Top Banner
Zumdahl, Hfst. 9 Hybridisatie (9.1) dit is het belangrijkste deel van hfst. 9!! Molecular orbital theorie (9.2-9.4) bindingsvolgorde binding diatomic molecules binding heteronucleaire moleculen Combinatie LE en MO theorie (9.5)
40

Zumdahl, Hfst. 9

Oct 16, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Zumdahl, Hfst. 9

Zumdahl, Hfst. 9

• Hybridisatie (9.1)• dit is het belangrijkste deel van hfst. 9!!

• Molecular orbital theorie (9.2-9.4)• bindingsvolgorde• binding diatomic molecules• binding heteronucleaire moleculen

• Combinatie LE en MO theorie (9.5)

Page 2: Zumdahl, Hfst. 9

Intermoleculaire Binding

p. 331: “What conditions will favor bond formation?”

(...) A bond will form if the system can lower its total energy in the process”

M.a.w. als de energie van de combinatie lager is dan die van de afzonderlijke atomen, dan zal zich een binding vormen.

Om te verklaren cq. te voorspellen welke moleculen bestaan – vertegenwoordigen ze een verlaagde energietoestand? zijn steeds uitgebreidere modellen nodig.

Page 3: Zumdahl, Hfst. 9

Intermoleculaire Binding (overzicht modellen)

Quantumchemie is overkoepelend modelOplossing vaak onmogelijk (complexe moleculen)Benadering nu mogelijk met computermodellenEchter, onderstaande modellen gebaseerde op quantumchemie stellen ons in

staat >90 of zelfs 99% van alle moleculen te begrijpen.

Gelokaliseerde electronmodellen (Hoofdstuk 8)- Van Ionbinding tot Covalente Binding- Valence Bond model: valentie-electronen spelen hoofdrol bij chemische binding

Covalent: Lewis model voor Electronenverdeling in moleculeni

ResonantieVSEPR

Page 4: Zumdahl, Hfst. 9

Intermoleculaire Binding (overzicht modellen 2)

Niet alleen elektronen-verdeling, maar ook een verklaringwaarom chemische binding in organische moleculen stabiel zijn en waarom ze een bepaalde ruimtelijke structuur hebben

Hybridisatie

(Hfk. 9.1)

Verklaring van het bestaan van een aantal bijzonder moleculen en molecuuleigenschappen die niet te verklaren zijn met de voorgaande modellen

Gedelokaliseerde

elektronmodellen

(hfk. 9.2-9.5)- Molecular orbital (MO) theorie

Page 5: Zumdahl, Hfst. 9

Localized Electron Model (hfk. 8-9.1)

Underlying assumption:A molecule is composed of atoms that are bound

together by sharing pairs of electrons using the atomic orbitals of the bound atoms.

Hfst. 8: ionbinding covalent; LewisHfst 9: gehybridiseerde

atomic orbitals

Page 6: Zumdahl, Hfst. 9

Hybridization of atomic orbitals

• Definition• Model• Most important types; examples

• sp3

methaan (CH4 )• sp2

etheen (H2 C=CH2 )• sp

ethyn (HC CH)• Additional types that explain exceptions to

Octet-rule• sp2d / sp3d2

/ sp3d2

Page 7: Zumdahl, Hfst. 9

Hybridization – Definition / model

The mixing of atomic

orbitals...to form special atomic

orbitals for bonding

Quantumchemie redenering:

1. “het is mogelijk oplossingen te vinden van de Schrödinger vergelijking die aangeven dat

2. in plaats van s

en p

atomic orbitals

3. er ‘gemixte’ orbitals bestaan rond een atoom

4. die onderling gelijkwaardig zijn”

Voorbeelden: sp3, sp2 , sp

Let op: HET GAAT DUS ALTIJD OVER VALENTIE-ELEKTRONEN

Page 8: Zumdahl, Hfst. 9

Hybridization -Model

De “denkstappen” in het model:

