YOU ARE DOWNLOADING DOCUMENT

Please tick the box to continue:

Transcript
  • ANSYS FLUENT 12.0

    Tutorial Guide

    April 2009

  • Copyright c 2009 by ANSYS, Inc.All Rights Reserved. No part of this document may be reproduced or otherwise used in

    any form without express written permission from ANSYS, Inc.

    Airpak, Mechanical APDL, Workbench, AUTODYN, CFX, FIDAP, FloWizard, FLUENT,GAMBIT, Iceboard, Icechip, Icemax, Icepak, Icepro, Icewave, MixSim, POLYFLOW, TGrid,and any and all ANSYS, Inc. brand, product, service and feature names, logos andslogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries

    located in the United States or other countries. All other brand, product, service andfeature names or trademarks are the property of their respective owners.

    CATIA V5 is a registered trademark of Dassault Syste`mes. CHEMKIN is a registeredtrademark of Reaction Design Inc.

    Portions of this program include material copyrighted by PathScale Corporation2003-2004.

    ANSYS, Inc. is certified to ISO 9001:2008

    See the on-line documentation for the complete Legal Notices for ANSYS proprietarysoftware and third-party software. If you are unable to access the Legal Notice, contact

    ANSYS, Inc.

  • Contents

    1 Introduction to Using ANSYS FLUENT: Fluid Flow andHeat Transfer in a Mixing Elbow 1-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

    Step 1: Launching ANSYS FLUENT . . . . . . . . . . . . . . . . . . . . . 1-3

    Step 2: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

    Step 3: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-9

    Step 4: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-12

    Step 5: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-14

    Step 6: Cell Zone Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 1-16

    Step 7: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 1-17

    Step 8: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-21

    Step 9: Displaying the Preliminary Solution . . . . . . . . . . . . . . . . 1-29

    Step 10: Enabling Second-Order Discretization . . . . . . . . . . . . . . . 1-39

    Step 11: Adapting the Mesh . . . . . . . . . . . . . . . . . . . . . . . . . 1-45

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-55

    2 Modeling Periodic Flow and Heat Transfer 2-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

    Release 12.0 c ANSYS, Inc. March 12, 2009 i

  • CONTENTS

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-7

    Step 5: Cell Zone Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 2-9

    Step 6: Periodic Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 2-10

    Step 7: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 2-11

    Step 8: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-12

    Step 9: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-16

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-24

    3 Modeling External Compressible Flow 3-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-6

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 3-7

    Step 6: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 3-9

    Step 7: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10

    Step 8: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-27

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-31

    ii Release 12.0 c ANSYS, Inc. March 12, 2009

  • CONTENTS

    4 Modeling Transient Compressible Flow 4-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

    Step 5: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 4-9

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 4-10

    Step 7: Solution: Steady Flow . . . . . . . . . . . . . . . . . . . . . . . . 4-12

    Step 8: Enable Time Dependence and Set Transient Conditions . . . . . 4-23

    Step 9: Solution: Transient Flow . . . . . . . . . . . . . . . . . . . . . . 4-26

    Step 10: Saving and Postprocessing Time-Dependent Data Sets . . . . . 4-29

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-41

    5 Modeling Radiation and Natural Convection 5-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-2

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8

    Release 12.0 c ANSYS, Inc. March 12, 2009 iii

  • CONTENTS

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 5-10

    Step 6: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-16

    Step 7: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-23

    Step 8: Compare the Contour Plots after Varying Radiating Surfaces . . 5-35

    Step 9: S2S Definition, Solution and Postprocessing with PartialEnclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-42

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-45

    6 Using the Discrete Ordinates Radiation Model 6-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-5

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7

    Step 5: Cell Zone Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 6-9

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 6-11

    Step 7: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-18

    Step 8: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-21

    Step 9: Iterate for Higher Pixels . . . . . . . . . . . . . . . . . . . . . . . 6-27

    Step 10: Iterate for Higher Divisions . . . . . . . . . . . . . . . . . . . . 6-31

    Step 11: Make the Reflector Completely Diffuse . . . . . . . . . . . . . . 6-39

    Step 12: Change the Boundary Type of Bae . . . . . . . . . . . . . . . 6-40

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-41

    iv Release 12.0 c ANSYS, Inc. March 12, 2009

  • CONTENTS

    7 Using a Non-Conformal Mesh 7-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9

    Step 5: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 7-10

    Step 6: Cell Zone Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 7-11

    Step 7: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 7-12

    Step 8: Mesh Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21

    Step 9: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-22

    Step 10: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-26

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-34

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-34

    8 Modeling Flow Through Porous Media 8-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-4

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-6

    Release 12.0 c ANSYS, Inc. March 12, 2009 v

  • CONTENTS

    Step 5: Cell Zone Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 8-8

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 8-11

    Step 7: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-14

    Step 8: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-18

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-30

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-30

    9 Using a Single Rotating Reference Frame 9-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-6

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-7

    Step 5: Cell Zone Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 9-8

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 9-10

    Step 7: Solution Using the Standard k- Model . . . . . . . . . . . . . . 9-14

    Step 8: Postprocessing for the Standard k- Solution . . . . . . . . . . . 9-21

    Step 9: Solution Using the RNG k- Model . . . . . . . . . . . . . . . . . 9-27

    Step 10: Postprocessing for the RNG k- Solution . . . . . . . . . . . . . 9-28

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-33

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-33

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-33

    10 Using Multiple Rotating Reference Frames 10-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

    vi Release 12.0 c ANSYS, Inc. March 12, 2009

  • CONTENTS

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-6

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7

    Step 5: Cell Zone Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 10-8

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 10-10

    Step 7: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-14

    Step 8: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-18

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-21

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-21

    11 Using the Mixing Plane Model 11-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-6

    Step 4: Mixing Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-7

    Step 5: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-9

    Step 6: Cell Zone Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 11-10

    Step 7: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 11-13

    Step 8: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-22

    Step 9: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-29

    Release 12.0 c ANSYS, Inc. March 12, 2009 vii

  • CONTENTS

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-35

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11-35

    12 Using Sliding Meshes 12-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-2

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-6

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-7

    Step 5: Cell Zone Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 12-8

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 12-11

    Step 7: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 12-14

    Step 8: Mesh Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-15

    Step 9: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-16

    Step 10: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-30

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-35

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12-35

    13 Using Dynamic Meshes 13-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-3

    viii Release 12.0 c ANSYS, Inc. March 12, 2009

  • CONTENTS

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-5

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-6

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 13-8

    Step 6: Solution: Steady Flow . . . . . . . . . . . . . . . . . . . . . . . . 13-12

