Top Banner
UTILIZAÇÃO DE MÁQUINA DE INDUÇÃO DUPLAMENTE ALIMENTADA SEM ESCOVAS (BDFM) COMO GERADOR EÓLICO Andrei Silva Jardim Projeto de Graduação apresentado ao curso de Engenharia Elétrica da Escola Politécnica, Universidade Federal do Rio de Janeiro, como parte dos requisitos necessários à obtenção do título de Engenheiro. Orientador: Antônio Carlos Ferreira, Ph.D. Rio de Janeiro SETEMBRO de 2014
62

utilização de máquina de indução duplamente alimentada sem ...

Jan 08, 2017

Download

Documents

buithuan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: utilização de máquina de indução duplamente alimentada sem ...

UTILIZAÇÃO DE MÁQUINA DE INDUÇÃO DUPLAMENTE

ALIMENTADA SEM ESCOVAS (BDFM) COMO GERADOR EÓLICO

Andrei Silva Jardim

Projeto de Graduação apresentado ao curso de

Engenharia Elétrica da Escola Politécnica,

Universidade Federal do Rio de Janeiro, como

parte dos requisitos necessários à obtenção do

título de Engenheiro.

Orientador: Antônio Carlos Ferreira, Ph.D.

Rio de Janeiro

SETEMBRO de 2014

Page 2: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

ii

UTILIZAÇÃO DE MÁQUINA DE INDUÇÃO DUPLAMENTE

ALIMENTADA SEM ESCOVAS (BDFM) COMO GERADOR EÓLICO

Andrei Silva Jardim

PROJETO DE GRADUAÇÃO SUBMETIDO AO CORPO DOCENTE DO

DEPARTAMENTO DE ENGENHARIA ELÉTRICA DA ESCOLA POLITÉCNICA

DA UNIVERSIDADE FEDERAL DO RIO DE JANEIRO COMO PARTE DOS

REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE

ENGENHEIRO ELETRICISTA.

Examinada por:

Prof. Antonio Carlos Ferreira, Ph.D. (Orientador)

Prof. Sergio Sami Hazan, Ph.D.

Prof. Robson Francisco da Silva Dias, D.Sc

RIO DE JANEIRO, RJ – BRASIL

SETEMBRO de 2014

Page 3: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

iii

Jardim, Andrei Silva

Utilização de Máquina de Indução Duplamente Alimentada

Sem Escovas (Bdfm) como Gerador Eólico/ Andrei Silva Jardim. –

Rio de Janeiro: UFRJ/ Escola Politécnica, 2014.

X, 52p.: il.; 29,7 cm

Orientador: Antonio Carlos Ferreira

Projeto de Graduação – UFRJ/ Escola Politécnica/

Curso de Engenharia Elétrica, 2014

Referências Bibliográficas: p. 52.

1. Máquina de Indução 2. Energia Eólica 3. Gerador Eólico

4. Simulação Computacional. I. Ferreira, Antonio Carlos II.

Universidade Federal do Rio de Janeiro, Escola Politécnica, Curso

de Engenharia Elétrica III. Título

Page 4: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

iv

Aos meus pais, Luiz e Marilena, e a minha

irmã, Isis, que são as pessoas mais importantes

da minha vida.

Page 5: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

v

Agradecimentos

À minha mãe, Marilena, por sempre estar disposta a ouvir meus problemas e

preocupações ao longo da minha vida. Ao meu pai, Luiz, por ter ajudado a formar meu

caráter e me tornar a pessoa que sou hoje. À minha irmã, Isis, por ser muito importante

em minha vida.

Aos meus familiares, por estarem presentes e tornarem minha vida mais alegre.

Ao Celso, por ser um grande amigo e como um irmão para mim. Aos meus primos

Victor, Iury e Guilherme, por me acompanharem em várias situações.

Ao meu orientador, Antônio Carlos Ferreira, pela oportunidade de trabalhar com

máquinas elétricas, e por sua enorme disposição em me ajudar com as minhas dúvidas e

contribuir com a minha formação profissional.

Aos meus amigos e colegas da Engenharia Elétrica, pelo companheirismo e

apoio ao longo do curso, sem os quais certamente teria sido muito mais difícil chegar

até aqui.

Aos colegas do LASUP, em especial ao Hugo Ferreira, responsável pelo meu

ingresso ao laboratório.

Finalmente, aos professores e funcionários da UFRJ e a todos aqueles que

contribuíram direta e indiretamente para minha formação como Engenheiro Eletricista e

como pessoa.

Muito Obrigado!

Page 6: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

vi

Resumo do Projeto de Graduação em Engenharia Elétrica apresentado ao

Departamento de Engenharia Elétrica da Escola Politécnica – UFRJ como parte dos

requisitos necessários para a obtenção do grau de Engenheiro Eletricista:

UTILIZAÇÃO DE MÁQUINA DE INDUÇÃO DUPLAMENTE ALIMENTADA

SEM ESCOVAS (BDFM) COMO GERADOR EÓLICO

Andrei Silva Jardim

SETEMBRO de 2014

Orientador: Antonio Carlos Ferreira, Ph.D.

Atualmente existem diferentes tipos de máquinas elétricas utilizadas na geração

de energia eólica, cada uma apresentando características mais ou menos indicadas para

determinada aplicação. Uma dessas máquinas é a Máquina de Indução Duplamente

Alimentada (MIDA) que, como o nome diz, recebe uma alimentação no estator e outra

no rotor por meio de um inversor de frequência, através de anéis e escovas. O inversor

garante o controle de velocidade da máquina.

Através do controle de velocidade, a MIDA pode ser ajustada para operar de

modo a otimizar a extração de potência mecânica do vento, aumentando sua eficiência

em comparação a máquinas de velocidade constante. Entretanto, o preço pago por essa

vantagem está na necessidade de contatos mecânicos para acessar o rotor, o que

introduz mais elementos sujeitos a problemas e manutenção.

Uma possível alternativa ao uso da MIDA é a BDFM, uma máquina de indução

de características construtivas peculiares.

A BDFM apresenta dois enrolamentos trifásicos no estator, sendo um conectado

à rede e o outro ligado a um inversor de frequência para o controle de velocidade. Sua

principal vantagem em relação a uma MIDA é dispensar o uso de anéis e escovas.

Neste trabalho será apresentada a simulação do comportamento da BDFM

quando esta é utilizada como um gerador eólico. Isto será feito a partir de uma

ferramenta computacional - com base em um modelo matemático - da máquina

implementada no software comercial Matlab.

Page 7: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

vii

Abstract of Undergraduate Project presented to the Department of Electrical

Engineering of POLI/UFRJ as a partial fulfillment of the requirements for the degree of

Engineer.

UTILIZATION OF THE BRUSHLESS DOUBLY-FED INDUCTION

MACHINE (BDFM) AS A WIND GENERATOR

Andrei Silva Jardim

SEPTEMBER/2014

Advisor: Antonio Carlos Ferreira, Ph.D.

There are today a few different types of electrical machines used in generation of

wind energy, each one with specific characteristics that are more or less indicated for a

certain application. One of such machines is de Doubly-Fed Induction Machine (DFIM)

that, as its name suggests, possesses a winding in the stator and another one in the rotor

connected to the grid by a frequency inverter, using slip rings and brushes. The inverter

is responsible for the machine’s speed control.