1. Per atoom kunnen atomic orbitals s, p (en evt. d) samen verschillende ‘gehybridiseerde’ orbitalen vormen

2. Deze kunnen vervolgens een binding aangaan met een ander atoom, en wel met

1. een s of p orbitaal van dat atoom2. een gehybridiseerd orbitaal van dat atoom

Het resultaat is een σ- of π-binding

3. Elk individueel atoom reageert zo, dat de laagste energietoestand voor het molecuul kan worden bereikt

Page 9: Zumdahl, Hfst. 9

Hybridized orbitals

-

uitwerking

• sp3 – hybridisatie“whenever a set of 4 equivalent tetrahedral atomic orbitals is

required by an atom in a molecule, this model assumes that the atom adopts a set of sp3 orbitals” (bindingshoeken 109o)

• sp2 “ whenever … 3 equivalent, triagonal (bindingshoeken 120o)“

• sp: “whenever 2 equivalent,.. traight” (bindingshoeken 180o)“

• NOTABENE: als de Lewisstructuur een vrij elektronenpaar aangeeft bij een atoom, dan telt dat als éé binding.

Page 10: Zumdahl, Hfst. 9

Hybridized orbitals

uitwerking

2

• sp2 : in dit geval onstaan er• 3 gelijkwaardige orbitalen voor bindingen of vrije

elektronenparen in die richtingen• 1 vrij p-orbital, (oorspronkelijk atomic orbital) in

vlak loodrecht op de driehoek” (py )

• sp: - 2 gelijkwaardige orbitalen• 2 vrije p-orbitalen loodrecht op de as van de sp

orbitalen én loodrecht op elkaar (py en pz )

Page 11: Zumdahl, Hfst. 9

Hybridisation

vorming

van binding

• Twee typen bindings-orbitalen: • er wordt een σ-bond

orbital • en/of één of meerdere π-bond

orbitalen gevormd

• Altijd één sigma (σ) binding welke langs de internucleaire as ligt. • Combinatie van (1s, sp, sp2, sp3) met (1s, sp, sp2, sp3); • Combinatie van (2p met 2p)

• 0, 1 of 2 pi (π) orbital• Deze orbitaal ligt in de ruimte boven en onder de internucleaire as• Bestaat altijd uit een combinatie van twee niet-gehybridiseerde

atomic p orbitalen (py,1 met py,2 ) of (pz,1 met pz,2 )

Page 12: Zumdahl, Hfst. 9

Hybridized orbitals

-

Voorbeelden

• Bonding around C-atom: • all four sp3 used for σ-bonding:

• methane (CH4 ); ethane (C2 H6 )

• or combination of sp2 and π-bonding of 2p orbitals• (double bond): ethylene (H2 C=CH2 )

• or combination of sp and 2 π-bonds of 2p orbitals• (triple bond): acetylene (HC CH); • 2x double bond: carbon dioxide (O=C=O)

Page 13: Zumdahl, Hfst. 9

Hybridized orbitals

-

voorbeelden

• Bonding around O-atom:

• sp3 : two for σ-bonding, 2 free electron pairs example: CH3 OH

• one for σ-bonding, 3 free electron pairs, example: H3 CO-;

• sp2 : one double bond (σ- ) and π-bonding of 2p orbital; 2 free electron pairs; example: CO2 (double bond), formaldehyde H2 CO

• sp: one for σ-bonding and 2 π-bonds of 2p orbitals (triple bond); example: CO

Page 14: Zumdahl, Hfst. 9

The Localized Electron Model

Procedure to draw the Loc. Electron Model

1. Draw the Lewis structure(s) (8.9 - 8.12)

2. Determine the arrangement of electron pairs (VSEPR model;)VSEPR: valence shell electron-pair repulsion model, 8.13

3. Specify the necessary hybrid orbitals (9.1)

Page 15: Zumdahl, Hfst. 9

Hybridization

Orbitals for bonding per C-atom: σ πName Example Formula

sp3 ethaan H3 C-CH3 4 0sp2 etheen (ethyleen) H2 C=CH2 3 1sp ethyn (acetyleen) HC CH 2 2

sp2d / sp3d / sp3d2 ? ?

