Top Banner
The Earth’s transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez, E. Martin, A. Garcia-Muñoz
26

The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Mar 27, 2015

Download

Documents

Natalie Welch
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

The Earth’s transmission spectrum from lunar eclipse observations: The pale red dot.

E. Palle, M.R. Zapatero-Osorio, R. Barrena,P. Montañes-Rodriguez, E. Martin, A. Garcia-Muñoz

Page 2: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

But isolating the light from the planet is VERY challenging,what if direct detection is not possible?

What about transiting Earth’s?

Atmospheric characterization of Hot Jupiters has already been achieved trough transit spectroscopy

Page 3: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Poster 36: Montañes-Rodriguez et al.

Page 4: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

We can observe it during a lunar eclipse

NOT, Visible, 0.4-1 μmWHT, Near-IR, 0.9-2.5 μmLa Palma, Canaries

Page 5: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Lunar eclipse August 16th 2008

Page 6: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Umbra

Penumbra

Brigth Moon

Page 7: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Umbra

Umbra/Bright

Bright

Page 8: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

0.5 1.0 1.5 2.0 2.5

Earth’s Transmission Spectrum

The pale red dot

μm

Page 9: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

O2

O3

Ca II

H2O

Earth’s Transmission SpectrumVisible

0.4 0.5 0.6 0.7 0.8 0.9 μm

Page 10: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

O4Ca II

Ca II

NO2 ?

Fraunhofer lines structure

Page 11: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

CO2

H2O

O2•O2

1.0 1.25 1.5

O2

O2•O2

O2•N2

Earth’s Transmission SpectrumNear-IR ZJ

μm

Page 12: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Atmospheric Dimers:

• Van de Waals molecules: Weakly bound complexes

• They are present as minor rather than trace species.

• One likely origin of continuum absorption.

• Observed on Earth (gas) and Jupiter (gas; (H

2)

2), Ganymede, Europa and Callisto

(condensed), and in the laboratory (gas/condensed).

• Never on Venus/Mars, where there must be CO

2 – X

• NOT contained in the common spectral libraries

Calo and Narcisi (1980)

Page 13: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

CH4

CO2

H2O

1.5 2.0 2.5

Earth’s Transmission SpectrumNear-IR HK

μm

Page 14: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

How deep we see in the planet atmosphere?

h

T(h, )

Traub, 2009

h min ?

• Are antropogenic signatures visible in the lower layers?

• Is there a surface signal?

Page 15: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Evolution of the Earth’s Transmission Spectrum during the eclipse

Page 16: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Reflection vs Transmission

Page 17: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Earth’s Reflectance Spectrum: Earthshine

Same instrumentation only two months apart

0.5 1.0 1.5 2.0 2.5μm

Page 18: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

0.5 1.0 1.5 2.0 2.5

Reflected spectrum Transmission Spectrum

CO2 CH4

CH4

O2 CO2

Blue planet?

O2

O2•O2

O2•N2

O2•O2

Palle et al, 2009μm

Page 19: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,
Page 20: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Thus, the transmission spectrum of telluric planets contains more information for the atmospheric characterization than the reflected spectrum.

And it is also less technically challenging

But, how far are we from making the measurements ?

Page 21: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

F*

F* - F* ( ) + F*( ) T Aa

____

A*

Ap*a

______

A*

+ Ruido

+ Ruido

Page 22: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Wavelength (μm)

Differential transit spectroscopy M star + Earth : 1 (2) measurement

Ss+p / Sp

Page 23: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

M8 star + 1 Earth ... with the E-ELT

~5 h

~ 150 h~ 50 h

~ 25 h

Wavelength (μm) Wavelength (μm)

Work in progress ...

Page 24: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Still, we must pursue the characterization with direct

observations

Exploration of surface featuresPresence of continentsRotational periodLocalized surface biomarkers (vegetation)

Orbital light curve Ocean glints and polarization effects

Page 25: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Conclusions

We have obtained the Earths transmission spectra 0.4-2.5 μm First order detection and characterization of the main

constituents of the Earth's atmosphere Detection of the Ionosphere : Ca II, ( Mg, Fe, ??) Detection of O2•O2 and O2•N2 interactions Offers more information than the reflectance spectra

Using the measured Earth transmission spectrum and several stellar spectra, we compute the probability of characterizing a transiting earth with E-ELT For a Earth in the habitability zone of an M-star, it is

possible to detect H2O , O2 , CH4 ,CO2 (= Life) within a few tens of hours of observations.

Page 26: The Earths transmission spectrum from lunar eclipse observations: The pale red dot. E. Palle, M.R. Zapatero-Osorio, R. Barrena, P. Montañes-Rodriguez,

Thank you