Top Banner
J. J. Thomson 1856-1940 Nobel Prize 1906  Thomson scattering: '' It is the scattering of electromagnetic radiation by a free non-relativistic  charged particle. The electric and magnetic components of the incident wave accelerate the particle. As it accelerates, it, in turn, emits radiation and thus, the wave is scattered. Thomson scattering is an important phenomenon in plasma physics and was first explained by the physicist  The main cause of the acceleration of the particle will be due to the electric field component of the incident wave. The particle will move in the direction of the oscillating electric field, resulting in electromagnetic dipole radiation. The moving particle radiates most strongly in a direction perpendicular to its motion and that radiation will be polarized  along the direction of its motion. Therefore, depending on where an observer is located, the light scattered from a small volume element may appear to be more or less polarized.'' Daniele Dallacasa – Radiative Processes and MHD                                   Section -4 : Thomson Scattering, Compton scattering & Inverse Compton
32

Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

May 02, 2018

Download

Documents

buithuan
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

J. J. Thomson 1856­1940Nobel Prize 1906

  Thomson scattering:

''It is the scattering of electromagnetic radiation                          by a free non­relativistic charged particle.                 

The electric and magnetic components of the incident wave accelerate the particle. As it accelerates, it, in turn, emits radiation and thus, the wave is scattered. Thomson scattering is an important phenomenon inplasma physics and was first explained by the physicist

                                                                                                    The main cause of the acceleration of the particle will be due to the electric field component of the incident wave. The particle will move inthe direction of the oscillating electric field, resulting in electromagneticdipole radiation. The moving particle radiates most strongly in adirection perpendicular to its motion and that radiation will bepolarized along the direction of its motion. Therefore, depending on where an observer is located, the light scattered from a small volumeelement may appear to be more or less polarized.''

Daniele Dallacasa – Radiative Processes and MHD                                   Section ­4 : Thomson Scattering, Compton scattering & Inverse Compton

Page 2: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Thomson scattering

photon­electron interaction ­1­

– for a non relativistic particle, the incoming (low­energy) photons can be expressed as a continuous e­m wave and the magnetic field (Ho=Eo) can be “neglected” (i.e. studied as a consequence of the E field behaviour). 

– the average incoming Poynting flux is <|S|> = cEo2/8π

– the charge feels a force due to a linearly polarized incoming wave:

– the energy of the scattered radiation is the same as the incoming wave

hv ≪ mec2

Page 3: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Thomson scattering (2)

– the force is due to a linearly polarizesd wave:

 – the dipole moment is

– which describes a dipole with amplitude

– taking into account the Larmor's formula, the time averaged emitted W is

– where

is the differential cross section for the scattering

F = e E o sino t

d = e r d = e r =e2 E o

msino t

d = − e2 E o

mo2 sino t = a t

d o = − e2 E o

mo2

⟨d Wd

⟩ = ⟨23

d 2

c 3 ⟩ = ⟨e4E o

2

8m2c 3 sin2⟩ = ⟨S ⟩

d

d

d

d =

e4

m2c 4 sin2=r o

2 sin2

Page 4: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Particle acceleration(due to incoming radiation)

the emitted power by the scattering particle is:

from this equation we define the electron Thomson cross section by integrating over all the angles:

Back to the ''geometric problem'' the angular distribution of the radiation is given by 

and this means that each individual scatter produces polarized radiationCross section independent from frequency (breaks down at high frequencies when the classical physics need quantum mechanics)

2

Page 5: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

            Compton scattering           

''In physics, Compton scattering or the Compton effect, is the decrease in energy (increase in wavelength) of an X­ray or gamma ray photon, when it interacts with matter.Inverse Compton scattering also exists, where the photon gains energy (decreasing in wavelength) upon interaction with matter. The amount the wavelength increases by is called the Compton shift. Althoughnuclear compton scattering exists, what is meant by Compton scattering usually is the interaction involving only the electrons of an atom. Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the 1927 Nobel Prize in Physics.

