Top Banner
Presents Seminar on “ZigBee” By K.Gireesh 63,First floor, 5th Main Road, CIT Nagar, Nandanam, Chennai- 35. Tel: 044-65253457 Mobile: 98405 77448 Website: www.vetechnologies.org Email: [email protected]
40
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Zigbee

Presents

Seminar on

“ZigBee”By K.Gireesh

63,First floor, 5th Main Road, CIT Nagar, Nandanam, Chennai-35.

Tel: 044-65253457 Mobile: 98405 77448

Website: www.vetechnologies.org Email: [email protected]

Page 2: Zigbee

What is ZIGBEEWhat is ZIGBEEEmerging standardized protocol for Ultra Low Power Wireless Personal Area Networks (WPANs)

ZigBee is an established set of specifications for wireless personal area networking (WPAN) i.e, digital radio connections between computers and related devices.

ZigBee is targeted at radio-frequency (RF) applications which require a low data rate, long battery life, and secure networking.

Page 3: Zigbee

ZigBee Technical GoalsZigBee Technical Goals• 10 kbps to 115 kbps data throughput

• 10 to 75 m coverage range

• Up to 100 collocated networks

• Up to 2 years of battery life on standard alkaline

batteries

Page 4: Zigbee

The ZigBee Alliance is an association ofcompanies working together to enablereliable, cost-effective, low-power,wirelessly networked, monitoring andcontrol products based on an openglobal standard.

Page 5: Zigbee
Page 6: Zigbee

IEEE 802.15.4

Zigbee is set of high level communication protocols based upon the specification produced by 802.15.4 - standard for wireless standard for wireless personal area networks (WPANspersonal area networks (WPANs) )

Page 7: Zigbee

WPANsWPANs

A personal area network (PAN) is a computer network used for communication among computer devices (including telephones and personal digital assistants) close to one person

A wireless PAN consists of a dynamic group of less than 255 devices that communicate within a range of about a 33-feet.

Page 8: Zigbee
Page 9: Zigbee

IEEE 802 Wireless SpaceIEEE 802 Wireless Space

Page 10: Zigbee

ZigBee Vs BluetoothZigBee Vs Bluetooth

• Bluetooth targets medium data rate continuous duty

– 1 Mbps over the air, ~700 kbps best case data transfer

– File transfer, streaming telecom audio– Point to multipoint networking

• ZigBee targets low data rate, low duty cycle– 250 kbps over the air, 60-115 kbps typical data

transfer– Long battery life (weeks to months)– More sophisticated networking

Page 11: Zigbee

ZigBee Vs Other Wireless ZigBee Vs Other Wireless ProtocolsProtocols

Page 12: Zigbee

IEEE 802.15.4 Standard Basics

• Channel access is via CSMA with collision avoidance and optional time slotting

• Three bands, 27 channels specified

- 2.4 GHz: 16 channels, 250 kbps

- 868.3 MHz : 1 channel, 20 kbps- 902-928 MHz: 10 channels, 40 kbps

• Message acknowledgment and an optional beacon structure

Page 13: Zigbee

• Multi-level security

• Works well for selectable latency for controllers, sensors, remote monitoring and portable electronics

• Configured for maximum battery life - has the potential to last as long as the shelf life of most batteries

Page 14: Zigbee

IEEE 802.15.4 IEEE 802.15.4 CharacteristicsCharacteristics

• Maximum data rates allowed for each of these Maximum data rates allowed for each of these frequency bands are fixed as 250 kbps @2.4 GHz, frequency bands are fixed as 250 kbps @2.4 GHz, 40 kbps @ 915 MHz, and 20 kbps @868 MHz 40 kbps @ 915 MHz, and 20 kbps @868 MHz

• Channel access using Carrier Sense Multiple Channel access using Carrier Sense Multiple Access with Collision Avoidance (CSMA - CA) Access with Collision Avoidance (CSMA - CA)

• Addressing space of up to 64 bit IEEE address Addressing space of up to 64 bit IEEE address devices, 65,535 networks devices, 65,535 networks