Page 16: Zumdahl, Hfst. 9

Hybridization

• hybr. type hybr. type• CO for C: __ for O: __• BF4

- for B: __ for F: __• XeF2 for Xe:__ for F: __• SO2 for S: __ for O: __

Solution strategy:1. Draw the Lewis-structure2. Determine electron pair arrangement (VSEPR)3. Determine the hybridisation required per atom

Page 17: Zumdahl, Hfst. 9

Hybridization –

procedure (1)

1. Draw Lewis-structure: (p. 355 Zumdahl)• sum all valence electrons; divide them so that all atoms to achieve

NGEC (Noble Gas Electronic Configuration; I.e. 8 electron pairs (Octet rule)

• all atoms net zero formal charge or charge as low as possible; net sum of electrons (lone pairs + half bonding pairs) = valence of atom

2. Determine electron pair arrangement (VSEPR)• in their Lewis structures, some molecules will have atoms with free

electron pairs• VSEPR: the spatial arrangement of the atoms/orbitals will be such

that electron pair repulsions are minimized (8.13; p. 367 Zumdahl)

Page 18: Zumdahl, Hfst. 9

Hybridization -

procedure (2)

3. Determine hybridisation required per atom• From step 1: locations of double/triple bonds• From step 2: spatial arrangement (NB step can be skipped first,

and checked later on)

• Per atom: derive from step 1 the number n of free p-orbitals required to accommodate all double/triple bonds;

• spx; and x = 3-n;• nota bene: when n>2: one or more d orbitals are involved!

• Per atom: check whether spatial arrangement of hybrid orbitals fits with result step 2.

Page 19: Zumdahl, Hfst. 9

Hybridization -

result

• CO for C: sp for O: sp

• BF4- for B: sp3 for F: sp3

• XeF2 for Xe: dsp3 for F: sp3

• SO2 for S: sp2 for O: sp2

Page 20: Zumdahl, Hfst. 9

Hybridization

• Prediction of the shape of a molecule

• Consider the allene molecule H2 C=C=CH2

A) Are all four hydrogen atoms in the same plane?B) If not, what is their spatial relationship; Explain

Page 21: Zumdahl, Hfst. 9

Intermoleculaire Binding

• Gelokaliseerde elektronmodellen• Ionbinding• Lewisstructuren• VSEPR• Valence Bond model• Hybridisatie

• Gedelokaliseerde

elektronmodellen• MO theorie

Page 22: Zumdahl, Hfst. 9

Molecular orbital theorie

• Molecular orbital theorie (9.2-9.4)• bindingsvolgorde• binding diatomic molecules• binding heteronucleaire moleculen

• Combinatie LE en MO theorie (9.5)

Page 23: Zumdahl, Hfst. 9

MO theory: Molecular Orbitals

• Yet another model?• Basic assumptions• MO energy diagram

- H2 - He2

- Li2- B2

- Overview

• Combination MO-VB

Page 24: Zumdahl, Hfst. 9

MO theory

• Model: Electrons shared between two atoms can be thought to be in a Molecular Orbital that is predicted by the Schrödinger Equation.

• Assumption: analogous to atomic orbitals, molecules will strive to reach minimum energy configuration

• Consequence: existing MO’s will be filled from lowest energy onwards.

Page 25: Zumdahl, Hfst. 9

MO theory -

assumptions (cont’d)

• In order to participate in MO’s, atomic orbitals must overlap in space.

• Therefore, only valence orbitals of atoms contribute significantly to MOs.

Page 26: Zumdahl, Hfst. 9

MO -

Another model

• MO offers quantum-chemically correct explanation of structure of molecules that were previously described as exhibiting resonance structures

• MO is new theory that explains and supports the model simplification of the resonance structure theory

• In addition, offers explanation why complex reaction mechanisms occur

• Example: atmospheric OZONE chemistry!

Page 27: Zumdahl, Hfst. 9

MO -

orbitals

• Again, natural systems evolve to state of minimum energy

• MO theory predicts that atomic orbitals (AO) recombine to yield:

• MO’s with lower energy than AO’s: Bonding Orbitals• MO’s with higher energy than AO’s: Anti-Bonding Orbitals

Page 28: Zumdahl, Hfst. 9

MO -

orbitals

(1)

σ1s*

H

σ1s

1s1s

HH2

H2 molecuul

Toen

emen

deen

ergi

e

Atomicorbitals

Atomicorbitals

Molecularorbitals

Page 29: Zumdahl, Hfst. 9

MO -

orbitals

(2)

σ1s*

He

σ1s

1s1s

HeHe2

He2 molecuul

Toen

emen

deen

ergi

e

Atomicorbitals

Atomicorbitals

Molecularorbitals

Page 30: Zumdahl, Hfst. 9

Bond Order (BO)

• MO helps to predict which molecules are stable, and which are not; indicator: BO

• Difference between the number of electrons in bonding MO’s and number of electrons in anti-bonding MO’s divided by two.