    Step 7: Time-Dependent Solution Setup . . . . . . . . . . . . . . . . . . 13-15

    Step 8: Mesh Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-17

    Step 9: Time-Dependent Solution . . . . . . . . . . . . . . . . . . . . . . 13-24

    Step 10: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-31

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-33

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13-33

    14 Modeling Species Transport and Gaseous Combustion 14-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2

    Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-6

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-9

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 14-13

    Step 6: Initial Solution with Constant Heat Capacity . . . . . . . . . . . 14-19

    Step 7: Solution with Varying Heat Capacity . . . . . . . . . . . . . . . . 14-24

    Step 8: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-26

    Step 9: NOx Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-34

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-44

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-44

    Release 12.0 c ANSYS, Inc. March 12, 2009 ix

  • CONTENTS

    15 Using the Non-Premixed Combustion Model 15-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-3

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-4

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-7

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-14

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 15-15

    Step 6: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 15-23

    Step 7: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-24

    Step 8: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-29

    Step 9: Energy Balances Reporting . . . . . . . . . . . . . . . . . . . . . 15-32

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-34

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-34

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15-34

    16 Modeling Surface Chemistry 16-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-3

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-6

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-8

    x Release 12.0 c ANSYS, Inc. March 12, 2009

  • CONTENTS

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 16-16

    Step 6: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 16-21

    Step 7: Non-Reacting Flow Solution . . . . . . . . . . . . . . . . . . . . . 16-22

    Step 8: Reacting Flow Solution . . . . . . . . . . . . . . . . . . . . . . . 16-24

    Step 9: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-30

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-36

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16-36

    17 Modeling Evaporating Liquid Spray 17-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-6

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-9

    Step 5: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 17-11

    Step 6: Initial Solution Without Droplets . . . . . . . . . . . . . . . . . . 17-17

    Step 7: Create a Spray Injection . . . . . . . . . . . . . . . . . . . . . . . 17-24

    Step 8: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-30

    Step 9: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-36

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-39

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17-39

    18 Using the VOF Model 18-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-1

    Release 12.0 c ANSYS, Inc. March 12, 2009 xi

  • CONTENTS

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-3

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-4

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-6

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-8

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-9

    Step 5: Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-11

    Step 6: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 18-13

    Step 7: User-Defined Function (UDF) . . . . . . . . . . . . . . . . . . . . 18-14

    Step 8: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 18-15

    Step 9: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-19

    Step 10: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-24

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-25

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18-25

    19 Modeling Cavitation 19-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-2

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-5

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-7

    Step 5: Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-9

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 19-12

    Step 7: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 19-16

    xii Release 12.0 c ANSYS, Inc. March 12, 2009

  • CONTENTS

    Step 8: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-17

    Step 9: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-21

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-24

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19-24

    20 Using the Mixture and Eulerian Multiphase Models 20-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-4

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-6

    Step 5: Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-7

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 20-9

    Step 7: Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . 20-13

    Step 8: Solution Using the Mixture Model . . . . . . . . . . . . . . . . . 20-14

    Step 9: Postprocessing for the Mixture Solution . . . . . . . . . . . . . . 20-18

    Step 10: Setup and Solution for the Eulerian Model . . . . . . . . . . . . 20-21

    Step 11: Postprocessing for the Eulerian Model . . . . . . . . . . . . . . 20-25

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-27

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20-27

    21 Using the Eulerian Multiphase Model for Granular Flow 21-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-2

    Release 12.0 c ANSYS, Inc. March 12, 2009 xiii

  • CONTENTS

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-8

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-10

    Step 5: Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-12

    Step 6: User-Defined Function (UDF) . . . . . . . . . . . . . . . . . . . . 21-15

    Step 7: Cell Zone Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 21-16

    Step 8: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-19

    Step 9: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-29

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-31

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-31

    22 Modeling Solidification 22-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-5

    Step 4: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-7

    Step 5: Cell Zone Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 22-9

    Step 6: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 22-10

    Step 7: Solution: Steady Conduction . . . . . . . . . . . . . . . . . . . . 22-18

    Step 8: Solution: Transient Flow and Heat Transfer . . . . . . . . . . . . 22-26

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-34

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22-34

    xiv Release 12.0 c ANSYS, Inc. March 12, 2009

  • CONTENTS

    23 Using the Eulerian Granular Multiphase Model with Heat Transfer 23-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-3

    Step 3: Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-6

    Step 4: UDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-7

    Step 5: Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-8

    Step 6: Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-10

    Step 7: Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . 23-13

    Step 8: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-21

    Step 9: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-30

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-32

    Further Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-32

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23-32

    24 Postprocessing 24-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-2

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-3

    Step 3: Adding Lights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-5

    Step 4: Creating Isosurfaces . . . . . . . . . . . . . . . . . . . . . . . . . 24-8

    Release 12.0 c ANSYS, Inc. March 12, 2009 xv

  • CONTENTS

    Step 5: Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-11

    Step 6: Velocity Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-16

    Step 7: Animation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-20

    Step 8: Pathlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-25

    Step 9: Overlaying Velocity Vectors on the Pathline Display . . . . . . . 24-30

    Step 10: Exploded Views . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-32

    Step 11: Animating the Display of Results in Successive StreamwisePlanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-37

    Step 12: XY Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-40

    Step 13: Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-42

    Step 14: Saving Hardcopy Files . . . . . . . . . . . . . . . . . . . . . . . 24-44

    Step 15: Volume Integral Reports . . . . . . . . . . . . . . . . . . . . . . 24-45

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24-45

    25 Turbo Postprocessing 25-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-2

    Step 1: Mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-3

    Step 2: General Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-3

    Step 3: Defining the Turbomachinery Topology . . . . . . . . . . . . . . 25-4

    Step 4: Isosurface Creation . . . . . . . . . . . . . . . . . . . . . . . . . . 25-7

