Top Banner
AP Dr Muhannad Talib Shuker AP . Dr . Muhannad Talib Shuker GPE Department Well Test Analysis, © UTP – MAY 2011
33

Transient Flow Equation and Solutios

Mar 06, 2015

Download

Documents

Hosam Ali
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Transient Flow Equation and Solutios

AP  Dr  Muhannad Talib ShukerAP. Dr. Muhannad Talib ShukerGPE Department

Well Test Analysis, © UTP – MAY 2011

Page 2: Transient Flow Equation and Solutios

Transient Flow EquationIn the course of development of the transient flow pequation three independent equations will be used:

1 Continuity equation: material balance equation which 1. Continuity equation: material balance equation which states conservation of mass 

E i   f  i   D ’   i   hi h d fi  2. Equation of motion : Darcy’s equation which defines fluid flow through porous media

3. Equation of state : Compressibility equation which describes changes in the fluid volume as a function of pressure

Well Test Analysis, © UTP – MAY 2011

pressure

Page 3: Transient Flow Equation and Solutios

Continuity Equation (1/6)

Well

Reservoir boundary

Formation Formation thickness

Schematic of reservoir

Well Test Analysis, © UTP – MAY 2011

Page 4: Transient Flow Equation and Solutios

Continuity Equation (2/6)Continuity Equation (2/6)

Flow Element (control volume)

Under the steady‐state flow conditions, the same amount of fluid enters and leaves the flow 

h

Mass inMass out

element.  However they are not equal to each other during unsteady‐state (transient) flow conditions. Nevertheless, the 

rwr

Δrh

Making a mass balance over the volume element during a time 

mass must be conserved in both cases.

r+Δrvolume element during a time period of Δt

Mass entering  Mass leaving  Mass accumulated = (1)

Well Test Analysis, © UTP – MAY 2011

volume element 

during Δt

volume element 

during Δt

in the  volume 

element during Δt

(1)

Page 5: Transient Flow Equation and Solutios

Continuity Equation (3/6)Continuity Equation (3/6)MASS IN MASS OUT MASS     =

ACCUMULATED

( ) [ ] tAvMass rrin Δ= Δ+ρ (2)

where;

ν = velocity of flowing fluid

 fl id d i    

( ) [ ] rrin Δ+ρ

( ) ( ) ( ) thM ΔΔ2

ρ = fluid density at r+Δr

A = area at r+Δr

Δt = time interval

The area of the volume element at the entry:

A = 2π(r+Δr)h

( ) ( ) ( ) tvhrrMass rrin ΔΔ+= Δ+ρπ2 (3)

( ) ( )similarly;

Well Test Analysis, © UTP – MAY 2011

( ) ( ) tvrhMass rout Δ= ρπ2 (4)

Page 6: Transient Flow Equation and Solutios

Continuity Equation (4/6)Continuity Equation (4/6)

Mass accumulated = mass at time Δt – mass at time t

On the other hand;

(5)( ) ( ) tttt rrhMass Δ+Δ+ Δ= φρπ2

( ) ( )tt rrhMass φρπ Δ= 2 (6)

( ) ( ) ( )[ ]rrhMass φρφρπ Δ= 2

Substituting in above definition:

( )

Well Test Analysis, © UTP – MAY 2011

( ) ( ) ( )[ ]tttAcc rrhMass φρφρπ −Δ= Δ+2. (7)

Page 7: Transient Flow Equation and Solutios

Continuity Equation (5/6)Continuity Equation (5/6)Substituting Equations  3, 4 and 7 in equation 1:

( )( )[ ] ( )[ ] ( ) ( )[ ] (8)( )( )[ ] ( )[ ] ( ) ( )[ ]tttrrr rhrtvhrtvrrh φρφρπρπρπ −Δ=Δ−ΔΔ+ Δ+Δ+ 222

Rearranging equation 8:

( )( ) ( )[ ] ( ) ( )[ ]tttrrr rhrvrvrrth φρφρπρρπ −Δ=−Δ+Δ Δ+Δ+ 22 (9)

Dividing the both sides of the equation 9 by 2πhΔr Δt :g q 9 y

(10)( )( ) ( )[ ] ( ) ( )[ ]

trhrhr

trhvrvrrth tttrrr

ΔΔ−Δ

=ΔΔ

−Δ+Δ Δ+Δ+

πφρφρπ

πρρπ

22

22

Hence finally:

( )( ) ( )[ ] ( ) ( )[ ]vrvrr tttrrr −−Δ+ Δ+Δ+ φρφρρρ1

Well Test Analysis, © UTP – MAY 2011

(11)( )( ) ( )[ ] ( ) ( )[ ]

trrtttrrr

Δ=

ΔΔ+Δ+ φρφρρρ

Page 8: Transient Flow Equation and Solutios

Continuity Equation (6/6)Continuity Equation (6/6)

