Coverage 2.87x 8.94x 29.52x 46.30x

Characteristics of InputE

ST

Gen

ome

Page 28: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

32 64 128 256 512 1024

Chlre4Agabi2Aspca3Spoth1

Intron length and Splice SitesDatabase Chlre4 Agabi2 Aspca3 Spoth1

Canonical 98.87% 99.04% 97.54% 99.11%

Intron length

0

0.01

0.02

0.03

0.04

0.05

64 128 256 512 1024

Chlre4

Fre

quen

cy

Page 29: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Quantity of AS

Page 30: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Distribution of Number of Alternatively Spliced Forms

Number of Models per Gene

Cou

nt

Fig 1

Page 31: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Higher Coverage, Longer Assembly, More Alternative Splicing and Antisense

Genome Chlre4 Agabi2 Aspca3 Spoth1

Coverage* 2.87 8.94 29.52 46.30

Num EST per Assembly 22.1 134.0 252.2 5567.4

mRNA length 1054.1 1085.3 1739.0 1829.0

Alt. of all/multiexon 0.08/0.15 0.28/0.35 0.33/0.52 0.33/0.63

Antisense fraction 0.0675 0.1433 0.2375 0.2880

*Coverage is the normalized mapped total EST length over Genomic length

Aspergillus aculeatus: 70% AS of multiexon genes 338,255,050 EST

Page 32: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Alternative Splicing Correlates with number of exons, expression level, and

length of longest intron

Genome Chlre4 Agabi2 Aspca3 Spoth1

Factor coefficient p-value coefficient p-value coefficient p-value coefficient p-value

intercept 1.012e+00 <2e-16 1.043e+00 <2e-16 5.364e-01 <2e-16 5.599e-01 <2e-16

numexon 2.508e-02 <2e-16 9.289e-02 <2e-16 3.686e-01 <2e-16 3.629e-01 <2e-16

profmaxh 1.267e-03 <2e-16 1.038e-03 <2e-16 1.113e-03 <2e-16 2.180e-04 <2e-16

maxintronlen 7.174e-05 1.33e-4 1.154e-03 7.12e-09 1.553e-03 <2e-16 6.165e-04 3.12e-07

mRNAlen -8.125e-05 2.05e-05 9.177e-05 3.36e-16

overall <2.2e-16 <2.2e-16 <2.2e-16 <2.2e-16

Linear regression analysis of number of AS against number of exons, profmaxh, max intron length, and mRNA length

Page 33: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Restriction on Contributing Factors

• Intrinsic Property– Contribution from each intron is smaller for

intron-rich genomes– Long introns are more predictive of AS in

genomes with short average intron length

• External Measure– Exceedingly high EST coverage lower the

contribution from expression level (saturation effect)

Page 34: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Ancient Measure by Conservation Pattern

Archaea

Bacteria

Eukaryota

P

UWithout Fungi

FungiProtein

Ancient proteins should be conserved in all three kingdoms

Page 35: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Top 10 Isoforms from Aspca3NISO Peplen Blast Hit Definition

20 337 glyceraldehyde-3-phosphate dehydrogenase gpdA

18 331 malate dehydrogenase, NAD-dependent

16 193 zinc knuckle domain protein

16 226 60S ribosomal protein L13

15 522 extracellular alpha-amylase

15 137 60S ribosomal protein L35a

15 395 conserved hypothetical protein

15 25 NOHIT, most interesting

14 107 60S ribosomal protein L30

14 179 nucleosome-binding protein (Nhp6a)

Manually examined top 100, this appears to be the case.

Page 36: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Genes with AS Tend to be more Ancient

AS Protein

NoneAS Protein

% Hits All Three Kingdoms

Blast Search Against nr - Fungi

Genome AS NoAS P-value

Agabi2 9.81% 5.62% 1.60E-14

Aspca3 10.17% 7.15% 1.86E-10

Spoth1 10.23% 4.51% <2.2e-16

Page 37: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Ancient => Conservation

Page 38: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Genes with AS Are More Likely to Be Conserved within Ascomycota

Protein Sequence Best hits between Aspca3 and Spoth1

Χ-squared=4280.4, df=3, p-value < 2.2e-16

Aspca3

AS: 0.3344 NoAS: 0.6656

Spoth1

AS:

0.3208

E: 0.110

O: 0.3561

C: 2296

E: 0.219

O: 0.2250

C: 1451

NoAS:

0.6714

E: 0.225

O: 0.1906

C: 1229

E: 0.447

O: 0.2283

C: 1472

Page 39: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Genes with AS Are More Conserved between Ascomycota and Basidiomycota