Through the speed control, the DFIM may be adjusted to operate in order to

optimize the extraction of mechanical power from the wind, increasing its efficiency in

comparison of constant speed machines. However, the price paid for that advantage is in

the necessity of mechanical contacts in order to access the machine’s rotor, which

introduces more elements vulnerable to problems and maintenance.

One possible choice over the DFIM is the BDFM, an induction machine with

peculiar constructive characteristics.

The BDFM possesses two three-phase windings in the stator, one of them

connected do the grid while the other is accessed through a frequency inverter in order

to achieve the speed control. Its main advantage over the DFIM is that it does not

require slip rings or brushes.

In this work, a simulation of the behavior of the BDFM when it is utilized as a

wind generator will be shown. This will be done through a computer tool – based on a

mathematical model – implemented in the commercial software Matlab.

Page 8: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

viii

Sumário

Lista de Figuras ........................................................................................................... ix

Capítulo 1 ..................................................................................................................... 1

1. Introdução ................................................................................................................ 1

1.1. Máquina de Indução Duplamente Alimentada Sem Escovas (BDFM).............. 2

1.2. Objetivo e Motivação ...................................................................................... 4

1.3. Organização do Trabalho................................................................................. 4

Capítulo 2 ..................................................................................................................... 5

2. Energia do Vento ...................................................................................................... 5

2.1. Conceitos Básicos ........................................................................................... 5

2.2. Configurações de Geradores Eólicos ............................................................... 6

Capítulo 3 ................................................................................................................... 10

3. Modelo Matemático e Implementação .................................................................... 10

3.1. Diagrama de Blocos ...................................................................................... 12

3.2. Implementação da Turbina de Vento ............................................................. 14

3.3. Implementação do Ajuste de Frequência ....................................................... 18

3.4. Cálculo da potência elétrica ........................................................................... 21

3.5. Demais blocos ............................................................................................... 22

Capítulo 4 ................................................................................................................... 23

4. Resultados Obtidos ................................................................................................. 23

4.1. Considerações Iniciais ................................................................................... 23

4.2. Simulação da Operação da BDFM ligada a Turbina Eólica ............................ 23

4.3. Interpretação dos Resultados ......................................................................... 50

Capítulo 5 ................................................................................................................... 51

5. Conclusões ............................................................................................................. 51

Referências Bibliográficas .......................................................................................... 52

Page 9: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

ix

Lista de Figuras

Figura 1.1 – Máquina de indução duplamente alimentada sem escovas 2

Figura 1.2 – Rotor da BDFM 3

Figura 2.1 – Curvas de Cp em função de λ e β 6

Figura 2.2 – Anemômetro do tipo copo com um cata-vento 7

Figura 2.3 – Configuração GIGE 7

Figura 2.4 – Configuração GSRB 8

Figura 2.5 – Configuração GIDA 9

Figura 3.1 – Esquema da disposição dos loops em um ninho 11

Figura 3.2 – Implementação do Modelo Matemático 12

Figura 3.3 – Localização do bloco Torque do Vento 12

Figura 3.4 – Localização do bloco Frequência de Controle 13

Figura 3.5 – Interior do bloco Torque de Vento 14

Figura 3.6 – Parâmetros do bloco Wind Turbine 15

Figura 3.7 – Curvas características de potência da turbina de vento 16

Figura 3.8 – Exemplo de variação da velocidade do vento 17

Figura 3.9 – Interior do bloco Frequência de Controle 18

Figura 3.10 – Exemplo de variação da frequência 19

Figura 3.11 – Interior do bloco Alimentação do segundo enrolamento 20

Figura 3.12 – Interior do bloco Potência_qd0 21

Figura 3.13 – Interior do bloco 22

Figura 4.1 – Velocidade do vento 24

Figura 4.2 – Frequência de alimentação do enrolamento 2 25

Figura 4.3 – Velocidade de rotação – f1 = 50 Hz, f2 = 5 Hz » 15,2 Hz 25

Figura 4.4 – Torque mecânico 26

Figura 4.5 – Potência elétrica no primeiro enrolamento 27

Figura 4.6 – Potência elétrica no segundo enrolamento 27

Figura 4.7 – Potência elétrica total 28

Figura 4.8 – Potência mecânica total 29

Figura 4.9 – Velocidade do vento 30

Figura 4.10 – Frequência de alimentação do enrolamento 2 31

Page 10: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

x

Figura 4.11 – Velocidade de rotação – f1 = 50 Hz, f2 = 5 Hz » 18,68 Hz 31

Figura 4.12 – Torque mecânico 32

Figura 4.13 – Potência elétrica no primeiro enrolamento 33

Figura 4.14 – Potência elétrica no segundo enrolamento 33

Figura 4.15 – Potência elétrica total 34

Figura 4.16 – Potência mecânica total 35

Figura 4.17 – Velocidade do vento 36

Figura 4.18 – Frequência de alimentação do enrolamento 2 37

Figura 4.19 – Velocidade de rotação – f1 = 50 Hz, f2 = 5 Hz » 24,8 Hz 37

Figura 4.20 – Torque mecânico 38

Figura 4.21 – Potência elétrica no primeiro enrolamento 39

Figura 4.22 – Potência elétrica no segundo enrolamento 39

Figura 4.23 – Potência elétrica total 40

Figura 4.24 – Potência mecânica total 41

Figura 4.25 – Potência elétrica no primeiro enrolamento - 1º Caso 43

Figura 4.26 – Potência elétrica no segundo enrolamento - 1º Caso 43

Figura 4.27 – Potência elétrica total - 1º Caso 44

Figura 4.28 – Potência elétrica no primeiro enrolamento - 2º Caso 45

Figura 4.29 – Potência elétrica no segundo enrolamento - 2º Caso 45

Figura 4.30 – Potência elétrica total - 2º Caso 46

Figura 4.31 – Potência elétrica no primeiro enrolamento - 3º Caso 47

Figura 4.32 – Potência elétrica no segundo enrolamento - 3º Caso 47

Figura 4.33 – Potência elétrica total - 3º Caso 48

Figura 4.34 – Potência elétrica total no 1º caso – perda de sincronismo 49

Page 11: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

1

Capítulo 1

1. Introdução

A disponibilidade de energia é uma questão fundamental na nossa sociedade.

Contudo, existe atualmente uma forte preocupação com o impacto do homem sobre o

meio ambiente, o que impulsionou o aproveitamento de novas fontes energéticas

renováveis e menos agressivas à natureza e aos seres humanos.

Dentre essas novas fontes, a energia eólica é uma das alternativas mais

promissoras, tanto na produção de eletricidade para sistemas isolados quanto para

sistemas interligados. Essa matriz energética tem apresentado um crescimento

considerável nos últimos anos e representa uma fração expressiva da energia total

produzida em países como Dinamarca e Alemanha [1].

No Brasil q potência eólica instalada é de cerca de 4 GW, e a expectativa do setor

elétrico é aumentar essa potência em pelo menos 2 GW por ano até 2020,

acrescentando, a partir de 2012, mais 20 GW de energia eólica ao sistema elétrico

brasileiro [2], o que permitirá – em parte – melhorar o fornecimento de energia no

país, visto que a energia eólica e hidráulica apresentam sazonalidades

complementares [3].

Tendo em vista a importância da energia eólica no cenário energético nacional e

mundial, é fundamental o desenvolvimento de tecnologias mais baratas, confiáveis e

eficientes para o melhor aproveitamento dessa fonte.