The effect is important because it demonstrates that light cannot be explainedpurely as a wave phenomenon.Thomson scattering, the classical theory of charged particles scattered by an electromagnetic wave, cannot explain any shift in wavelength. Light must behaveas if it consists of particles in order to explain the Compton scattering.''

A.H. Compton 1892­1962

Page 6: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Compton scattering                                        photon­electron interaction ­1­

Page 7: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Compton wavelength for electrons

Compton scattering                                        photon­electron interaction ­2­

energy conservation:

momentum conservation:          

hime c 2= hfpe

2 c 2me

2 c 4

p i = p f pe p=E /c=h/c photon momentumpe = p i− p f pe

2= p i− p f ⋅ p i− p f = p i

2pf

2−2 p i p f cos

pe2 = h2i

2 h2f2 − 2h2i f cos

multiply by c2 then take the square of energy conservation

pe2 c 2m e

2 c 4 = h2i2h2f

2me2 c 42hi me c 2−2hf me c 2−2h2i f

compare the two by highlighting pe2 c 2 we get

−2h 2i f cos = 2h i m e c2

−2h f me c 2−2h 2

i f

2h 2i f 1−cos = 2h me c 2 i−f 1−cosme c 2 =

i−f

h i f

=1h 1f

−1i

1f

−1i

=f

c−

i

c=

hme c 2 1−cos

f−i =h

me c1−cos = o1−cos o =

hme c

= 0.02426 A

Page 8: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Compton scattering 

a Java applet showing the geometry of the scattering can be found at

http://www.student.nada.kth.se/~f93­jhu/phys_sim/compton/Compton.htm

Page 9: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

he=hi

1hi1−cos/me c2

e−i =h

me c⋅1−cos = o1−cos = 0.02426⋅1−cos   [A]

Compton scattering 

a Java applet showing the geometry of the scattering can be found at

http://www.student.nada.kth.se/~f93­jhu/phys_sim/compton/Compton.htm

Final energy of the scattered photon is a function of:

– initial energy of the photon– scattering angle

The photon always looses energy, unless  θ = 0, and the scattering is closely elastic when ≫

c  (i.e. hv≪ m

ec2 )

When the photons involved in the collision have large energies, the scattering become less efficient and quantum electrodynamics effects reduce the cross section:the Thomson cross section becomes the Klein­Nishina cross section

Page 10: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Cross – section:                                               Thomson and Klein – Nishina 

In case hv ~ mec2 , the probability of interaction decreases, also as a function of the 

scattering angle; additional constraints come from relativistic quantum mechanics; 

if we use

known as the Klein – Nishina cross section;

it originates from a differential cross section based on the scattering angle

where the probability is defined as

and the Klein – Nishina cross section becomesthe Thomson cross section at low photon energies

x ≡h

me c 2

= T34 [1x

x 3 2x 1x 12x

−ln12 x 12 x

ln12x −13x

12x 2 ]

d

d =

12

r e2 [P h , − P 2

h ,sin2 P 3

h ,]

P h , =1

1h

me c 2 1−cos

if x ≫1 = T38

1x ln2 x

12

Page 11: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

x =           

Cross – section                                                                   Klein – Nishina 

The Klein – Nishina cross section is relevant at high photon energies (Hard X­Rays and beyond)

Page 12: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Inverse  Compton scattering                           photon­electron interaction ­3­

Moving, energetic (relativistic), electrons “cool down” by increasing the energy of seed photons.To make computations simpler, it is possible to consider the centre of momentum frame where the photon energy is much less than mec

2 and then T can be used.