X-square=2360.138, df=3, p-value < 2.2e-16

Aspca3

AS: 0.3344 NoAS: 0.6656

Agabi2

AS:

0.2810

E: 0.0940

O: 0.2801

C: 1283

E: 0.1870

O: 0.1670

C: 765

NoAS:

0.7190

E: 0.2404

O: 0.3152

C: 1444

E: 0.4786

O: 0.2377

C: 1089

Page 40: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

AS Profile Not Conserved

Exon Alignment Quality  

AP 0 1 2 3 4 total

Aspca3Spoth1

nn 42 | 0.029 246 | 0.167 226 | 0.154 222 | 0.151 736 | 0.500 1472

ny 680 | 0.047 122 | 0.084 247 | 0.170 419 | 0.289 595 | 0.410 1451

yn 46 | 0.037 144 | 0.117 264 | 0.215 338 | 0.275 437 | 0.356 1229

yy 179 | 0.078 211 | 0.092 518 | 0.226 930 | 0.405 458 | 0.199 2296

total 335 | 0.052 723 | 0.112 1255 | 0.195 1909 | 0.296 2226 | 0.345 6448

Agabi2Aspca3

nn 2 | 0.002 14 | 0.013 66 | 0.061 298 | 0.274 709 | 0.651 1089

ny 5 | 0.003 9 | 0.006 64 | 0.044 667 | 0.462 699 | 0.484 1444

yn 0 | 0.000 4 | 0.005 37 | 0.048 260 | 0.340 464 | 0.607 765

yy 1 | 0.001 12 | 0.009 102 | 0.080 710 | 0.553 458 | 0.357 1283

total 8 | 0.002 39 | 0.009 269 | 0.059 1935 | 0.422 2330 | 0.509 4581

AP: AS x AS pair

0: perfect, 1: almost perfect, 2: indes, 3: partial, and 4: no alignment

Page 41: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Basic Types of Alternative Splicing5’ splice site selection Alternative Donor

3’ splice site selectionAlternative Acceptor

Cassette Exons Exon skipping / Retention

Intron retentionRI

CE

AA

AD

One or more

Composite Types

Page 42: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Composite TypesAP

AD+AA

CE+AD

AA or CE Alternative 3’ exons no overlap

3’ ends for cassette exonsMay not be end for other

Between CE and AA

CE variants: AD, AA, ADAA

CE+AA

CE+AP

Page 43: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Intron Retention Variants

2 or more intron retention indicating Genomic comtamination?

Page 44: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Mutually exclusive exons

ME

Significant Overlap of Middle

AA AD

Page 45: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

AS Type Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AD AACE

CE_AD

CE_AA

CE_ADAA IR

ADAA

CEorAAen

dM

E

Oth

er

Spoth1

Aspca3

Agabi

Chlre4

AS Category

Fra

ctio

n of

Tot

al

Page 46: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

RI Types

• No RI: Intron Not retained

• Minor: Retained in a minor isoform

• Major: Retained in a major isoform

Major is the most abundant isoformMinor is not the most abundant isoform

Length { 3n, 3n+1, 3n+2 }

3n+1, 3n+2

Page 47: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

NRI or Minor RI favor PTCMajor RI avoids PTC

P-value of Chi-Square test against 1/3<

2.2

E-1

6

8.1

8E

-08

2.0

1E

-04

0.0

31

64

4.9

1E

-09

0.0

38

77

<2

.2E

-16

3.4

88

E-4

5.2

9E

-11

0.9

81

2.1

2E

-10

0.0

03

04

1

0.0

01

70

5

0.5

75

0.6

07

0.0

05

32

9

1.0

6E

-02

0.5

64

7

<2

.2E

-16

1.0

2E

-03

0.0

17

7

0.0

32

13

<2

.2E

-16

0.0

98

3

Stop0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes No

Yes

0.358Minor0.054

0.748Major0.010

0.260NRI

0.783

0.262Minor0.183

0.689Major0.034

0.190NRI

0.985

0.238Minor0.013

0.512Major0.002

0.258NRI

0.751

0.316Minor0.189

0.568Major0.060

Agabi2 Aspca3 Chlre4 Spoth1

3n 3n+1 3n+2

0.327NRI

0.936

Stopless Frac.