Existem atualmente diferentes tipos de tecnologia empregados para a geração de

energia eólica, sendo as três principais: Gerador de Indução Gaiola de Esquilo (GIGE),

Gerador Síncrono de Rotor Bobinado (GSRB) e Gerador de Indução de Dupla

Alimentação (GIDA), sendo essa última mais utilizada para valores de potência nominal

superiores a 1.5 MW [4].

O GIDA apresenta uma série de vantagens em relação às outras configurações, e

uma delas é permitir o controle de velocidade por meio de um conversor eletrônico

ligado ao seu rotor, o qual tem uma potência nominal que é apenas uma fração

daquela do gerador como um todo. Entretanto, o contato do rotor da máquina com o

conversor é feito através de anéis e escovas coletoras, o que introduz mais uma

possível fonte de problemas mecânicos.

Page 12: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

2

Por dispensar o uso de anéis e escovas, e apresentar semelhanças à configuração

GIDA, a Máquina de Indução Duplamente Alimentada Sem Escovas (BDFM – Brushless

Doubly-Fed Induction Machine) é uma máquina com potencial para a aplicação como

um gerador eólico.

1.1. Máquina de Indução Duplamente Alimentada Sem Escovas

(BDFM)

A BDFM é uma máquina elétrica desenvolvida a partir da conexão em cascata de

dois motores de indução (MI). Assim, uma diferença mecânica da BDFM em relação a

uma máquina de indução convencional é a construção de dois enrolamentos trifásicos

independentes no seu estator ao invés de apenas um. Desses dois enrolamentos, um

recebe alimentação da rede elétrica, e o outro é alimentado através de um conversor

eletrônico, que permite a variação tanto da tensão quando da frequência aplicada,

como se pode ver na figura 1.1.

Figura 1.1 - Máquina de indução duplamente alimentada sem escovas

A principal peculiaridade construtiva da BDFM está no seu rotor: Ele é constituído

de seis conjuntos, chamados de ninhos, igualmente espaçados ao longo da

circunferência do rotor. Cada um desses ninhos é formado por três loops concêntricos,

o que forma um total de 18 circuitos no rotor da máquina. Uma imagem deste rotor

pode ser visualizada na figura 1.2.

Page 13: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

3

Figura 1.2 - Rotor da BDFM

As técnicas de controle de velocidade são importantes no estudo de máquinas

rotativas. Uma forma de controlar a velocidade de uma MI comum é simplesmente

ligar o seu estator à rede através de um inversor de frequência. Porém, o preço dos

conversores aumenta com a sua potência nominal. Outra alternativa é ligar o rotor da

máquina ao inversor, enquanto o estator é conectado diretamente à rede. Assim, o

conversor trabalha com uma potência reduzida – cerca de 1/3 da potência nominal da

máquina [5] – o que resulta em uma diminuição de custo. Entretanto, para realizar

esse tipo de controle, é necessário utilizar uma máquina de rotor bobinado, o que

exige o uso de anéis e escovas coletoras para acessar o rotor da máquina, reduzindo a

robustez e confiabilidade do sistema.

O fato de permitir a realização do controle de velocidade a partir do controle da

frequência das correntes no seu rotor, sem a necessidade do uso de anéis e escovas,

além de utilizar conversores para uma potência menor, torna a BDFM um tipo de

máquina com um grande leque de possíveis aplicações.

Page 14: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

4

1.2. Objetivo e Motivação

Este trabalho tem como objetivo a utilização de um modelo computacional da

BDFM – adaptado a partir de um modelo de base desenvolvido anteriormente em

outro trabalho – no software comercial Matlab/Simulink para analisar o

comportamento da máquina atuando como um gerador eólico.

Como a BDFM apresenta grande semelhança as MIDAs – e possui a vantagem de

dispensar anéis e escovas – é interessante analisar essa aplicação, tanto para estudar

sua viabilidade quanto para simular estratégias de controle da máquina.

A análise será baseada em um modelo existente na biblioteca do Simulink que

representa um sistema composto por uma turbina eólica ligada a um Gerador de

Indução Duplamente Alimentado.

1.3. Organização do Trabalho

O presente trabalho encontra-se organizado da seguinte forma:

Capítulo 1: “Introdução”, onde estão apresentadas algumas informações a

respeito da Energia Eólica, os princípios de funcionamento da BDFM, além do

objetivo e motivação desse trabalho.

Capítulo 2: “Energia do Vento”, onde são mostrados detalhes sobre a energia

disponível no vento, além de informações a respeito dos principais esquemas

de geração eólica atuais.

Capítulo 3: “Modelo Matemático e Implementação”, onde são apresentadas as

principais equações que descrevem o funcionamento da BDFM, além do

diagrama de blocos montado no Matlab/Simulink;

Capítulo 4: “Resultados Obtidos”, onde estão expostos os resultados obtidos da

simulação do comportamento do sistema turbina e gerador eólico;

Capítulo 5: “Conclusões”, onde são mostradas as conclusões obtidas deste

trabalho, assim como propostas para trabalhos futuros;

Page 15: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

5

Capítulo 2

2. Energia do Vento

2.1. Conceitos Básicos

Para compreender melhor o funcionamento da BDFM como um gerador eólico, é

importante entender a energia disponível no vento.

A energia eólica é a energia cinética das massas de ar em movimento e a potência

eólica pode ser calculada a partir da equação 2.1.

���� =�

��. �. �� (2.1)

Onde,

Pmec é a potência mecânica extraída do vento (W);

ρ é a densidade do ar local (kg/m3);

A é a área coberta pelas pás da hélice da turbina eólica (m2);

v é a velocidade do vento na altura da turbina (m/s);

Entretanto, não é possível retirar toda a energia disponível no vento, visto que isso

implicaria na massa de ar ter velocidade nula ao deixar a turbina. Assim, foi

introduzido à essa equação um termo para quantificar o aproveitamento de potência

eólica – o coeficiente de potência eólica (Cp). O valor máximo teórico do Cp é de

aproximadamente 0,593, embora turbinas reais apresentem valores de Cp entre 0,4 e

0,5 [5]. O Cp depende de dois parâmetros: o ângulo de passo ou pitch das pás da

turbina (β) e a razão de velocidade ou relação da velocidade de ponta (λ). O termo λ é

dado pela equação 2.2.

� =��.�

� (2.2)

Page 16: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

6

Onde,

ωr é a velocidade de rotação da turbina (rad/s);

R é o raio das pás da turbina (m);

v é a velocidade do vento (m/s);

O comportamento do Cp em função desses dois parâmetros pode ser visto na

figura 2.1.

Figura 2.1 – Curvas de Cp em função de λ e β

Dessa forma, a extração ótima da potência do vento é realizada ajustando os

valores de λ e β de forma a se maximizar o valor do Cp.

2.2. Configurações de Geradores Eólicos

Existem atualmente alguns tipos de máquinas utilizadas para a geração de energia

eólica, cada um com suas vantagens e desvantagens. Em geral, elas contam com um

sistema de supervisão cuja finalidade é proteger a turbina em caso de rajadas de

vento, utilizando um anemômetro para medir a velocidade do vento [4].

Page 17: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

7

Figura 2.2 - Anemômetro do tipo copo com um cata-vento

Os três tipos de sistemas mais comuns utilizados em aero geradores são os

seguintes:

2.2.1. Gerador de Indução Gaiola de Esquilo

O Gerador de Indução Gaiola de Esquilo – ou GIGE – é um tipo de gerador

muito utilizado para turbinas eólicas ligadas diretamente à rede, e tem como suas

principais vantagens o baixo custo e a robustez inerentes a esse tipo de máquina. O

esquema do sistema eólico utilizando o GIGE pode ser visto na figura 2.3.