Let’s take limits as both Δr  and Δt  approaches zero;

( )( )( ) ( )[ ] ( ) ( )[ ]vrvrr tttrrr −−Δ+ Δ+Δ+ φρφρρρ lim1lim (12)

or:

( )( ) ( )[ ] ( ) ( )[ ]trr

ttt

t

rrr

r Δ=

ΔΔ+

→Δ

Δ+

→Δ

φρφρρρ00

limlim

(13)( )[ ] [ ]φρρt

vrrr ∂

∂=

∂∂1

Continuity equation

where;

ν = velocity of flowing fluid

ρ = fluid density at r+Δr

Well Test Analysis, © UTP – MAY 2011

ρ = fluid density at r+Δr

φ = porosity

Page 9: Transient Flow Equation and Solutios

Equation of MotionEquation of MotionDarcy’s law;Darcy s law;

(14)PkAq∂∂

=where;

k = permeability

 fl id  i itr∂μdefinition of velocity;

μ = fluid viscosity

(15)

Aqv =

Substituting in equation 14;g q 4

Pkv∂∂

= (16)

Well Test Analysis, © UTP – MAY 2011

r∂μ

Page 10: Transient Flow Equation and Solutios

Transient Flow Equation (1/2)Transient Flow Equation (1/2)Substituting equation 16 in equation 13;

k ∂⎤⎡ ∂∂1(17)

E di  th   i ht h d  id   f  ti  

[ ]φρμ

ρtr

Pkrrr ∂

∂=⎥

⎤⎢⎣

⎡∂∂

∂∂1

Expanding the right hand side of equation 13:

(18)[ ]

ttt ∂∂

+∂∂

=∂∂ φρρφφρ

Porosity is related to the formation compressibility by:

c ∂=

φ1P

cr ∂=φ (19)

Applying the chain rule of differentiation to ∂φ/∂t:

P∂∂∂ φφ

Well Test Analysis, © UTP – MAY 2011

(20)tP

Pt ∂∂

∂∂

=∂∂ φφ

Page 11: Transient Flow Equation and Solutios

Transient Flow Equation (2/2)Transient Flow Equation (2/2)Substituting equation 19 in equation 20;

P∂∂φ(21)

substituting this into equation 18 :

tPc

t r ∂∂

=∂∂ φφ

(22)

[ ]tPc

tt r ∂∂

+∂∂

=∂∂ ρφρφφρ

Finally substituting equation 22 into equation 17:

(23)PcPkr r ∂∂

+∂∂

=⎥⎦

⎤⎢⎣

⎡∂∂

∂∂ ρφρφρ1

Equation 23 is the general partial differential equation that describes the flow of any type of fluid in porous medium

ttrrr r ∂∂⎥⎦

⎢⎣ ∂∂ μ

Well Test Analysis, © UTP – MAY 2011

the flow of any type of fluid in porous medium.

Page 12: Transient Flow Equation and Solutios

Transient Flow Equation for Slightly Compressible Fluids (1/6)

Let us simplify equation 23 by assuming permeability and viscosity are constants with respect to pressure, time and distance;

(24)

tPc

trPr

rrk

r ∂∂

+∂∂

=⎟⎠⎞

⎜⎝⎛

∂∂

∂∂

⎟⎟⎠

⎞⎜⎜⎝

⎛ ρφρφρμ

Expanding above equation gives :

ttrrr ∂∂⎠⎝ ∂∂⎟⎠⎜⎝ μ

⎤⎡⎞⎛ 2

(25)

ttPc

rrP

rP

rP

rk

r ∂∂

+∂∂

=⎥⎦

⎤⎢⎣

⎡∂∂

∂∂

+∂∂

+∂∂

⎟⎟⎠

⎞⎜⎜⎝

⎛ ρφρφρρρμ 2

2

Applying the chain rule in the the above equation:

(26)PPcPPPk

r∂∂

+∂

=⎥⎤

⎢⎡ ∂

⎟⎠⎞

⎜⎝⎛ ∂+

∂+

∂⎟⎟⎞

⎜⎜⎛ ρφρφρρρ 2

2

2

Well Test Analysis, © UTP – MAY 2011

PttPrrrr r ∂∂∂⎥⎥⎦⎢

⎢⎣ ∂

⎟⎠

⎜⎝ ∂∂∂⎟⎟

⎠⎜⎜⎝

φρφρμ 2

Page 13: Transient Flow Equation and Solutios

Transient Flow Equation for Slightly Compressible Fluids (2/6)