Page 15: Zigbee

ZigBee ApplicationsZigBee Applications

Page 16: Zigbee

ArchitectureArchitecture

These layers facilitate the features that make ZigBee very attractive: low cost, easy implementation, reliable data transfer, short-range operations, very low power consumption and adequate security features

Page 17: Zigbee

ZigBee Alliance – IEEE- ZigBee Alliance – IEEE- CustomerCustomerRelationsRelations

Page 18: Zigbee

Physical LayerPhysical Layer

Page 19: Zigbee

Physical Layer Physical Layer FunctionalitiesFunctionalities

The IEEE802.15.4 PHY physical layer accommodates high levels of integration by using direct sequence to permit simplicity in the analog circuitry and enable cheaper implementations.

• Activation and deactivation of the radio transceiver

• Energy detection within the current channel• Link quality indication for received packets• Channel frequency selection• Data transmission and reception

Page 20: Zigbee

IEEE 802.15.4 Physical IEEE 802.15.4 Physical Layer Frequency BandLayer Frequency Band

Page 21: Zigbee

IEEE 802.15.4 PHY/MAC IEEE 802.15.4 PHY/MAC CharacteristicsCharacteristics

• PHY (2.4GHz and 868/915 MHz)

• Data rates of 250 kbps (@2.4 GHz), 40 kbps (@ 915MHz), and 20 kbps (@868 MHz)

• Optimized for low duty-cycle applications (<0.1%)

• CSMA-CA channel access

• Optional guaranteed time slot for applications requiring low latency (Beaconing and GTS not used by ZigBee at this point)

Page 22: Zigbee

MAC LayerMAC Layer

The IEEE 802.15.4 MAC media access The IEEE 802.15.4 MAC media access control layer permits use of several control layer permits use of several topologies without introducing complexity topologies without introducing complexity and is meant to work with large numbers and is meant to work with large numbers of devices.of devices.

Page 23: Zigbee

IEEE 802.15.4 MAC Features• Employs 64-bit IEEE & 16-bit short addresses

– Ultimate network size can be 264 nodes (more than probably needed)– Using local addressing, simple networks of more than 65,000 (216)

nodes can be configured, with reduced address overhead

• Three devices specified– Reduced Function Device (RFD)– Full Function Device (FFD)– Network coordinator (FFDC)

• Simple frame structure• Reliable delivery of data• Supports association/disassociation• Supports AES-128 security• Employs CSMA-CA channel access for better coexistence• Offers Optional superframe structure with beacons, GTS mechanism

Page 24: Zigbee

MAC OptionsNon-beacon network- Standard CSMA-CA communications- Positive acknowledgment for successfully received packets

Optional beacon-enabled network- Superframe structure• For dedicated bandwidth and low latency• Set up by network coordinator to transmit beacons at

predetermined intervals» 15ms to 252sec (15.38ms 2n where 0 ≤ n ≤ 14)∗» 16 equal-width time slots between beacons» Channel access in each time slot is contention free

Page 25: Zigbee

Network Pieces : PAN Network Pieces : PAN CoordinatorCoordinator

PAN Coordinator• “owns” the network• Starts it• Allows other devices to join it• Provides binding and address-table services • Saves messages until they can be delivered• And more… could also have i/o capability• A “full-function device” – FFD• Mains powered

Page 26: Zigbee

Network Pieces : RouterNetwork Pieces : Router

Routers• Routes messages• Does not own or start network• Scans to find a network to join• Given a block of addresses to assign• A “full-function device” – FFD• Mains powered depending on topology• Could also have i/o capability

Page 27: Zigbee

Network Pieces : End Network Pieces : End DevicesDevices

End Device• Communicates with a single device• Does not own or start network• Scans to find a network to join• Can be an FFD or RFD (reduced function device)• Usually battery powered