Figura 2.3 - Configuração GIGE

Page 18: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

8

Esse tipo de sistema apresenta a desvantagem de operar em velocidade

constante – embora exista a possibilidade do funcionamento com duas velocidades

[4], uma alternativa para elevar o aproveitamento do vento – o que reduz a eficiência

da geração de energia. Outra alternativa que vem sido utilizada comercialmente [6]

nos últimos anos é a ligação do gerador à rede através de um inversor, o que garante o

controle de velocidade para a melhorar a extração de energia.

2.2.2. Gerador Síncrono de Rotor Bobinado

O Gerador Síncrono de Rotor Bobinado – ou GSRB – é outro tipo de máquina

que pode ser utilizado na produção de energia eólica. Suas principais vantagens são a

capacidade de uma elevada potência nominal e o fato de dispensar a caixa de

engrenagens – que eleva a velocidade aplicada ao rotor da máquina elétrica – devido

ao seu grande número de polos. O esquema do sistema eólico utilizando o GSRB pode

ser visto na figura 2.4.

Figura 2.4 - Configuração GSRB

O GSRB é ligado à rede através de um conversor back-to-back, que permite o

controle da sua velocidade, e a excitação do enrolamento de campo é fornecida por

meio de um retificador também ligado à rede.

Como desvantagens, temos o fato dessa configuração necessitar de um

conversor adicional para realizar a excitação do gerador. Além disso, como o conversor

ligado ao estator trabalha com toda a potência da máquina, seu custo sobe

consideravelmente conforme a potência nominal do gerador aumenta. O número de

polos elevado também é um problema, pois exige da máquina um diâmetro

considerável, o que a torna pesada – uma questão importante, pois é necessário

colocar o gerador no topo de uma torre. Uma alternativa a isso é a utilização de um

Page 19: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

9

gerador síncrono de ímã permanente [6], o que permite obter um elevado número de

polos sem a necessidade de uma máquina de grande volume, eliminando o problema

do peso elevado da máquina.

2.2.3. - Gerador de Indução de Dupla Alimentação

O Gerador de Indução de Dupla Alimentação – ou GIDA – é um tipo de gerador

que permite a operação em velocidade variável através da inserção de um conversor

de potência no seu rotor. Assim, o GIDA é uma Máquina de Indução de Dupla

Alimentação (MIDA) funcionando como um gerador eólico. Como a potência elétrica

que circula no rotor é menor do que a no estator – cerca de 1/3 da potência nominal

do gerador [5] – o conversor utilizado é mais barato se comparado a um ligado

diretamente ao estator da máquina. O esquema do sistema eólico utilizando o GIDA

pode ser visto na figura 2.5.

Figura 2.5 - Configuração GIDA

A utilização do conversor de potência no rotor da máquina tem suas

desvantagens: é necessário usar anéis e escovas coletoras para acessar o rotor, o que

diminui a confiabilidade da máquina e torna necessária a realização de manutenções

periódicas. Ainda assim, essa configuração é a mais comum para potências acima de

1,5 MW [4].

Page 20: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

10

Capítulo 3

3. Modelo Matemático e Implementação

O modelo matemático utilizado para realizar a análise da BDFM neste trabalho é

baseado no acoplamento entre os diversos circuitos que compõem a máquina. As

equações utilizadas relacionam as tensões aplicadas a cada circuito com as quedas de

tensão nas resistências e nos acoplamentos magnéticos de cada circuito, como pode

ser visto na equação 3.1, e as equações que representam as relações entre os enlaces

de fluxos e as correntes em cada circuito a partir das indutâncias magnéticas de cada

circuito, como está exposto na equação 3.2.

� = �. � +��

�� (3.1)

� = �� (3.2)

Na equação 3.2, λ é o vetor que contém os enlaces de fluxo, I é o vetor que

contém as correntes e L é a matriz de indutâncias que representa o acoplamento entre

os enlaces de fluxo e correntes de cada circuito. A matriz L possui elementos

constantes e elementos cujo valor depende da posição angular relativa entre o rotor e

estator da máquina. Especificamente, as indutâncias próprias dos circuitos do estator,

rotor e as indutâncias mútuas entre os circuitos do rotor apresentam valor constante,

enquanto as indutâncias mútuas entre os circuitos do estator e os circuitos do rotor

dependem da posição angular.

A realização de simulações envolvendo termos de indutância variável requer

uma grande capacidade computacional, portanto, para tornar a análise mais simples,

foi utilizada a Transformada de Park, uma ferramenta matemática que permite passar

as variáveis que representam os circuitos da máquina de um referencial estático para

um referencial que se move a uma determinada velocidade. Utilizando um referencial

que se move com a mesma velocidade do rotor, as indutâncias de acoplamento entre

rotor e estator se tornam valores constantes.

A BDFM, como dito anteriormente, apresenta dois circuitos trifásicos no seu

estator, além de um rotor não convencional constituído por 18 circuitos, agrupados

em seis ninhos com três loops cada. Cada um dos circuitos obedece a relação de

tensão estabelecida pela equação 3.1 – notando que os circuitos do rotor não recebem

tensão diretamente – como pode ser visto nas equações 3.3 a 3.11.

Page 21: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

11

Para o primeiro enrolamento do estator:

�� = ��. �� +���

�� (3.3)

�� = ��. �� +���

�� (3.4)

�� = ��. �� +���

�� (3.5)

Para o segundo enrolamento do estator:

�� = ��. �� +���

�� (3.6)

�� = ��. �� +���

�� (3.7)

�� = ��. �� +���

�� (3.8)

Para os circuitos do rotor:

0 = ��. �� +���

�� (3.9)

0 = ��. �� +���

�� (3.10)

.

.

.

0 = ���. ��� +����

�� (3.11)

É importante notar que, no caso dos circuitos dos enrolamentos do estator, todos

as fases do circuito apresentam o mesmo valor resistência elétrica. Já nos circuitos do

rotor o valor de resistência a ser considerado depende do loop que está sendo

representado – com o valor de resistência aumentando do loop mais interno para o

mais externo. A figura 3.1 ilustra a disposição dos loops em um dos ninhos do rotor.

Page 22: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

12

Figura 3.1 – Esquema da disposição dos loops em um ninho

Uma análise mais aprofundada das equações que compõem o modelo matemático,

assim como os detalhes da construção da implementação do modelo no software

MATLAB/SIMULINK que é utilizada neste trabalho, podem ser encontrados no projeto

de graduação de Camelo [7].

3.1. Diagrama de Blocos

As equações matemáticas que descrevem o funcionamento da BDFM e da turbina

eólica foram representados por um diagrama de blocos no software SIMULINK do

MATLAB, como pode ser visto na figura 3.2.

Figura 3.2 - Implementação do Modelo Matemático

Page 23: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

13

Este diagrama de blocos permite realizar simulações do comportamento da BDFM

quando esta é submetida a diferentes características de torque e frequência de

alimentação. A organização do diagrama foi largamente baseada na construção

realizada em [7], com algumas modificações – tais como a introdução dos blocos

responsáveis pelo torque do vento e a variação da frequência do segundo

enrolamento, além de mais blocos de medição para captar os resultados desejados das

simulações – para adaptar o programa às necessidades das novas simulações.