    Step 5: Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-9

    Step 6: Reporting Turbo Quantities . . . . . . . . . . . . . . . . . . . . . 25-14

    Step 7: Averaged Contours . . . . . . . . . . . . . . . . . . . . . . . . . . 25-15

    Step 8: 2D Contours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-16

    Step 9: Averaged XY Plots . . . . . . . . . . . . . . . . . . . . . . . . . 25-18

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25-19

    xvi Release 12.0 c ANSYS, Inc. March 12, 2009

  • CONTENTS

    26 Parallel Processing 26-1

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-1

    Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-1

    Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-1

    Setup and Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-2

    Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-2

    Step 1: Starting the Parallel Version of ANSYS FLUENT . . . . . . . . . 26-3

    Step 1A: Multiprocessor Machine . . . . . . . . . . . . . . . . . . . . . . 26-3

    Step 1B: Network of Computers . . . . . . . . . . . . . . . . . . . . . . . 26-5

    Step 2: Reading and Partitioning the Mesh . . . . . . . . . . . . . . . . . 26-8

    Step 3: Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-13

    Step 4: Checking Parallel Performance . . . . . . . . . . . . . . . . . . . 26-14

    Step 5: Postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-15

    Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26-17

    Release 12.0 c ANSYS, Inc. March 12, 2009 xvii

  • CONTENTS

    xviii Release 12.0 c ANSYS, Inc. March 12, 2009

  • Using This Manual

    Whats In This Manual

    The ANSYS FLUENT Tutorial Guide contains a number of tutorials that teach you howto use ANSYS FLUENT to solve different types of problems. In each tutorial, featuresrelated to problem setup and postprocessing are demonstrated.

    Tutorial 1 is a detailed tutorial designed to introduce the beginner to ANSYS FLUENT.This tutorial provides explicit instructions for all steps in the problem setup, solution, andpostprocessing. The remaining tutorials assume that you have read or solved Tutorial 1,or that you are already familiar with ANSYS FLUENT and its interface. In these tutorials,some steps will not be shown explicitly.

    All of the tutorials include some postprocessing instructions, but Tutorial 24 is devotedentirely to standard postprocessing, and Tutorial 25 is devoted to turbomachinery-specificpostprocessing.

    Where to Find the Files Used in the Tutorials

    Each of the tutorials uses an existing mesh file. (Tutorials for mesh generation areprovided with the mesh generator documentation.) You will find the appropriate meshfile (and any other relevant files used in the tutorial) on the User Services Center. ThePreparation step of each tutorial will tell you where to find the necessary files. (Notethat Tutorials 24, 25, and 26 use existing case and data files.)

    Some of the more complex tutorials may require a significant amount of computationaltime. If you want to look at the results immediately, without waiting for the calculationto finish, you can find the case and data files associated with the tutorial on the UserServices Center (in the same directory where you found the mesh file).

    Release 12.0 c ANSYS, Inc. March 12, 2009 i

  • Using This Manual

    How To Use This Manual

    Depending on your familiarity with computational fluid dynamics and the ANSYS FLU-ENT software, you can use this tutorial guide in a variety of ways.

    For the Beginner

    If you are a beginning user of ANSYS FLUENT you should first read and solve Tutorial 1,in order to familiarize yourself with the interface and with basic setup and solutionprocedures. You may then want to try a tutorial that demonstrates features that youare going to use in your application. For example, if you are planning to solve a problemusing the non-premixed combustion model, you should look at Tutorial 15.

    You may want to refer to other tutorials for instructions on using specific features, suchas custom field functions, mesh scaling, and so on, even if the problem solved in thetutorial is not of particular interest to you. To learn about postprocessing, you can lookat Tutorial 24, which is devoted entirely to postprocessing (although the other tutorialsall contain some postprocessing as well). For turbomachinery-specific postprocessing, seeTutorial 25.

    For the Experienced User

    If you are an experienced ANSYS FLUENT user, you can read and/or solve the tutorial(s)that demonstrate features that you are going to use in your application. For example,if you are planning to solve a problem using the non-premixed combustion model, youshould look at Tutorial 15.

    You may want to refer to other tutorials for instructions on using specific features, suchas custom field functions, mesh scaling, and so on, even if the problem solved in thetutorial is not of particular interest to you. To learn about postprocessing, you can lookat Tutorial 24, which is devoted entirely to postprocessing (although the other tutorialsall contain some postprocessing as well). For turbomachinery-specific postprocessing, seeTutorial 25.

    ii Release 12.0 c ANSYS, Inc. March 12, 2009

  • Using This Manual

    Typographical Conventions Used In This Manual

    Several typographical conventions are used in the text of the tutorials to facilitate yourlearning process.

    An informational icon ( ) marks an important note.

    A warning icon ( ! ) marks a warning. Different type styles are used to indicate graphical user interface menu items andtext interface menu items (e.g., Zone Surface dialog box, surface/zone-surfacecommand).

    The text interface type style is also used when illustrating exactly what appears onthe screen or exactly what you must type in the text window or in a dialog box.

    Instructions for performing each step in a tutorial will appear in standard type.Additional information about a step in a tutorial appears in italicized type.

    A mini flow chart is used to guide you through the navigation pane, which leadsyou to a specific task page or dialog box. For example,

    Models Multiphase Edit...indicates that Models is selected in the navigation pane, which then opens thecorresponding task page. In the Models task page, Multiphase is selected from thelist. Clicking the Edit... button opens the Multiphase dialog box.

    Also, a mini flow chart is used to indicate the menu selections that lead you to aspecific command or dialog box. For example,

    Define Injections...indicates that the Injections... menu item can be selected from the Define pull-downmenu.

    The words surrounded by boxes invoke menus (or submenus) and the arrows pointfrom a specific menu toward the item you should select from that menu.

    Release 12.0 c ANSYS, Inc. March 12, 2009 iii

  • Using This Manual

    iv Release 12.0 c ANSYS, Inc. March 12, 2009

  • Tutorial 1. Introduction to Using ANSYS FLUENT: FluidFlow and Heat Transfer in a Mixing Elbow

    Introduction

    This tutorial illustrates the setup and solution of a three-dimensional turbulent fluidflow and heat transfer problem in a mixing elbow. The mixing elbow configurationis encountered in piping systems in power plants and process industries. It is oftenimportant to predict the flow field and temperature field in the area of the mixing regionin order to properly design the junction.