In the electron rest frame we have Thomson scattering

1. Lab system   ⇨ electron rest frame:                

2. Thomson scattering in electron rest frame

3. Electron rest frame  ⇨ Lab system

i.e.   ⇨

Very efficient energy transfer from electron to photon!

he = hL 1 − cos

he ' = he

hL ' = h e ' 1 cos1 '

hL ' ≈ 2h L

Page 13: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Inverse  Compton scattering                         

The scattering angle is important for the energy of the outgoing electron:

1 ­ maximum energy gained by the electron if  =and 1' = 0    ⇨ in the electron rest frame the photon is blue – shifted  (face on collision)

2 – minimum energy  gained by the electron if  = 0and 1' =     ⇨ in the electron rest frame the photon is red – shifted (end on collision)

the maximum energy that can be gained is (averaged over all angles):

or, in terms of frequency

In case it is possible to measure both the initial and final  photon energy/frequency,then  2 can be deduced

' ≈43

2

' ≈43

2

≈ 34

'

Page 14: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Inverse  Compton scattering                                               emitted energy

It is a Lorentz invariant, i.e. the same in the laboratory and electron rest frame

Let's consider a region where there is a plasma of relativistic electrons and a radiation field:in the electron framework, the photon energy is

since the emitted energy is a Lorentz invariant. It is then possible to write

and, finally, the energy coming out the scattering region is

⟨E rad2

⟩ = U ph ⟨1 cos2⟩ = 113

2

d

dt=

d 'dt '

= cT

⟨E ' rad2

8= c T

2⟨1 cos2⟩ ⟨E rad

2⟩

d out

dt= cT U ph

2113

2

E ' = h ' = h1 cos = E 1 cos

Page 15: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

The energy associated with the photons, prior of the scattering isd in

dt= −cT U ph

and then the net effect of the Inverse Compton scattering isd out

dt−

d in

dt= d

dt ic = c T U ph [21 13

2 − 1]

2−1 =

2

2 then d

dt ic =43

c T 2

2 U ph

and if we recall the synchrotron emission d

dt syn

=43

cT 2

2 UH

we get  d

dt syn

d

dt ic=

UH

U ph

Page 16: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

The “Local Radiation Field”

Evaluation of Urad: as taken in a number of selected locations

X­rays                                                                                 radio

Spatial variation of the total radiation field throughout the Galaxy. Black line :       total radiation field for GC. Magenta line : total radiation field for R=0,   z=5 kpc,Blue line :        total radiation field for R= 4,  z=0 kpc,Red line :         total radiation field for R=12, z=0 kpc,Green line :     total radiation field for R=20, z=0 kpc.          This diagram will be discussed a bit further when considering the ISM

Page 17: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Synchrotron & Inverse  Compton scattering                       radiative losses

The same relativistic electrons radiate via synchrotron  and inverse Compton; their contributions add up:

The increased cooling rate implies that the electron radiative lifetime is consequently reduced:

Therefore.... hard times for relativistic electrons!

Example: radiative lifetime for a relativistic electrons in a radio lobe.

Heq , Urad , strong dependence on z!                                                        BCMB ~ 3.28 (1+z)2 G

− d

dt syic

= Cs 2 [H 2 8U rad ]

t syic∗ ≈

1

1H 2

8U rad

≈3⋅108

H 2/8U rad [eV cm−3

]

1

∗[GeV ]

yr

Page 18: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

 

Synchrotron Self­Compton Catastrophe

Let's consider a spherical cloud with radius R  filled with magnetized relativistic plasma located at a distance d  from the observer. The low­energy synchrotron photons may be up­scattered by the relativistic electrons via IC:

the energy density of the radiation field can then be derived

finally the comparison between the IC and Synchrotron losses gives:

For brightness temperatures above 1012 K, the radiation field will undergo to a dramatic amplification; IC would become the most efficient and dominant cooling process (X­Rays) and a source would radiate its energy in a very short time [Compton catastrophe]. Brightness temperature limit in radio source is  1012 K

RLs = 4d 2∫S d ≈ 4d 2Smaxc f =

= U rad4c

3R2

U rad =3Ls

4R 2c

LIC

Ls

=U rad

H 2/8=

6Ls

R 2H 2c≈

Smax c

2H 2cf = T Bmax

1012K 5

c

GHz f

Page 19: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

          Comptonization:          We want to evaluate if there is a substantial             change in the spectrum of the seed photons in case of multiple scattering             with hot (but non­relativistic) electrons in thermal equilibrium. 