Os componentes mais críticos do programa são aqueles que representam a

energia proveniente do vento e o controle da frequência do segundo enrolamento da

BDFM, respectivamente os blocos “Torque do Vento” – localizado no interior do bloco

“Mecânica” - e “Frequência de Controle” – localizado na camada inicial do diagrama. As

figuras 3.3 e 3.4 mostram a localização destes blocos no diagrama e as suas conexões

com outras partes do programa.

Figura 3.3 - Localização do Bloco Torque do Vento

Page 24: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

14

Figura 3.4 - Localização do bloco Frequência de Controle

3.2. Implementação da Turbina de Vento

O bloco “Torque de Vento” fornece ao modelo da BDFM o torque mecânico

proveniente de uma turbina eólica submetida a uma massa de ar com uma

determinada velocidade, e seu interior pode ser visto na figura 3.5.

Figura 3.5 - Interior do bloco Torque de Vento

Page 25: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

15

A construção dessa parte do diagrama permite a visualização da potência

mecânica de saída da turbina, assim como o torque mecânico proveniente dela. A

velocidade do vento e a maneira como ela varia também podem ser ajustadas nesse

conjunto.

O elemento mais importante nesse conjunto é o bloco “Wind Turbine” (bloco já

existente na biblioteca do Simulink), responsável por fornecer o torque mecânico ao

eixo da máquina. O bloco tem como entradas a velocidade de rotação do rotor em pu

(com a base de velocidade calculada a partir dos valores iniciais de frequência dos

enrolamentos do estator), o ângulo de passo da turbina em graus (mantido com valor

constante igual a zero nas simulações realizadas) e a velocidade do vento em m/s,

onde realizamos as variações para observar o comportamento da máquina.

Este bloco possui uma série de parâmetros a serem definidos, como pode ser

visto na figura 3.6.

Figura 3.6 - Parâmetros do Bloco Wind Turbine

Page 26: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

16

Os valores de potência mecânica nominal e base de potência do gerador acoplado

(primeiro e segundo parâmetros, respectivamente) foram escolhidos arbitrariamente

para o melhor funcionamento das simulações, uma vez que tais valores não são

rigidamente definidos no modelo matemático da BDFM. A velocidade base do vento

(terceiro parâmetro) foi mantida no valor inicial sugerido de 12 m/s, assim como o

valor de potência máxima, a velocidade nominal (quarto parâmetro) e a velocidade de

rotação base da máquina (quinto parâmetro). O sexto parâmetro define o ângulo

utilizado para calcular o gráfico que ilustra a caraterística de potência da turbina e é

mantido igual à zero para estar de acordo com as simulações realizadas. A figura 3.7

mostra o gráfico das curvas características de potência da turbina para esses

parâmetros.

Figura 3.7 - Curvas características de potência da turbina de vento

Com estes parâmetros definidos, a variável de entrada do bloco introduzida

diretamente pelo usuário é a velocidade do vento. Os cenários simulados partem de

uma velocidade inicial de 6 m/s, crescendo como uma rampa com inclinação de 0,1

m/s2 até atingir o valor de velocidade final. Devido a características do modelo, o valor

máximo de velocidade de vento que pode ser utilizado sem que haja perda de

sincronismo é de 11 m/s. A figura 3.8 ilustra o comportamento da velocidade do vento

obedecendo às regras mencionadas anteriormente.

Page 27: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

17

Figura 3.8 - Exemplo de variação da velocidade do vento

Conforme dito anteriormente, a velocidade do vento parte do valor inicial até

atingir o valor final estabelecido, mantendo este valor até o término da simulação. A

taxa de crescimento da velocidade é sempre a mesma, de forma que a duração da

simulação está diretamente ligada ao valor final estabelecido de velocidade de vento.

Page 28: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

18

3.3. Implementação do Ajuste de Frequência

O bloco “Frequência de Controle” fornece ao segundo enrolamento do estator da

BDFM a frequência da onda de tensão trifásica aplicada a este enrolamento. De acordo

com o trabalho de Ferreira [8], a velocidade de rotação síncrona da BDFM pode ser

determinada pela equação 3.12.

�� = 2�.��±��

����� (3.12)

Onde f1 e f2 são as frequências das tensões de alimentação do primeiro e segundo

enrolamentos do estator e p1 e p2 são os números de pares de polos do primeiro e

segundo enrolamentos do estator, respectivamente. As frequências do numerador

podem ser somadas ou subtraídas, dependendo da sequência de fases do enrolamento

2 - Soma para sequência positiva e subtração para sequência negativa. Assim, através

da variação da frequência do segundo enrolamento do estator, podemos modificar o

valor da velocidade síncrona da máquina, ajustando-a de modo a otimizar a extração

da energia cinética do vento. O interior do bloco “Frequência de Controle” pode ser

visto na figura 3.9.

Figura 3.9 - Interior do Bloco Frequência de Controle

Os elementos que compõem o bloco realizam simplesmente uma variação de

frequência a partir do valor inicial de 5 Hz – valor escolhido por fornecer a velocidade

inicial de rotação desejada. A variação tem a forma de uma rampa de inclinação e

duração variáveis, ajustados de modo que o período onde ocorre alteração no valor da

frequência seja igual ao período onde há mudança na velocidade do vento e que a

Page 29: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

19

velocidade de rotação final da máquina seja aquela com a qual a extração de energia

cinética do vento é máxima. A figura 3.10 ilustra o comportamento da variação de

frequência.

Figura 3.10 - Exemplo de variação da frequência

É possível notar que a variação de frequência ocorre de maneira similar à variação

da velocidade do vento. A diferença mais notável entre os dois procedimentos é que a

taxa de variação da frequência não é fixa, podendo ser ajustada de modo que o valor

final de frequência seja aquele que leva a máquina a ter o melhor aproveitamento da

energia disponível no vento.

Um detalhe importante sobre a variação da frequência da tensão de alimentação

é que esta leva necessariamente a uma variação também da amplitude dessa tensão,

pois o bloco que fornece a alimentação do segundo enrolamento do estator é

projetado de forma que a relação entre tensão e frequência da tensão seja mantida

constante – uma medida para aumentar a estabilidade do sistema. O interior do bloco

de alimentação do segundo enrolamento pode ser visto na figura 3.11.

Page 30: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

20

Figura 3.11 – Interior do bloco Alimentação do segundo enrolamento

É possível ver no interior do bloco que a frequência do sinal é também uma

variável de entrada para o módulo da tensão, o que é feito para manter constante a

relação entre amplitude e frequência. Também estão presentes no bloco elementos

geradores de rampas, utilizados para alterar a amplitude da tensão de maneira

independente à variação causada pela frequência. Essa função é aplicada para realizar

ajustes nos valores de potência elétrica da máquina depois do sistema ter atingido o

regime permanente.

Page 31: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

21

3.4. Cálculo da potência elétrica

Um outro componente importante do diagrama é o bloco responsável pelo cálculo

das potências ativa e reativa de cada um dos enrolamentos da máquina. Isso é feito

pelo bloco “Potência qd0”, e seu interior pode ser visto na figura 3.12.

Figura 3.12 – Interior do bloco Potência_qd0

As entradas do bloco são as componentes de tensão e corrente em

coordenadas qd0 dos dois enrolamentos do estator. Devido ao equilíbrio entre as

fases, a componente zero de todas as grandezas é desconsiderada. A saída do bloco é

a potência total da máquina, obtida através da soma das potências de cada um dos

enrolamentos – embora também seja possível visualizar as potências individuais de

cada enrolamento separadamente.