    This tutorial demonstrates how to do the following:

    Launch ANSYS FLUENT. Read an existing mesh file into ANSYS FLUENT. Use mixed units to define the geometry and fluid properties. Set material properties and boundary conditions for a turbulent forced convectionproblem.

    Initiate the calculation with residual plotting. Calculate a solution using the pressure-based solver. Visually examine the flow and temperature fields using the postprocessing toolsavailable in ANSYS FLUENT.

    Enable the second-order discretization scheme for improved prediction of the tem-perature field.

    Adapt the mesh based on the temperature gradient to further improve the predic-tion of the temperature field.

    Prerequisites

    This tutorial assumes that you have little or no experience with ANSYS FLUENT, andso each step will be explicitly described.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-1

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Problem Description

    The problem to be considered is shown schematically in Figure 1.1. A cold fluid at 20Cflows into the pipe through a large inlet, and mixes with a warmer fluid at 40C thatenters through a smaller inlet located at the elbow. The pipe dimensions are in inches,and the fluid properties and boundary conditions are given in SI units. The Reynoldsnumber for the flow at the larger inlet is 50,800, so a turbulent flow model will be required.

    Note: Since the geometry of the mixing elbow is symmetric, only half of the elbow needsto be modeled in ANSYS FLUENT.

    = 4216 J/kgKpC

    = 8 x 10 Pas 4

    k = 0.677 W/mK

    = 0.4 m/sxU4" Dia.

    4"

    8"

    3"1" Dia.

    1"

    8"

    Viscosity:Conductivity:Specific Heat:

    T = 20 CI = 5%

    = 1.2 m/syUT = 40 CI = 5%

    Density: = 1000 kg/m3

    o

    o

    Figure 1.1: Problem Specification

    1-2 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Setup and Solution

    Preparation

    1. Download introduction.zip from the User Services Center to your working folder.This file can be found by using the Documentation link on the ANSYS FLUENTproduct page.

    2. Unzip introduction.zip.

    The file elbow.msh can be found in the introduction folder created after unzippingthe file. Solution files created during the preparation of the tutorial are provided ina solution files folder.

    Note: ANSYS FLUENT tutorials are prepared using ANSYS FLUENT on a Windows sys-tem. The screen shots and graphic images in the tutorials may be slightly differentthan the appearance on your system, depending on the operating system or graphicscard.

    Step 1: Launching ANSYS FLUENT

    1. Click the ANSYS FLUENT icon ( ) in the ANSYS program group to open FLU-ENT Launcher.

    ANSYS FLUENT Launcher allows you to decide which version of ANSYS FLUENTyou will use, based on your geometry and on your processing capabilities.

    2. Ensure that the proper options are enabled.

    FLUENT Launcher retains settings from the previous session.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-3

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (a) Select 3D from the Dimension list by clicking the radio button or the text, sothat a green dot appears in the radio button.

    (b) Select Serial from the Processing Options list.

    (c) Make sure that the Display Mesh After Reading, Embed Graphics Windows, andWorkbench Color Scheme options are enabled.

    Note: An option is enabled when there is a check mark in the check box, anddisabled when the check box is empty. To change an option from disabledto enabled (or vice versa), click the check box or the text.

    (d) Make sure that the Double-Precision option is disabled.

    Extra: You can also restore the default settings by clicking the Default button.

    3. Set the working path to the folder created when you unzipped introduction.zip.

    (a) Click the Show More >> button.

    (b) Enter the path to your working folder for Working Directory by double-clickingthe text box and typing.

    Alternatively, you can click the browse button ( ) next to the WorkingDirectory text box and browse to the folder, using the Browse For Folder dialogbox.

    1-4 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    4. Click OK to launch ANSYS FLUENT.

    Step 2: Mesh

    1. Read the mesh file elbow.msh.

    File Read Mesh...Select Read from the File menu, then select Mesh... to open the Select File dialogbox.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-5

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (a) Select the mesh file by clicking elbow.msh in the introduction folder createdwhen you unzipped the original file.

    (b) Click OK to read the file and close the Select File dialog box.

    As the mesh file is read by ANSYS FLUENT, messages will appear in the consolereporting the progress of the conversion. ANSYS FLUENT will report that 13,852hexahedral fluid cells have been read, along with a number of boundary faces withdifferent zone identifiers.

    Note: The mesh is displayed in the graphics window by default.

    Extra: You can use the mouse to probe for mesh information in the graphics win-dow. If you click the right mouse button with the pointer on any node in themesh, information about the associated zone will be displayed in the console,including the name of the zone.

    Alternatively, you can click the probe button ( ) in the graphics toolbar andclick the left mouse button on any node. This feature is especially useful whenyou have several zones of the same type and you want to distinguish betweenthem quickly.

    For this 3D problem, you can make it easier to probe particular nodes by chang-ing the view. You can perform any of the actions described in the followingtable:

    1-6 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Table 1.1: View Manipulation Instructions

    Action Using Default Mouse But-ton Settings

    Using Graphics Toolbar Buttons

    Rotate view(vertical,horizontal)

    Press the left mouse buttonand drag the mouse. Releasethe mouse button when theviewing angle is satisfactory.

    After clicking , press the left mouse but-ton and drag the mouse. Dragging side toside rotates the view about the vertical axis,and up and down rotates the view about thehorizontal axis.

    Roll view(clock-wise, coun-terclock-wise)

    (not applicable) After clicking , press the left mouse but-ton and drag the mouse side to side to roll theview clockwise and counterclockwise.

    Translateview

    Press the middle mouse but-ton once at any point in thedisplay to center the view atthat point.

    After clicking , press the left mouse but-ton and drag the mouse until the view is sat-isfactory.

    Zoom in onview

    Press the middle mouse but-ton and drag the mouse to theright and either up or down.This action will cause a rect-angle to appear in the display.When you release the mousebutton, a new view will be dis-played which consists entirelyof the contents of the rectan-gle.