RI Type Frac

Page 48: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Intron Phase

UUUGCAAUUCUAGAAGAC F A I L E D

0 1 2

Page 49: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Stopless Introns Favor Phase 0 More

<2

.2e

-16

<2

.2e

-16

<2

.2e

-16

1.9

59

E-1

4

<2

.2e

-16

<2

.2e

-16

<2

.2e

-16

1.0

9E

-04

P-value from Chi-Square Test against 1/3

A. Fractions of three phases

B. Difference against population

-0.150

-0.100

-0.050

0.000

0.050

0.100

0.150

Stop

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No Yes No Yes No Yes No YesAgabi2 Aspca3 Chlre4 Spoth1

ph0ph1ph2

Page 50: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Stopless 3n favors Phase 1

<2.

2e-1

6

<2.

2e-1

6

<2.

2e-1

6

<2.

2e-1

6

1.06

E-0

7

<2.

2e-1

6

0.98

9

0.61

5

0.65

96

0.00

177

0.16

6

0.00

0178

Chi-Square test against stopless population

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3n 3n+1 3n+2 3n 3n+1 3n+2 3n 3n+1 3n+2 3n 3n+1 3n+2

Agabi2 Aspca3 Chlre4 Spoth1

ph0 ph1 ph2

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

A

B

B. Difference against population

Page 51: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Explanation of Phase for 3n Introns

NNN|GTNNN…NNNAG|NNNNN

NNN|GTNNN…NNNAG|NNNNN

NNN|GTNNN…NNNAG|NNNN

0

1

2

Phase E,Q,KV

C,R,S,G 12 AA V,A,D,E,G

S,RF,L,S,Y,C,W

3*1*

2*

1*

13AA

# of Stops

1

2

4

1. Splicing of zero-phase introns produces the most certain outcome.2. Phase 0 has the least amount of stop codons, thus least filtering with stopless introns3. Phase 1 intron favored in major RI because of the flexibility and less bulky residues

permitted on both ends, especially G, S, C, and A.4. Phase 2 requires the most hydrophobic residues and at 3’ end only S and R are

permitted

Flexibility

Limited

Best

Limited

Page 52: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

RI Evolution: Minor Major loss

NRIMinor

RI

NMD

New Function

Splicing Error

Evolution

Stop Codon3n+1, 3n+2

3n, no stop

Gene

MajorRI

Fixed in PopulationBecome dominant form

Complete Elimination

Partial Elimination

Minor RI: Avoid 3n,Has stop

NRI: Avoid 3n,Has stop

What We See

A new Intron loss mechanism

exonization

Page 53: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Vertebrate Evolution

Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates

Proc Natl Acad Sci U S A. 2001 September 25; 98(20): 11382–11387.

Proteolipid protein (PLP)

RI + NRI

Fish (NRI)

Amphibians (RI)

Other Tetrapods (NRI + RI)Reptiles, Birds, Mammals

Ancestor

Byrappa Venkatesh, Mark V. Erdmann, and Sydney Brenner

Page 54: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Conclusion

• Fungi and green alga has abundant AS

• AS is ancient

• AS is conserved but the exact AS profile is not conserved

• Number of exons, expression level, and long introns contributes to AS

• RI dominates AS and bridge the evolution of new protein functions

Page 55: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Transcription overlap

Number of genes per congregation

Genome Chlre4 Agabi2 Aspca3 Spoth1

Congreg. > 1 gene 29.2% 21.1% 39.3% 34.9%

Congregated Genes 48.0% 37.2% 63.5% 58.4%

Cou

nt

Number of Genes per Congregation

Page 56: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

A New Function Evolved from Gene FusionManyuan Long1Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois 60637, USA

Overlapping AS as a bridge to novel gene

2000

Novel Human Gene

Page 57: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Acknowledgement

• Annotation– Igor Grigoriev– Alan Kuo– Andrea Aerts– Bobby Otillar

• R&D– Asaf Salamov

• Annotation pipeline– Frank Korzeniewski– Xueling Zhao

• EST Group– Erika Linquist– Jasmyn Pangilinan– Zhong Zhang

• IT Group

Funding:Department of Energy

Statistical and mathematical

Mingkun Li

GDS Group

Sydney Brenner

Page 58: Intron number evolution and alternative splicing functioning as bridge in evolution Kemin Zhou, Ph.D. April 22, 2011.

Introns Boost Expression

Database Chlre4 Agabi2 Aspca3 Spoth1

Exon Structure S M S M S M S M

Mean profmaxh 10.4 24.1 10.7 51.2 42.8 111.7 200.4 372.9

T-test result of gene expression levels as measured as the maximum height of base-coverage profile (profmaxh). S for single exon genes. M for multiple exon genes.

All p-values < 2.2e-16.


Related Documents