Page 32: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

22

3.5. Demais blocos

Os outros blocos presentes no diagrama abrigam equações necessárias para

representar os aspectos da máquina que não são abordados a fundo neste trabalho.

Nos blocos “Alimentação do primeiro enrolamento” e “Alimentação do

segundo enrolamento” são gerados os sinais de tensão que acionam os enrolamentos

da máquina.

Nos blocos “Transformação abc_qd0a” e “Transformação ABC_qd0A” estão as

equações que realizam a mudança para eixo de coordenadas qd0, com velocidade de

rotação igual àquela do rotor.

O bloco “Estator e rotor” abriga as equações responsáveis por relacionar os

enlaces de fluxo do circuitos da máquina com as correntes que neles circulam,

utilizando para isso a matriz de indutâncias – de acordo com a equação 3.2. A figura

3.13 mostra o interior desse bloco.

Figura 3.13 - Interior do bloco Estator e rotor

O bloco “Correntes dos enrolamentos” realiza a mudança das correntes do

estator calculadas no eixo qd0 para as coordenadas abc, de modo a tornar sua análise

mais simples.

Page 33: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

23

Capítulo 4

4. Resultados Obtidos

Neste capítulo serão apresentados os resultados das simulações realizadas com o

objetivo de observar o comportamento da BDFM funcionando como um gerador

eólico. As simulações obedecem às configurações discutidas no capítulo anterior.

4.1. Considerações Iniciais

Durante o processo de realização das simulações com o modelo foram encontradas

algumas dificuldades. A principal delas é o fato do modelo apresentar certo grau de

instabilidade, de forma que variações bruscas nas variáveis de entrada do sistema –

como frequência do sinal de alimentação e velocidade do vento – levam o sistema à

perda de sincronismo. A medida tomada para contornar esse problema foi aplicar

variações suaves nas entradas do modelo.

Outra dificuldade enfrentada foi a incapacidade do modelo em operar

adequadamente para baixos valores de velocidade do vento, perdendo o sincronismo

na faixa de frequências de alimentação que maximizam a extração de potência

mecânica do vento. Uma medida utilizada para amenizar esse problema foi a redução

da velocidade síncrona de base do sistema, o que melhorou sua estabilidade para

valores mais baixos de velocidade do vento e frequência de alimentação. Isso ocorre

devido ao funcionamento do bloco “Wind Turbine”, que tem como entrada a

velocidade da máquina em pu, o que permite a variação da entrada do bloco apenas

com a alteração da velocidade base do sistema.

4.2. Simulação da Operação da BDFM ligada a Turbina Eólica

As simulações do comportamento da BDFM foram realizadas para três valores

distintos de velocidade final do vento, todas partindo de um mesmo valor de

velocidade inicial – 6 m/s – e um mesmo valor de frequência inicial – 5 Hz.

Primeiramente são mostrados os gráficos que ilustram o comportamento da máquina

quando a frequência da tensão de alimentação tem sua variação ajustada para

otimizar a extração de energia mecânica do vento em cada caso. Essa variação, como

dito anteriormente, acompanha a variação da velocidade do vento, e é feita com base

nas curvas características do funcionamento da turbina – mostradas na figura 3.6. O

Page 34: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

24

princípio desse procedimento é ajustar a velocidade síncrona da máquina por meio da

frequência do segundo enrolamento – de acordo com a equação 3.3 – para que a

potência de saída da turbina seja a maior possível.

Em seguida, para cada um destes casos, é realizado um ajuste no valor da

amplitude da tensão de alimentação após a estabilização do sistema, na tentativa de

aumentar o rendimento da máquina.

4.2.1. Primeiro Caso

No primeiro caso de simulação o vento aplicado à turbina tem a velocidade final

de 9 m/s. A taxa de variação de frequência que otimiza a extração de potência nesse

caso é 0,34 Hz/s. A velocidade do vento e a frequência de alimentação do segundo

enrolamento podem ser vistas nas figuras 4.1 e 4.2 respectivamente. A variação da

velocidade de rotação da BDFM correspondente pode ser vista na figura 4.3, enquanto

o torque mecânico fornecido pela turbina ao eixo da máquina é visto na figura 4.4. 4.2.

Figura 4.1 – Velocidade do vento

Page 35: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

25

Figura 4.2 – Frequência de alimentação do enrolamento 2

Figura 4.3 – Velocidade de rotação – f1 = 50 Hz, f2 = 5 Hz » 15,2 Hz

Page 36: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

26

É possível ver que a velocidade de rotação sofre uma oscilação amortecida nos

instantes em que a variação de frequência começa e termina, se estabilizando no valor

final – calculado com os valores finais de frequência pela equação 3.3 – de 652 RPM.

Figura 4.4 – Torque mecânico

O torque mecânico fornecido pela turbina cresce em módulo à medida que a

velocidade do vento é elevada e, assim como a velocidade de rotação da máquina,

sofre uma oscilação amortecida ao final da variação de velocidade em torno do seu

valor final – 26,7 N.m. É importante notar que, devido à convenção utilizada, o torque

mecânico fornecido pela turbina possui sinal negativo.

O comportamento da potência elétrica no primeiro e segundo enrolamentos pode

ser visto, respectivamente, nas figuras 4.5 e 4.6. A potência elétrica total pode ser vista

na figura 4.7. 4.5.

Page 37: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

27

Figura 4.5 – Potência elétrica no primeiro enrolamento

Figura 4.6 – Potência elétrica no segundo enrolamento

Page 38: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

28

Figura 4.7 – Potência elétrica total

Os gráficos apresentados mostram que, conforme a velocidade do vento e

frequência da tensão de alimentação aumentam tanto a potência ativa quanto a

potência reativa em ambos os enrolamentos sofrem um aumento de valor absoluto.

Ao final das oscilações, a potência ativa total chega a aproximadamente 1299 W –

divididos em 818 W no primeiro enrolamento e 481 W no segundo enrolamento –

enquanto a potência reativa total chega a 1659 var – divididos em 1441 var no

primeiro enrolamento e 218 var no segundo. É importante ressaltar que, devido à

convenção adotada (motor), a potência ativa elétrica tem sinal negativo, indicando

potência entregue à rede. Para avaliar qual é o aproveitamento de energia total, é

necessário visualizar também a potência mecânica disponível no eixo da turbina,

ilustrado na figura 4.8.

Page 39: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

29

Figura 4.8 – Potência mecânica total

Por meio do gráfico é possível perceber que a potência mecânica se comporta de

maneira muito semelhante ao torque mecânico proveniente da turbina, sofrendo

oscilações amortecidas em torno do valor final de 1824 W. Com isso, temos um

rendimento de aproximadamente 71,2 % na conversão de energia mecânica em

energia elétrica.

Page 40: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

30

4.2.2. Segundo Caso

No segundo caso de simulação a velocidade final do vento é de 9,6 m/s. A taxa de

variação de frequência que otimiza a extração de potência nesse caso é de 0,38 Hz/s. A

velocidade do vento e a frequência de alimentação do segundo enrolamento podem

ser vistas nas figuras 4.9 e 4.10 respectivamente. A variação da velocidade de rotação

da BDFM correspondente pode ser vista na figura 4.11, e o torque mecânico pode ser

encontrado na figura 4.12.