    After clicking , press the left mouse but-ton and drag the mouse to the right and upor down. This action will cause a rectangle toappear in the display. When you release themouse button, a new view will be displayedwhich consists entirely of the contents of therectangle.

    Alternatively, after clicking , press theleft mouse button and drag the mouse up.

    Zoom outfrom view

    Press the middle mouse but-ton and drag the mouse to theright and either up or down.This action will cause a rect-angle to appear in the display.When you release the mousebutton, a new view will be dis-played which consists entirelyof the contents of the rectan-gle.

    After clicking , press the left mouse but-ton and drag the mouse to the left and up ordown. This action will cause a rectangle toappear in the display. When you release themouse button, the magnification of the viewwill be reduced by an amount that is inverselyproportional to the size of the rectangle. Thenew view will be centered at the center of therectangle.

    Alternatively, after clicking , press theleft mouse button and drag the mouse up.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-7

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Note: After you have clicked a button in the graphics toolbar, you can return to

    the default mouse button settings by clicking .

    2. Manipulate the mesh display to obtain a front view as shown in Figure 1.2.

    Graphics and Animations Views...Select Graphics and Animations in the navigation pane, then click Views... in theGraphics and Animations task page.

    (a) Select front from the Views selection list.

    Note: A list item is selected if it is highlighted, and deselected if it is nothighlighted.

    (b) Click Apply and close the Views dialog box.

    Figure 1.2: The Hexahedral Mesh for the Mixing Elbow

    1-8 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 3: General Settings

    Select General in the navigation pane to perform the mesh-related activities and to choosea solver.

    General

    1. Check the mesh.

    General CheckANSYS FLUENT will report the results of the mesh check in the console.

    Mesh Check

    Domain Extents:x-coordinate: min (m) = -8.000000e+000, max (m) = 8.000000e+000y-coordinate: min (m) = -9.134633e+000, max (m) = 8.000000e+000z-coordinate: min (m) = 0.000000e+000, max (m) = 2.000000e+000

    Volume statistics:minimum volume (m3): 5.098261e-004maximum volume (m3): 2.330738e-002total volume (m3): 1.607154e+002

    Face area statistics:minimum face area (m2): 4.865882e-003maximum face area (m2): 1.017924e-001

    Checking number of nodes per cell.Checking number of faces per cell.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-9

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Checking thread pointers.Checking number of cells per face.Checking face cells.Checking cell connectivity.Checking bridge faces.Checking right-handed cells.Checking face handedness.Checking face node order.Checking element type consistency.Checking boundary types:Checking face pairs.Checking periodic boundaries.Checking node count.Checking nosolve cell count.Checking nosolve face count.Checking face children.Checking cell children.Checking storage.Done.

    Note: The minimum and maximum values may vary slightly when running ondifferent platforms. The mesh check will list the minimum and maximum xand y values from the mesh in the default SI unit of meters. It will also reporta number of other mesh features that are checked. Any errors in the mesh willbe reported at this time. Ensure that the minimum volume is not negative,since ANSYS FLUENT cannot begin a calculation when this is the case.

    2. Scale the mesh.

    General Scale...

    1-10 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (a) Make sure that Convert Units is selected in the Scaling group box.

    (b) Select in from the Mesh Was Created In drop-down list by first clicking thedown-arrow button and then clicking the in item from the list that appears.

    (c) Click Scale to scale the mesh.

    ! Be sure to click the Scale button only once.

    Domain Extents will continue to be reported in the default SI unit of meters.

    (d) Select in from the View Length Unit In drop-down list to set inches as theworking unit for length.

    (e) Confirm that the domain extents are as shown in the previous dialog box.

    (f) Close the Scale Mesh dialog box.

    The mesh is now sized correctly and the working unit for length has been set toinches.

    Note: Because the default SI units will be used for everything except length, thereis no need to change any other units in this problem. The choice of inches forthe unit of length has been made by the actions you have just taken. If youwant a different working unit for length, other than inches (e.g., millimeters),click Units... in the General task page and make the appropriate change, in theSet Units dialog box.

    3. Check the mesh.

    General CheckNote: It is a good idea to check the mesh after you manipulate it (i.e., scale,

    convert to polyhedra, merge, separate, fuse, add zones, or smooth and swap).This will ensure that the quality of the mesh has not been compromised.

    4. Retain the default settings in the Solver group box of the General task page.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-11

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 4: Models

    Models

    1. Enable heat transfer by activating the energy equation.

    Models Energy Edit...

    (a) Enable the Energy Equation option.

    (b) Click OK to close the Energy dialog box.

    1-12 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    2. Enable the k- turbulence model.

    Models Viscous Edit...

    (a) Select k-epsilon from the Model list.

    The Viscous Model dialog box will expand.

    (b) Select Realizable from the k-epsilon Model list.

    (c) Click OK to accept the model and close the Viscous Model dialog box.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-13

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 5: Materials

    Materials

    1. Create a new material called water.

    Materials Fluid Create/Edit...

    1-14 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (a) Enter water for Name.

    (b) Enter the following values in the Properties group box:

    Property Value

    Density 1000 kg/m3

    cp 4216 J/kg KThermal Conductivity 0.677 W/mKViscosity 8e-04 kg/m s

    (c) Click Change/Create.

    A Question dialog box will open, asking if you want to overwrite air. Click Noso that the new material water is added to the list of materials which originallycontained only air.

    Extra: You could have copied the material water-liquid (h2o) from thematerials database (accessed by clicking the FLUENT Database... button).If the properties in the database are different from those you wish to use,you can edit the values in the Properties group box in the Create/EditMaterials dialog box and click Change/Create to update your local copy.The original copy will not be affected.

    (d) Make sure that there are now two materials (water and air) defined locally byexamining the FLUENT Fluid Materials drop-down list.

    Both the materials will also be listed under Fluid in the Materials task page.

    (e) Close the Create/Edit Materials dialog box.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-15

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 6: Cell Zone Conditions

    Cell Zone Conditions

    1. Set the cell zone conditions for the fluid zone (fluid).

    Cell Zone Conditions fluid Edit...

    1-16 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (a) Select water from the Material Name drop-down list.