Page 28: Zigbee

IEEE 802.15.4 Device Types• Network Coordinator- Maintains overall network knowledge; most sophisticated of the

three types; most memory and computing power

• Full Function Device (FFD)- Carries full 802.15.4 functionality and all features specified by the

standard- Additional memory, computing power make it ideal for a network

router function- Could also be used in network edge devices where the network

touches other networks or devices that are not IEEE 802.15.4 compliant

• Reduced Function Device (RFD)- Carriers limited (as specified by the standard) functionality to

control cost and complexity- General usage will be in network edge devices

Page 29: Zigbee

ZigBee Device ModelZigBee Device Model• ZigBee Coordinator (ZC)

- One and only one required for each ZigBee network.- ZigBee Network has unique PAN ID and channel no- Initiates network formation.- Acts as 802.15.4 PAN coordinator (FFD).- May act as router once network is formed.

• ZigBee Router (ZR)- Optional network component.- May associate with ZC or with previously associated ZR.- Acts as 802.15.4 coordinator (FFD).- Participates in multihop routing of messages.

• ZigBee End Device (ZED)- Joins ZC or ZR.- Optional network component.- Acts as 802.15.4 End device (RFD).- Optimized for very low power operation- Shall not allow association and shall not participate in routing.

Page 30: Zigbee

Network TopologiesNetwork Topologies

Page 31: Zigbee

ZigBee Network ZigBee Network FormationFormation

Page 32: Zigbee
Page 33: Zigbee

ZigBee Network ModelZigBee Network Model

Page 34: Zigbee

ZigBee Mesh NetworkingZigBee Mesh Networking

Page 35: Zigbee

Traffic ModesTraffic Modes

ZigBee employs either of two modes, beacon or ZigBee employs either of two modes, beacon or non-beacon to enable the to-and-fro data non-beacon to enable the to-and-fro data traffic. traffic.

BeaconBeacon mode is used when the coordinator runs mode is used when the coordinator runs on batteries and thus offers maximum power on batteries and thus offers maximum power savings, whereas the savings, whereas the Non-BeaconNon-Beacon mode finds mode finds favor when the coordinator is mains-poweredfavor when the coordinator is mains-powered. .

Page 36: Zigbee

Beacon ModeBeacon Mode• In the beacon mode, a device watches out for the In the beacon mode, a device watches out for the

coordinator's beacon that gets transmitted at coordinator's beacon that gets transmitted at periodically, locks on and looks for messages periodically, locks on and looks for messages addressed to it. If message transmission is complete, addressed to it. If message transmission is complete, the coordinator dictates a schedule for the next the coordinator dictates a schedule for the next beacon so that the device ‘goes to sleep'; in fact, the beacon so that the device ‘goes to sleep'; in fact, the coordinator itself switches to sleep mode. coordinator itself switches to sleep mode.

• For better latency beacon operation is desired. In this mode, devices are assigned one of 16 time slots between beacons. Beacon intervals can be from 15 ms up to 252 seconds.

Page 37: Zigbee

Non-Beacon ModeNon-Beacon Mode

• The The non-beaconnon-beacon mode will be included in a mode will be included in a system where devices are ‘asleep' nearly always, as system where devices are ‘asleep' nearly always, as in smoke detectors and burglar alarms. The devices in smoke detectors and burglar alarms. The devices wake up and confirm their continued presence in wake up and confirm their continued presence in the network at random intervalsthe network at random intervals

• Non-beacon operation implies reliance on the CSMA and acknowledgment features for successful communications.

Page 38: Zigbee

Data Transfer ModelData Transfer ModelData transferred from device to coordinator

• In a beacon-enable network, device finds the beacon to synchronize to the super-frame structure. Then using slotted CSMA/CA to transmit its data.

• In a non beacon-enable network, device simply transmits its data using un-slotted CSMA/CA

Page 39: Zigbee

Data transferred from coordinator to device

• In a beacon-enable network, the coordinator indicates in the beacon that “data is pending.”

• Device periodically listens to the beacon and transmits a MAC command request using slotted CSMA/CA if necessary.

Page 40: Zigbee

THANK YOUTHANK YOU