Dividing the both sides of the above equation by ρ;

(27)⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂

+∂∂

=⎥⎥⎦

⎢⎢⎣

⎡⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

⎟⎠⎞

⎜⎝⎛∂∂

+∂∂

+∂∂

⎟⎟⎠

⎞⎜⎜⎝

⎛Pt

PtPc

PrP

rP

rP

rk

ρφφρ

ρμ111 2

2

2

Remembering fluid compressibility is related to its density by:

⎠⎝⎥⎦⎢⎣ ⎠⎝⎠⎝⎠⎝ ρρμ

∂ρ1(28)

Combining equations 27 and 28: 

Pc f ∂

∂=

ρρ1

g q

(29)PcPcPcPPk

frf∂

+∂

=⎥⎤

⎢⎡

⎟⎠⎞

⎜⎝⎛ ∂+

∂+

∂⎟⎟⎞

⎜⎜⎛ φφ

2

2

21

Well Test Analysis, © UTP – MAY 2011

ttrrrr frf ∂∂⎥⎥⎦⎢

⎢⎣

⎟⎠

⎜⎝ ∂∂∂⎟⎟

⎠⎜⎜⎝

φφμ 2

Page 14: Transient Flow Equation and Solutios

Transient Flow Equation for Slightly Compressible Fluids (3/6)

The square of pressure gradient over distance can be considered very small and negligible which yields;y g g y ;

(30)( )tPcc

rP

rP

rk

fr ∂∂

+=⎥⎦

⎤⎢⎣

⎡∂∂

+∂∂

⎟⎟⎠

⎞⎜⎜⎝

⎛φ

μ 2

21

Defining the total compressibility ct:

⎦⎣⎠⎝ μ

(31)

Substituting equations 31 in 30 and rearranging: 

frt ccc +=

(32)

tP

kc

rP

rrP t

∂∂

=∂∂

+∂∂ φμ1

2

2

Well Test Analysis, © UTP – MAY 2011

Page 15: Transient Flow Equation and Solutios

Transient Flow Equation for Slightly Compressible Fluids (4/6)

(32)PcPP t ∂=

∂+

∂ φμ12

2

tkrrr ∂∂∂ 2

Equation 32 is called as DIFFUSIVITY EQUATION and isconsidered one of the most important and widely usedmathematical expression in Petroleum Engineering.p g gThe diffusivity equation can be rearranged with the inclusion offield units and is used in the analysis of well testing data wheretime is commonly in hours.

Well Test Analysis, © UTP – MAY 2011

Page 16: Transient Flow Equation and Solutios

Transient Flow Equation for Slightly Compressible Fluids (5/6)

2(33)

tP

kc

rP

rrP t

∂∂

=∂∂

+∂∂

0002637.01

2

2 φμ

Where;k = permeability, md

di l i i f

Assumptions inherent in equation 33 (2,3,4):1. Radial flow into well opened entire thickness of

formationr = radial position, ftP = pressure, psiact = total compressibility, psi‐1t = time, hoursφ i f i

o at o2. Laminar flow (Darcy)3. Homogeneous and isotropic porous medium4. Porous medium has constant permeability and 

compressibilityG it   ff t     li iblφ = porosity, fraction

μ = viscosity, cp5. Gravity effects are negligible6. Isothermal conditions7. Fluid has small and constant compressibility8. Fluid viscosity is constant

Well Test Analysis, © UTP – MAY 2011

Page 17: Transient Flow Equation and Solutios

Transient Flow Equation for Slightly Compressible Fluids (6/6)

Diffusivity equation is generally is shown as:

( )PcP ∂⎟⎞

⎜⎛ ∂∂ φμ1 (34)

tP

kc

rPr

rrt

∂∂

=⎟⎠⎞

⎜⎝⎛

∂∂

∂∂ φμ1

⎠⎝

Well Test Analysis, © UTP – MAY 2011

Page 18: Transient Flow Equation and Solutios

Solutions to Diffusivity EquationTh th b i f i t t t dThere are three basic cases of interest towardsthe solution of Diffusivity Equation:

1. Constant production rate, InfiniteReservoir

2. Constant production rate, no‐flow at theouter boundary

3. Constant production, constant pressure at3. Constant production, constant pressure atthe outer boundary

Well Test Analysis, © UTP – MAY 2011

Page 19: Transient Flow Equation and Solutios

Initial and Boundary Conditions yfor Constant Production Rate, Infinite Boundary

(34)PcPr t ∂=⎟

⎞⎜⎛ ∂∂ φμ1

Equation: (34)

tkrr

rr ∂=⎟

⎠⎜⎝ ∂∂

Equation:

Initial Condition: ( ) iPrP =0, (35)( ) i,

Boundary Conditions:

I  B dPrkhq ⎟⎞

⎜⎛ ∂

=π2

Inner Boundarywr

rrq ⎟

⎠⎜⎝ ∂

(36)

Outer Boundary ( ) iPtrP =∞→ , (37)

Well Test Analysis, © UTP – MAY 2011

( )

Page 20: Transient Flow Equation and Solutios

Initial and Boundary ConditionsInitial and Boundary Conditions for Constant Production Rate, No‐Flow Boundary

(34)PcPr t ∂=⎟

⎞⎜⎛ ∂∂ φμ1

Equation: (34)

tkrr

rr ∂=⎟

⎠⎜⎝ ∂∂

Equation:

Initial Condition: ( ) iPrP =0, (35)( ) i,

Boundary Conditions:

I  B dPrkhq ⎟⎞

⎜⎛ ∂

=π2

Inner Boundarywr

rrq ⎟

⎠⎜⎝ ∂

(36)

d 0⎟⎞

⎜⎛ ∂P

Well Test Analysis, © UTP – MAY 2011

Outer Boundary 0=⎟⎠

⎜⎝ ∂ er

r(38)

Page 21: Transient Flow Equation and Solutios

Initial and Boundary ConditionsInitial and Boundary Conditions for Constant Production Rate, Constant Pressure Boundary

(34)PcPr t ∂=⎟

⎞⎜⎛ ∂∂ φμ1

Equation: (34)

tkrr

rr ∂=⎟

⎠⎜⎝ ∂∂

Equation:

Initial Condition: ( ) iPrP =0, (35)( ) i,

Boundary Conditions:

I  B dPrkhq ⎟⎞

⎜⎛ ∂

=π2

Inner Boundarywr

rrq ⎟

⎠⎜⎝ ∂

(36)

d ( ) PtrrP

Well Test Analysis, © UTP – MAY 2011

Outer Boundary (39)( ) ie PtrrP == ,

Page 22: Transient Flow Equation and Solutios

Dimensionless Form ofDimensionless Form of Diffusivity  EquationMost of the time dimensionless groups are used to express Diffusivity Most of the time dimensionless groups are used to express Diffusivity equation more simply. Many well test analysis techniques use dimensionless variables to depict general trends rather than working with specific parameters (like k, t, rw, re and h).

One must define dimensionless groups to be able to convert the diffusivity equation below to its dimensionless form.

(34)

tP

kc

rPr

rrt

∂∂

=⎟⎠⎞

⎜⎝⎛

∂∂

∂∂ φμ1

tkrrr ∂⎠⎝ ∂∂

Well Test Analysis, © UTP – MAY 2011

Page 23: Transient Flow Equation and Solutios

Dimensionless Groups forDimensionless Groups for Diffusivity  Equation

Dimensionless Pressure:

(40)

Dimensionless Pressure:

( )PPqBkhP iD −=μ

Dimensionless Radius:

rr = ( )

wD r

r = (41)

Dimensionless time:

2wt

D rcktt

φμ= (42)

Well Test Analysis, © UTP – MAY 2011

Page 24: Transient Flow Equation and Solutios

Dimensionless form ofDimensionless form of Diffusivity  Equation

The diffusivity equation then can be expressed in dimensionless The diffusivity equation then can be expressed in dimensionless form by utilizing the dimensionless groups as:

(43)

D

D

D

DD

DD tP

rPr

rr ∂∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂1

DDDD trrr ∂⎠⎝ ∂∂

d d h b d d l dNow it is needed to express the boundary and initial conditions in dimensionless forms.  

Well Test Analysis, © UTP – MAY 2011

Page 25: Transient Flow Equation and Solutios

Dimensionless Boundary and Initial Conditions for theDimensionless Boundary and Initial Conditions for the Diffusivity  Equation for Constant Rate, Infinite Reservoir

Initial Condition:

(44)

Initial Condition:

( ) 00, ==DDD trP

Outer Boundary:

( )( ) 0∞→ trP (45)

Inner Boundary:

( ) 0, =∞→ DDD trP

( )1

1

−=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

=DrD

D

rP

(46)

Well Test Analysis, © UTP – MAY 2011

Page 26: Transient Flow Equation and Solutios

Dimensionless Boundary and Initial Conditions for the yDiffusivity  Equation for Constant Rate, No‐Flow Boundary

Initial Condition:

(47)

Initial Condition:

( ) 00, ==DDD trP

Outer Boundary:

( 8)0=⎟⎟⎞

⎜⎜⎛ ∂ DP

(48)

Inner Boundary:

0=⎟⎟⎠

⎜⎜⎝ ∂ eDrDr

(49)

( )1

1

−=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

=DrD

D

rP

Well Test Analysis, © UTP – MAY 2011

( )D

Page 27: Transient Flow Equation and Solutios

Dimensionless Boundary and Initial Conditions for the Diffusivity  Equation for Constant Rate, Constant Pressure y q ,Boundary

Initial Condition:

(50)

Initial Condition:

( ) 00, ==DDD trP

Outer Boundary:

( )( ) 0== trrP (51)

Inner Boundary:

( ) 0, == DeDDD trrP

(52)

( )1

1

−=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

=DrD

D

rP

Well Test Analysis, © UTP – MAY 2011

( )D

Page 28: Transient Flow Equation and Solutios

ASSIGNMENT # 1Due Date: Monday 28‐2011Prove that the below partial differential equation is the dimensionless form of Diffusivity Equation.

D

D

D

DD

DD tP

rPr

rr ∂∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂1

Prove also that the below initial and boundary conditions are the dimensionless forms of Constant Rate Infinite Boundary case.

( )Initial Condition: ( ) 00, ==DDD trP

Outer Boundary: ( ) 0=∞→ trPOuter Boundary:

Inner Boundary: 1−=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂ DP

( ) 0, =∞→ DDD trP

Well Test Analysis, © UTP – MAY 2011

( )1⎟⎠

⎜⎝ ∂ =DrDr

Page 29: Transient Flow Equation and Solutios

Solution to Diffusivity Equation for Constant Line Source Production Rate Infinite Boundary CaseDiffusivity Equation:

PP ∂⎟⎞

⎜⎛ ∂∂1

I i i l  d B d  C di i

D

D

D

DD

DD tP

rPr

rr ∂∂

=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

∂∂1

(43)

Initial and Boundary Conditions

Initial Condition: ( ) 00, ==DDD trP (44)

Outer Boundary:

⎞⎛ ∂P

( ) 0, =∞→ DDD trP (45)

Inner Boundary: 1lim0

−=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

→D

DrD

DDr r

Pr (46)

Well Test Analysis, © UTP – MAY 2011

Page 30: Transient Flow Equation and Solutios

⎞⎛⎟⎟⎞

⎜⎜⎛ −

−= DiD

rEP 1 2

⎟⎠

⎜⎝ D

iD t42Thi  i   h  li     l i   f  h  Diff i i  E i  f     d i     d This is the line source solution of the Diffusivity Equation for constant production rate and infinite reservoir case.

Well Test Analysis, © UTP – MAY 2011

Page 31: Transient Flow Equation and Solutios

S l ti t Diff i it E ti f C t t Li SSolution to Diffusivity Equation for Constant Line Source Production Rate Infinite Boundary Case

For 

(83)01.04

2

<D

D

tr

Exponential integral can be approximated as

⎥⎤

⎢⎡

⎟⎞

⎜⎛

809070l1 DtP ⎥⎦

⎢⎣

+⎟⎟⎠

⎜⎜⎝

= 80907.0ln2 2

D

DD r

P (84)

Well Test Analysis, © UTP – MAY 2011

Page 32: Transient Flow Equation and Solutios

S l ti t Diff i it E ti f C t t Li SSolution to Diffusivity Equation for Constant Line Source Production Rate Infinite Boundary Case

And the dimensionless pressure at the wellbore  

(85)1=Dr

Exponential integral can be approximated as

) [ ]809070l1P ) [ ]80907.0ln2

+= DwellboreD tP (86)

This is the solution for dimensionless bottom hole well pressure for constant production rate infinite reservoir case.

Well Test Analysis, © UTP – MAY 2011

Page 33: Transient Flow Equation and Solutios

References1. Dominique Bourdet, “Well Test Analysis: The Use of Advanced Interpretation 

Models”, Handbook of Petroleum Exploration and Production, 3. Elsevier, 2002 (Chapter 1)T k Ah d   d P l D  M Ki  “Ad d R i  E i i ”  2. Tarek Ahmed, and Paul D. McKinney, “Advanced Reservoir Engineering”, Elsevier, 2005 (Chapter 1)

3. John Lee, John B. Rollins, and John P. Spivey, “Pressure Transient Testing”, SPE Textbook series Vol  9Textbook series Vol. 9.

4. C. S. Matthews, and D. G. Russell, “Pressure Buildup and Flow Tests in Wells”, SPE Monograph Vol. 1

Well Test Analysis, © UTP – MAY 2011