    (b) Click OK to close the Fluid dialog box.

    Step 7: Boundary Conditions

    Boundary Conditions

    1. Set the boundary conditions at the cold inlet (velocity-inlet-5).

    Boundary Conditions velocity-inlet-5 Edit...Hint: If you are unsure of which inlet zone corresponds to the cold inlet, you can

    probe the mesh display using the right mouse button or the probe toolbar button

    ( ) as described in a previous step. The information will be displayed inthe ANSYS FLUENT console, and the zone you probed will be automaticallyselected from the Zone selection list in the Boundary Conditions task page.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-17

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (a) Select Components from the Velocity Specification Method drop-down list.

    The Velocity Inlet dialog box will expand.

    (b) Enter 0.4 m/s for X-Velocity.

    (c) Retain the default value of 0 m/s for both Y-Velocity and Z-Velocity.

    (d) Select Intensity and Hydraulic Diameter from the Specification Method drop-down list in the Turbulence group box.

    (e) Enter 5% for Turbulent Intensity.

    (f) Enter 4 inches for Hydraulic Diameter.

    The hydraulic diameter Dh is defined as:

    Dh =4A

    Pw

    where A is the cross-sectional area and Pw is the wetted perimeter.

    (g) Click the Thermal tab.

    1-18 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (h) Enter 293.15 K for Temperature.

    (i) Click OK to close the Velocity Inlet dialog box.

    2. In a similar manner, set the boundary conditions at the hot inlet (velocity-inlet-6),using the values in the following table:

    Boundary Conditions velocity-inlet-6 Edit...

    Velocity Specification Method ComponentsX-Velocity 0 m/sY-Velocity 1.2 m/sZ-Velocity 0 m/sSpecification Method Intensity & Hydraulic DiameterTurbulent Intensity 5%Hydraulic Diameter 1 inchTemperature 313.15 K

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-19

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    3. Set the boundary conditions at the outlet (pressure-outlet-7), as shown in the Pres-sure Outlet dialog box.

    Boundary Conditions pressure-outlet-7 Edit...

    Note: ANSYS FLUENT will use the backflow conditions only if the fluid is flowinginto the computational domain through the outlet. Since backflow might occurat some point during the solution procedure, you should set reasonable backflowconditions to prevent convergence from being adversely affected.

    4. For the wall of the pipe (wall), retain the default value of 0 W/m2 for Heat Flux inthe Thermal tab.

    Boundary Conditions wall Edit...

    1-20 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 8: Solution

    In the steps that follow, you will set up and run the calculation using the task pages listedunder the Solution heading in the navigation pane.

    1. Enable the plotting of residuals during the calculation.

    Monitors Residuals Edit...

    (a) Make sure that Plot is enabled in the Options group box.

    (b) Enter 1e-05 for the Absolute Criteria of continuity, as shown in the ResidualMonitor dialog box.

    (c) Click OK to close the Residual Monitors dialog box.

    Note: By default, all variables will be monitored and checked by ANSYS FLUENTas a means to determine the convergence of the solution. It is a good practiceto also define a surface monitor that can help evaluate whether the solution istruly converged. You will do this in the next step.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-21

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    2. Define a surface monitor at the outlet (pressure-outlet-7).

    Monitors Create... (Surface Monitors)

    (a) Retain the default entry of surf-mon-1 for the Name of the surface monitor.

    (b) Enable the Plot and Write options for surf-mon-1.

    (c) Retain the default entry of surf-mon-1.out for File Name.

    (d) Set Get Data Every to 3 by clicking the up-arrow button.

    This setting instructs ANSYS FLUENT to update the plot of the surface monitorand write data to a file after every 3 iterations during the solution.

    (e) Select Mass-Weighted Average from the Report Type drop-down list.

    (f) Select Temperature... and Static Temperature from the Field Variable drop-downlists.

    (g) Select pressure-outlet-7 from the Surfaces selection list.

    (h) Click OK to save the surface monitor settings and close the Surface Monitordialog box.

    The name and report type of the surface monitor you created will be displayed inthe Surface Monitors selection list in the Monitors task page.

    1-22 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    3. Initialize the flow field, using the boundary conditions settings at the cold inlet(velocity-inlet-5) as a starting point.

    Solution Initialization

    (a) Select velocity-inlet-5 from the Compute from drop-down list.

    (b) Enter 1.2 m/s for Y Velocity in the Initial Values group box.

    Note: While an initial X Velocity is an appropriate guess for the horizontalsection, the addition of a Y Velocity component will give rise to a betterinitial guess throughout the entire elbow.

    (c) Click Initialize.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-23

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    4. Check to see if the case conforms to best practices.

    Run Calculation Check Case

    (a) Click the Solver tab and examine the Recommendation in the Manual Imple-mentation group box.

    The only recommendation for this case file is to use discretization of a higherorder. This recommendation can be ignored for the time being, as it will beperformed in a later step.

    (b) Close the Case Check dialog box.

    5. Save the case file (elbow1.cas.gz).

    File Write Case...

    1-24 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (a) (optional) Indicate the folder in which you would like the file to be saved.

    By default, the file will be saved in the folder from which you read in elbow.msh(i.e., the introduction folder). You can indicate a different folder by brows-ing to it or by creating a new folder.

    (b) Enter elbow1.cas.gz for Case File.

    Adding the extension .gz to the end of the file name extension instructs ANSYSFLUENT to save the file in a compressed format. You do not have to include.cas in the extension (e.g., if you enter elbow1.gz, ANSYS FLUENT willautomatically save the file as elbow1.cas.gz). The .gz extension can also beused to save data files in a compressed format.

    (c) Make sure that the defaultWrite Binary Files option is enabled, so that a binaryfile will be written.

    (d) Click OK to save the case file and close the Select File dialog box.

    6. Start the calculation by requesting 150 iterations.

    Run Calculation

    (a) Enter 150 for Number of Iterations.

    (b) Click Calculate.