Figura 4.9 – Velocidade do Vento

Page 41: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

31

Figura 4.10 – Frequência de alimentação do enrolamento 2

Figura 4.11 - Velocidade de rotação – f1 = 50 Hz, f2 = 5 Hz » 18,68 Hz

Page 42: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

32

A velocidade de rotação se comporta de maneira semelhante ao caso anterior,

porém apresentando oscilações amortecidas de maior amplitude inicial. O valor final

atingido após o fim das oscilações é de 686,6 RPM.

Figura 4.12 – Torque mecânico

O torque mecânico se comporta como no caso anterior, aumentando em

módulo durante a variação de velocidade do vento e se estabilizando por meio de

oscilações amortecidas no valor final – 31.9 N.m.

As figuras 4.13 e 4.14 mostram a potência elétrica no primeiro e segundo

enrolamento do estator, respectivamente, enquanto a figura 4.15 mostra a potência

elétrica total.

Page 43: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

33

Figura 4.13 - Potência elétrica no primeiro enrolamento

Figura 4.14 - Potência elétrica no segundo enrolamento

Page 44: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

34

Figura 4.15 - Potência elétrica total

Os gráficos mostram que o comportamento da potência elétrica em ambos os

enrolamentos mantém o mesmo perfil do caso anterior, apresentando valores mais

elevados de potência ativa e reativa. O valor absoluto da potência ativa total chega a

1590 W – 884 W no primeiro enrolamento e 706 W no segundo enrolamento – e a

potência reativa total 2062 var - 1718 var no primeiro enrolamento e 344 var no

segundo. Novamente, para determinar a eficiência da conversão de energia é

necessário conhecer a potência mecânica, que pode ser vista na figura 4.16.

Page 45: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

35

Figura 4.16 - Potência mecânica total

A potência mecânica se comporta novamente de maneira semelhante ao torque

mecânico, estabilizando no valor final 2294 W. Com esse valor, a eficiência da

conversão de energia é de 69,31 %.

Page 46: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

36

4.2.3. Terceiro Caso

O terceiro caso de simulação tem como velocidade final do vento 10,4 m/s. A taxa

de variação de frequência escolhida para otimizar a extração de potência foi 0,44 Hz/s.

A velocidade do vento e a frequência de alimentação do segundo enrolamento podem

ser vistas nas figuras 4.17 e 4.18 respectivamente. A variação da velocidade de rotação

da BDFM correspondente pode ser vista na figura 4.19, e o torque mecânico pode ser

encontrado na figura 4.20.

Figura 4.17 – Velocidade do Vento

Page 47: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

37

Figura 4.18 – Frequência de alimentação do enrolamento 2

Figura 4.19 - Velocidade de rotação – f1 = 50 Hz, f2 = 5 Hz » 24,8 Hz

Page 48: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

38

A velocidade de rotação permanece com as mesmas características dos casos

anteriores, com oscilações amortecidas de amplitude ainda maior e valor final 748

RPM.

Figura 4.20 - Torque mecânico

Mantendo o mesmo perfil de variação dos casos anteriores, o torque mecânico

proveniente da turbina de vento estabiliza no valor – 36,7 N.m.

As figuras 4.21 e 4.22 mostram a variação da potência elétrica no primeiro e

segundo enrolamento do estator, respectivamente, enquanto a figura 4.23 mostra a

potência elétrica total.

Page 49: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

39

Figura 4.21 – Potência elétrica no primeiro enrolamento

Figura 4.22 – Potência elétrica no segundo enrolamento

Page 50: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

40

Figura 4.23 – Potência elétrica total

A potência elétrica se comporta de maneira similar aos casos anteriores. A

potência ativa total tem valor absoluto 1951 W – 861 W no primeiro e 1090 W no

segundo – e a potência reativa total é 2648 var – 2064 var no primeiro e 584 var no

segundo. Um detalhe a ser observado nesse caso em particular é o aparente vale –

chega um valor máximo e em seguida começa a cair – de potência ativa total, causado

pelo aumento de frequência, além do grande valor de pico das oscilações da potencia

reativa ao final da variação de frequência do segundo enrolamento. Apesar disso, não

é possível realizar uma variação menor de frequência sem que haja a perda de

sincronismo. A potência mecânica fornecida pela turbina pode ser vista na figura 4.24.

Page 51: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

41

Figura 4.24 – Potência mecânica total

A potência mecânica mantém o mesmo perfil aos casos anteriores, chegando a

um valor de regime absoluto de 2873 W. Consequentemente, a eficiência da

conversão de energia é de 67,91 % - o valor mais baixo dentre os três casos.

Page 52: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

42

4.2.4. Ajuste de Amplitude de Tensão

Após analisar o comportamento da BDFM levando em consideração a variação

da frequência da tensão de alimentação e velocidade do vento, foram feitas variações

no valor da amplitude da tensão de alimentação após o sistema ter alcançado o regime

permanente, na tentativa de reduzir a potência reativa e aumentar a potência ativa

total da máquina, aumentando assim a eficiência da conversão de energia e reduzindo

a amplitude das correntes nos circuitos internos da máquina.

As alterações foram feitas para cada um dos casos considerados anteriormente,

aplicando diferentes taxas percentuais de variação de amplitude – de acordo com as

características de cada caso - durante um intervalo de tempo fixado em cinco

segundos. Como as mudanças foram apenas na amplitude da tensão do segundo

enrolamento do estator, não há diferença de velocidade de rotação, torque mecânico

ou potência mecânica entre casos equivalentes.

4.2.4.1. Primeiro Caso

O valor da taxa de variação de amplitude utilizado é de 5,3 %, iniciado a

partir de 60 segundos de simulação. As figuras 4.25, 4.26 e 4.27 mostram as potências

elétricas no primeiro enrolamento, segundo enrolamento e a potência elétrica total,

respectivamente, com a variação da amplitude de tensão.

4.2.4.2. Segundo Caso

O valor da taxa de variação de amplitude utilizado é de 5,2 %, iniciado a partir

de 75 segundos de simulação. As figuras 4.28, 4.29 e 4.30 mostram, respectivamente,

as potências elétricas do primeiro enrolamento, segundo enrolamento e a potência

elétrica total.

4.2.4.3. Terceiro caso

O valor da taxa de variação de amplitude utilizado é de 5%, iniciado a partir de

80 segundos de simulação. As figuras 4.31, 4.32 e 4.33 mostram, respectivamente, as

potências elétricas do primeiro enrolamento, segundo enrolamento e a potência

elétrica total.

Page 53: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

43

Figura 4.25 – Potência elétrica no primeiro enrolamento - 1º Caso

Figura 4.26 – Potência elétrica no segundo enrolamento - 1º Caso

Page 54: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

44

Figura 4.27 – Potência elétrica total - 1º Caso

O aumento da amplitude da tensão de alimentação causa uma diminuição da

potência reativa consumida e um aumento do valor absoluto de potência ativa gerada

pelo primeiro enrolamento, e ao mesmo tempo causa o efeito contrário no segundo

enrolamento – embora a queda de potência ativa seja muito sutil. O resultado final é

um aumento na potência ativa e diminuição da potência reativa total. A comparação

dos resultados de potência e rendimento antes e depois da variação é feita na tabela

4.1.