• BO is indication of relative stability of a molecular bond, and hence of a molecule

Page 31: Zumdahl, Hfst. 9

MO -

orbitals

(3)

σ2s*

Li

σ2s

2s2s

LiLi2

Li2 molecuul

Toen

emen

deen

ergi

e

Atomicorbitals

Atomicorbitals

Molecularorbitals

σ2s*

Be

σ2s

2s2s

BeBe2

Be2 molecuul

Toen

emen

deen

ergi

e

Atomicorbitals

Atomicorbitals

Molecularorbitals

• What is BO of both these molecules• Which one is likely to be stable?

Page 32: Zumdahl, Hfst. 9

MO energy levels:

s-p orbital mixing

Overzicht: p.410

σ2px*

B BB2

B2 molecuul

Toen

emen

de e

nerg

ie

Atomicorbitals

Atomicorbitals

Molecularorbitals

σ2s*

σ2s

2s2s

2p2p

π2py π2pz

σ2px

π2py* π2pz*

Page 33: Zumdahl, Hfst. 9

MO -

energy levels

σ2px*

N NN2

N2 molecuul

Toen

emen

de e

nerg

ie

Atomicorbitals

Atomicorbitals

Molecularorbitals

σ2s*

σ2s

2s2s

2p2p

π2py π2pz

σ2px

π2py* π2pz*• Shift for• B2

• C2

• N2

Page 34: Zumdahl, Hfst. 9

MO -

energy levels

• No shift for• O2

• F2

σ2px*

O OO2

O2 molecuul

Toen

emen

de e

nerg

ie

Atomicorbitals

Atomicorbitals

Molecularorbitals

σ2s*

σ2s

2s2s

2p2p

π2py π2pz

σ2px

π2py* π2pz*

Page 35: Zumdahl, Hfst. 9

MO -

energy levels

• Use for diatomic molecules adjacent in Per. Syst.• NO• CN• etc.

σ2px*

O OO2

NO molecuul

Toen

emen

de e

nerg

ie

Atomicorbitals

Atomicorbitals

Molecularorbitals

σ2s*

σ2s

2s2s

2p

2p

π2py π2pz

σ2px

π2py* π2pz*

Page 36: Zumdahl, Hfst. 9

MO –

model

• Explains why NO exists

• NO is relatively stable

• Even with an UNEVEN number of elektrons!

• In fact it is a radical NO•

σ2px*

O OO2

NO molecuul

Toen

emen

de e

nerg

ie

Atomicorbitals

Atomicorbitals

Molecularorbitals

σ2s*

σ2s

2s2s

2p

2p

π2py π2pz

σ2px

π2py* π2pz*

Page 37: Zumdahl, Hfst. 9

Magnetism

• Paramagnetism• unpaired electrons• attracted to induced magnetic field

• Diamagnetism• paired electrons• repelled from induced magnetic field

Page 38: Zumdahl, Hfst. 9

Outcomes of MO Model

1 As bond order increases, bond energy increases and bond length decreases.

2 N2 has a triple bond, and a correspondingly high bond energy.

3 O2 is paramagnetic. This is predicted by the MO model, not by the Lewis model, which predicts diamagnetism.

Page 39: Zumdahl, Hfst. 9

MO theorie

• MO energiediagram• H2 - He2

• Li2• B2

• Overzicht

• Combinatie

MO-VB

Page 40: Zumdahl, Hfst. 9

Combining LE and MO Models

σ

bonds can be described as being localized.

π

bonding must be treated as being delocalized.

π

bonding CAN span multiple atoms (9.5)

• Examples:• 1,4-Butadiene HH C=HC-CH =CH

H

• Benzene C6 H6 aromatics R–C6H5; R1–C6H4-R2