    Note: By starting the calculation, you are also starting to save the surfacemonitor data at the rate specified in the Surface monitors dialog box. If afile already exists in your working folder with the name you specified inthe Define Surface Monitor dialog box, then a Question dialog box will open,asking if you would like to append the new data to the existing file. ClickNo in the Question dialog box, and then click OK in the Warning dialog boxthat follows to overwrite the existing file.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-25

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Figure 1.3: Convergence History of the Mass-Weighted Average Temperature

    Note: The solution will be stopped by ANSYS FLUENT after approximately140 iterations, when the residuals reach their specified values. The ex-act number of iterations will vary, depending on the platform being used.An Information dialog box will open to alert you that the calculation iscomplete. Click OK in the Information dialog box to proceed.

    Since the residual values vary slightly by platform, the plot that appearson your screen may not be exactly the same as the one shown here.

    As the calculation progresses, the residuals will be plotted in the graphics win-dow (Figure 1.4).

    1-26 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    You can display the residuals history (Figure 1.4), by selecting it from thegraphics window drop-down list.

    Scaled ResidualsFLUENT 12.0 (3d, pbns, rke)

    Iterations140120100806040200

    1e+01

    1e+00

    1e-01

    1e-02

    1e-03

    1e-04

    1e-05

    1e-06

    1e-07

    epsilonkenergyz-velocityy-velocityx-velocitycontinuityResiduals

    Figure 1.4: Residuals for the First 140 Iterations

    7. Examine the plots for convergence (Figures 1.4 and 1.3).

    Note: There are no universal metrics for judging convergence. Residual definitionsthat are useful for one class of problem are sometimes misleading for otherclasses of problems. Therefore it is a good idea to judge convergence not only byexamining residual levels, but also by monitoring relevant integrated quantitiesand checking for mass and energy balances.

    There are three indicators that convergence has been reached:

    The residuals have decreased to a sufficient degree.The solution has converged when the Convergence Criterion for each vari-able has been reached. The default criterion is that each residual will bereduced to a value of less than 103, except the energy residual, for whichthe default criterion is 106.

    The solution no longer changes with more iterations.Sometimes the residuals may not fall below the convergence criterion setin the case setup. However, monitoring the representative flow variablesthrough iterations may show that the residuals have stagnated and do notchange with further iterations. This could also be considered as conver-gence.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-27

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    The overall mass, momentum, energy, and scalar balances are obtained.You can examine the overall mass, momentum, energy and scalar balancesin the Flux Reports dialog box. The net imbalance should be less than 0.2%of the net flux through the domain when the solution has converged. In thenext step you will check to see if the mass balance indicates convergence.

    8. Examine the mass flux report for convergence.

    Reports Fluxes Set Up...

    (a) Make sure that Mass Flow Rate is selected from the Options list.

    (b) Select pressure-outlet-7, velocity-inlet-5, and velocity-inlet-6 from the Boundariesselection list.

    (c) Click Compute.

    The individual and net results of the computation will be displayed in the Re-sults and Net Results boxes, respectively, in the Flux Reports dialog box, as wellas in the console.

    The sum of the flux for the inlets should be very close to the sum of the fluxfor the outlets. The net results show that the imbalance in this case is wellbelow the 0.2% criteria suggested previously.

    (d) Close the Flux Reports dialog box.

    9. Save the data file (elbow1.dat.gz).

    File Write Data...In later steps of this tutorial you will save additional case and data files with dif-ferent prefixes.

    1-28 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 9: Displaying the Preliminary Solution

    In the steps that follow, you will visualize various aspects of the flow for the preliminarysolution, using the task pages listed under the Results heading in the navigation pane.

    1. Display filled contours of velocity magnitude on the symmetry plane (Figure 1.5).

    Graphics and Animations Contours Set Up...

    (a) Enable Filled in the Options group box.

    (b) Make sure that Node Values is enabled in the Options group box.

    (c) Select Velocity... and Velocity Magnitude from the Contours of drop-down lists.

    (d) Select symmetry from the Surfaces selection list.

    (e) Click Display to display the contours in the active graphics window.

    Extra: When you probe a point in the displayed domain with the mouse, the levelof the corresponding contour is highlighted in the colormap in the graphicswindow, and is also reported in the console.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-29

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Figure 1.5: Predicted Velocity Distribution after the Initial Calculation

    2. Display filled contours of temperature on the symmetry plane (Figure 1.6).

    Graphics and Animations Contours Set Up...

    (a) Select Temperature... and Static Temperature from the Contours of drop-downlists.

    1-30 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (b) Click Display and close the Contours dialog box.

    Figure 1.6: Predicted Temperature Distribution after the Initial Calculation

    3. Display velocity vectors on the symmetry plane (Figures 1.7 and 1.8).

    Graphics and Animations Vectors Set Up...

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-31

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (a) Select symmetry from the Surfaces selection list.

    (b) Click Display to plot the velocity vectors.

    Note: The Auto Scale option is enabled by default in the Options group box.This scaling sometimes creates vectors that are too small or too large inthe majority of the domain. You can improve the clarity by adjustingthe Scale and Skip settings, thereby changing the size and number of thevectors when they are displayed.

    (c) Enter 4 for Scale.

    (d) Set Skip to 2.

    (e) Click Display again to redisplay the vectors (Figure 1.7).

    Figure 1.7: Resized Velocity Vectors

    (f) Close the Vectors dialog box.

    (g) Zoom in on the vectors in the display.

    To zoom in, refer to Table 1.1. The image will be redisplayed at a highermagnification (Figure 1.8).

    1-32 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Figure 1.8: Magnified View of Velocity Vectors

    (h) Zoom out to the original view.

    To zoom out or translate the view refer Table 1.1. The image will be redisplayedat a lower magnification (Figure 1.7).

    You also have the option of selecting the original view in the Views dialog box:select front from the Views selection list and click Apply.

    Graphics and Animations Views...

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-33

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    4. Create a line surface at the centerline of the outlet.

    Surface Iso-Surface...

    (a) Select Mesh... and Z-Coordinate from the Surface of Constant drop-down lists.

    (b) Click Compute.

    The range of values in the z direction will be displayed in the Min and Maxboxes.

    (c) Retain the default value of 0 inches for Iso-Values.

    (d) Select pressure-outlet-7 from the From Surface selection list.

    (e) Enter z=0 outlet for New Surface Name.

    (f) Click Create.