1º Enrolamento 2º Enrolamento Total

Antes Depois Antes Depois Antes Depois

P (W) -818 -931 -481 -479 -1299 -1410

Q (var) 1441 933 218 425 1659 1358

Ƞ (%) - - - - 71,20 77,19

Tabela 4.1 – Comparação de resultados do primeiro caso

Page 55: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

45

Figura 4.28 – Potência elétrica no primeiro enrolamento - 2º Caso

Figura 4.29 – Potência elétrica no segundo enrolamento - 2º Caso

Page 56: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

46

Figura 4.30 – Potência elétrica total - 2º Caso

O aumento da amplitude da tensão de alimentação causa efeitos contrários

sobre a potência reativa em cada um dos enrolamentos. Ainda assim, há uma redução

da potência reativa total e um aumento da potência ativa total. A comparação entre os

resultados antes e depois da alteração pode ser visto na tabela 4.2.

1º Enrolamento 2º Enrolamento Total

Antes Depois Antes Depois Antes Depois

P (W) -884 -1048 -706 -712 -1590 -1760

Q (var) 1718 1165 344 551 2062 1716

Ƞ (%) - - - - 69,31 76,76

Tabela 4.2 – Comparação de resultados do segundo caso

Page 57: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

47

Figura 4.31 – Potência elétrica no primeiro enrolamento - 3º Caso

Figura 4.32 – Potência elétrica no segundo enrolamento - 3º Caso

Page 58: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

48

Figura 4.33 – Potência elétrica total - 3º Caso

O último caso apresenta a mais notável variação, tanto na potência ativa

quanto reativa. Note que a potência ativa do segundo enrolamento continua maior

que a do primeiro, embora por diferença bem menor que antes do ajuste. A

comparação entre os resultados obtidos para este caso é feita na tabela 4.3.

1º Enrolamento 2º Enrolamento Total

Antes Depois Antes Depois Antes Depois

P (W) -861 -1103 -1090 -1109 -1951 -2212

Q (var) 2064 1453 584 761 2648 2214

Ƞ (%) - - - - 67,91 76,99

Tabela 4.3 – Comparação de resultados do terceiro caso

Page 59: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

49

4.2.5. Perda de Sincronismo

O ajuste de amplitude de tensão foi mais explorado na tentativa de aumentar

ainda mais o rendimento da máquina em cada caso. Entretanto, o uso de taxas de

variação mais elevadas do que as inicialmente utilizadas – ou a aplicação dessas por

um intervalo de tempo maior – acabam levando o sistema à perda de sincronismo,

como pode ser visto na figura 4.34.

Figura 4.34 – Potência elétrica total no 1º caso – perda de sincronismo

Page 60: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

50

4.3. Interpretação dos Resultados

Sobre os resultados apresentados é possível realizar algumas observações:

Os ajustes de variação de frequência utilizados nos três casos considerados foram

obtidos por meio de tentativas guiadas pelo perfil da turbina eólica fornecido pelo

bloco “Turbina de Vento” do Simulink – visto na figura 3.6. É importante notar que a

escolha dos valores levou em conta não somente os valores máximos de potência ativa

obtida, mas também a velocidade com a qual o sistema atingia o regime permanente.

É possível notar que no primeiro e segundo casos a parcela de potência ativa

presente no segundo enrolamento é inferior à parcela no primeiro enrolamento,

enquanto a situação se reverte no terceiro caso. Como na configuração da BDFM o

primeiro enrolamento é aquele que fica ligado diretamente à rede, o esperado seria

que este tivesse uma porcentagem maior da potência ativa total, o que é verificado

nos dois primeiros casos. Um motivo para que o terceiro caso fuja a essa determinação

é o fato da potência ativa dos enrolamentos ser proporcional à sua frequência de

alimentação e amplitude de tensão, de forma que o aumento dessas grandezas no

segundo enrolamento ao longo da simulação é uma possível causa para esse resultado.

As oscilações presentes nas simulações realizadas são possivelmente causadas em

parte por questões numéricas (inerentes aos cálculos realizados nas simulações) , mas

também pelas próprias tendências de instabilidade da BDFM.

Embora não seja realizado o cálculo direto da potência eólica disponível, os três

casos com crescentes velocidades ilustram a relação entre a potência mecânica

disponível no eixo da turbina eólica e a velocidade das massas de ar que a atravessam,

como mostra a equação 2.1.

A tentativa de ajuste da amplitude da tensão de alimentação do segundo

enrolamento foi capaz de fornecer uma melhoria considerável na eficiência da

conversão de energia, além de reduzir o consumo de potência reativa – embora esse

consumo ainda seja bastante elevado. Além disso, devido ao comportamento contrário

da potência elétrica dos enrolamentos quando é feito o ajuste, não foi possível

continuar aumentando a eficiência da máquina indefinidamente, sem levar em conta o

problema de perda de sincronismo.

Page 61: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

51

Capítulo 5

5. Conclusões

Este trabalho apresentou a realização de simulações para estudar o

comportamento da Máquina de Indução Duplamente Alimentada sem Escovas como

um gerador eólico.

Utilizando como base um modelo computacional desenvolvido anteriormente e

blocos disponíveis na biblioteca do software Matlab, foram feitas algumas alterações

com o objetivo de melhor adequá-lo às características de um gerador eólico. Essas

alterações foram feita com base na teoria sobre potência eólica disponível e as

configurações já existentes de máquinas com essa finalidade.

Os resultados apresentados não se comportam totalmente de acordo com o

esperado pelas características da máquina, apresentando limitações de estabilidade –

possivelmente pelas simplificações realizadas ao longo do processo. Entretanto, apesar

destes problemas, os resultados obtidos fornecem um maior entendimento sobre o

processo de conversão de energia eólica em energia elétrica.

Como trabalhos futuros pode-se indicar:

Criação de uma estratégia de controle automático de velocidade para o

aumento da eficiência da máquina.

Determinar o motivo das discrepâncias entre o comportamento da máquina

esperado e o observado nas simulações.

Investigar as possíveis causas para as limitações de estabilidade do modelo.

Page 62: utilização de máquina de indução duplamente alimentada sem ...

Universidade Federal do Rio de Janeiro

52

Referências Bibliográficas

[1] CORBETTA, G., MILORADOVIC, T. (2014), Wind in Power: 2013 European Statistics. Disponível em: http://www.ewea.org/statistics/ Acesso em: 23 ago.2014

[2] ANÔNIMO (2014), Sobre o Brasil Wind Power. Disponível em: http://www.brazilwindpower.org/pt/. Acesso em: 23 ago. 2014,

[3] FALCÃO, D. M., 2014, “Aspectos Técnicos dos Sistemas de Energia Elétrica”, Apresentações de aula da disciplina Análise Técnico-Econômica de Sistemas de Energia Elétrica, Capítulo 2, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ – Brasil.

[4] MARQUES, J., 2004, Turbinas Eólicas: Modelo, Análise e Controle do Gerador de Indução com Dupla Alimentação, Dissertação de Mestrado, Universidade Federal de Santa Maria, Santa Maria, RS – Brasil.

[5] CANEDO, L. S., 2007, Ajuste do Desempenho Dinâmico de um Sistema de Geração Eólica com Gerador de Indução Duplamente Alimentado, Dissertação de Mestrado, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ – Brasil.

[6] ZHU, Z.Q., HU, J., “Electrical machines and power-electronic systems for high-power wind energy generation applications”, Part I, Special Issue Paper, COMPEL, Vol. 32 No. 1, 2013, pp. 7-33.

[7] CAMELO, J. C., 2012, Modelo Matemático para Máquina de Indução Duplamente Alimentada sem Escovas (BDFM) e Implementação Computacional, Projeto de Graduação, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ – Brasil.

[8] FERREIRA, A.C., Analysis of brushless doubly-fed induction machines, Ph.D. thesis, University of Cambridge, 1996.