          Let's consider the process from the point of view of the photons

There are interactions where energy is transferred from photons to electrons (C scattering)

There are interactions where energy is transferred from electrons to photons (IC scattering)(positive since we are considering the process from the point of view of the photons)

The net energy transfer is:

Thermal equilibrium(1/2)m

ev2 = (3/2)kT

⟨EE

⟩ =4kT − h

me c 2

⟨h

h ⟩

phot≈ −

h

me c 2

⟩el

≈43 v

c 2

=4

3c2

3kTme

=4kT

me c 2

Page 20: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

         

                                     photons loose energy and electrons (gas) heats up

                                     photons gain energy and electrons (gas) cools down

Let's consider the latter case in a region of size D:

D The opacity to the scattering is

and the mean free path is

Comptonization:  ­2­

There is not a net energy transfer when 

Page 21: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Comptonization:  ­3­

The total number of collisions is:

the total energy gain is

the mean photon energy as a function of time becomes

where y is known as ''Compton y­parameter''

Page 22: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...
Page 23: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

The spectrum of the radiation is substantially modified when vf >~ v

o

and the final equilibrium is achieved when

If this condition is met (thermal equilibrium), the modified photonspectrum must follow the Bose­Einstein distribution

hf = 4kT i.e. y =14

ln 4kTho

namely

e = [ ln 4kTho me c 2

4kT ]1/2

Page 24: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

At equilibrium, the photons will follow a Bose ­ Einstein distribution:

u d =8h

3

c 3

1eh/kT

−1d

where   is known as chemical potential(which is =0 for Planck's BB spectrum)and measures the rate at which photonsare produced

in case   h

kT ≫ 1

we have

u d =8h

3

c 3 e−h/kT e−

i.e. the Wien's law modified by e−

Modified spectrum

Page 25: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Kompaneets' equation:

The exact description of the photon scattering (i.e. find the observed spectrum originated by various values of the y­parameter) is better obtainedin the phase­space through the Kompaneets' equation:

where 

    Recoil effect

Induced/stimulated emission                                            Doppler motion

Examples:       Accretion disks in AGNs , and Q;                S­Z effect

Emission spectra come out as power­law with index 3+m where m=−32±941

y

Page 26: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Thermal bremsstrahlung spectrum with comptonization(accretion disks)

Page 27: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Comptonization:  the spectrum is modified as a function of the opacity to this process

Page 28: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Comptonization:  Astrophysical examples

possible models of comptonization

Page 29: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Comptonization:  Astrophysical examples (2)

courtesy of G. Ghisellini

Page 30: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Sunyaev­Zeldovich effect

­ thermal: high energy electrons interact with CMB photons via IC                 scattering

­ kinematic: bulk motions modify the spectrum, second order effect,                  also known as Ostriker–Vishniac effect

Where does it take place?

Jakov Zeldovich 1914 – 1987Rashid Sunyaev

Page 31: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

                  v3+m

                   fixed                    cross­over freq

Sunyaev­Zeldovich effect

Galaxy clusters have hot electronscapable of IC scattering of CMB photons. A CMB photon have a 1% probabilityof interacting with a high energy ICMelectron.

Page 32: Thomson scattering - INAFddallaca/P-Rad_4.pdf · Thomson scattering: ... Compton effect was observed by Arthur Holly Compton in 1923, for which he earned the ...

Sunyaev­Zeldovich effect: the Planck's view

The same galaxy cluster as a function of frequencyas seen by the Planck satellite.

A full sky temperature map is athttp://www.astro.cardiff.ac.uk/~spxcen/CMB_Sims/Planck_comb_rbcol_scaled.png