    After the line surface z=0 outlet is created, a new entry will automaticallybe generated for New Surface Name, in case you would like to create anothersurface.

    (g) Close the Iso-Surface dialog box.

    1-34 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    5. Display and save an XY plot of the temperature profile across the centerline of theoutlet for the initial solution (Figure 1.9).

    Plots XY Plot Set Up...

    (a) Select Temperature... and Static Temperature from the Y Axis Function drop-down lists.

    (b) Select z=0 outlet from the Surfaces selection list.

    (c) Click Plot.

    (d) Enable Write to File in the Options group box.

    The button that was originally labeled Plot will change to Write....

    (e) Click Write... to open the Select File dialog box.

    i. Enter outlet temp1.xy for XY File.

    ii. Click OK to save the temperature data and close the Select File dialogbox.

    (f) Close the Solution XY Plot dialog box.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-35

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Figure 1.9: Outlet Temperature Profile for the Initial Solution

    6. Define a custom field function for the dynamic head formula (|V |2/2).Define Custom Field Functions...

    (a) Select Density... and Density from the Field Functions drop-down lists, and clickthe Select button to add density to the Definition field.

    (b) Click the X button to add the multiplication symbol to the Definition field.

    (c) Select Velocity... and Velocity Magnitude from the Field Functions drop-downlists, and click the Select button to add |V| to the Definition field.

    1-36 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (d) Click y^x to raise the last entry in the Definition field to a power, and click 2for the power.

    (e) Click the / button to add the division symbol to the Definition field, and thenclick 2.

    (f) Enter dynamic-head for New Function Name.

    (g) Click Define and close the Custom Field Function Calculator dialog box.

    7. Display filled contours of the custom field function (Figure 1.10).

    Graphics and Animations Contours Set Up...

    (a) Select Custom Field Functions... and dynamic-head from the Contours of drop-down lists.

    Hint: Custom Field Functions... is at the top of the upper Contours of drop-down list. After you have opened the drop-down list, scroll up by clickingthe up-arrow button on the scroll bar on the right.

    (b) Make sure that symmetry is selected from the Surfaces selection list.

    (c) Click Display and close the Contours dialog box.

    Note: You may need to change the view by zooming out after the last vector display,if you have not already done so.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-37

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Figure 1.10: Contours of the Dynamic Head Custom Field Function

    8. Save the settings for the custom field function by writing the case and data files(elbow1.cas.gz and elbow1.dat.gz).

    File Write Case & Data...(a) Ensure that elbow1.cas.gz is entered for Case/Data File.

    Note: When you write the case and data file at the same time, it does notmatter whether you specify the file name with a .cas or .dat extension,as both will be saved.

    (b) Click OK to save the files and close the Select File dialog box.

    1-38 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Step 10: Enabling Second-Order Discretization

    The elbow solution computed in the first part of this tutorial uses first-order discretization.The resulting solution is very diffusive; mixing is overpredicted, as can be seen in thecontour plots of temperature and velocity distribution. You will now change to second-order discretization for all listed equations.

    1. Change the solver settings.

    Solution Methods

    (a) Select Second Order from the Pressure drop-down list.

    (b) Select Second Order Upwind from the Momentum, Turbulent Kinetic Energy,Turbulent Dissipation Rate, and Energy drop-down lists.

    You will need to scroll the Spatial Discretization group box down to find Energy.

    2. (optional) Check the case to confirm that there are no recommendations for revi-sions to the setup.

    Run Calculation Check Case

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-39

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    3. Continue the calculation by requesting 150 more iterations.

    Run Calculation

    Extra: To save the convergence history of the surface monitor for this set of itera-tions as a separate output file, you would need to change the File Name in theSurface Monitor dialog box to surf-mon-2.out prior to running the calculation.

    (a) Make sure that 150 is entered for Number of Iterations.

    (b) Click Calculate.

    The solution will converge in approximately 63 additional iterations (Fig-ure 1.11). The convergence history is shown in Figure 1.12.

    Figure 1.11: Residuals for the Second-Order Energy Calculation

    1-40 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Note: You should expect to see the residuals jump whenever you change the solutioncontrol parameters.

    Figure 1.12: Convergence History of Mass-Weighted Average Temperature

    4. Save the case and data files for the second-order solution (elbow2.cas.gz andelbow2.dat.gz).

    File Write Case & Data...(a) Enter elbow2.gz for Case/Data File.

    (b) Click OK to save the files and close the Select File dialog box.

    The files elbow2.cas.gz and elbow2.dat.gz will be saved in your default folder.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-41

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    5. Examine the revised temperature distribution (Figure 1.13).

    Graphics and Animations Contours Set Up...

    (a) Make sure that Filled is enabled in the Options group box.

    (b) Select Temperature... and Static Temperature from the Contours of drop-downlists.

    (c) Make sure that symmetry is selected from the Surfaces selection list.

    (d) Click Display (Figure 1.13) and close the Contours dialog box.

    Figure 1.13 shows the thermal spreading of the warm fluid layer near the outer wallof the bend. To see the effects of second-order discretization, compare Figure 1.13with Figure 1.6.

    1-42 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    Figure 1.13: Temperature Contours for the Second-Order Solution

    6. Display and save an XY plot of the temperature profile across the centerline of theoutlet for the second-order solution (Figure 1.14).

    Plots XYPlot Set Up...

    (a) Disable Write to File in the Options group box.

    The button that was labeled Write... will change to Plot.

    Release 12.0 c ANSYS, Inc. March 12, 2009 1-43

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow

    (b) Make sure that Temperature... and Static Temperature are selected from the YAxis Function drop-down lists.

    (c) Make sure that z=0 outlet is selected from the Surfaces selection list.

    (d) Click Plot.

    Figure 1.14: Outlet Temperature Profile for the Second-Order Solution

    (e) Enable Write to File in the Options group box.

    The button that was labeled Plot will change to Write....

    (f) Click Write... to open the Select File dialog box.

    i. Enter outlet temp2.xy for XY File.

    ii. Click OK to save the temperature data.

    (g) Close the Solution XY Plot dialog box.

    1-44 Release 12.0 c ANSYS, Inc. March 12, 2009

  • Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer i


Related Documents