Top Banner
The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University
27

The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

Dec 18, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

The Case For Prediction-based

Best-effort Real-time

Peter A. Dinda

Bruce Lowekamp

Loukas F. Kallivokas

David R. O’Hallaron

Carnegie Mellon University

Page 2: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

2

Overview

• Distributed interactive applications• Could benefit from best-effort real-time• Example: QuakeViz (Earthquake Visualization) and

the DV (Distributed Visualization) framework

• Evidence for feasibility of prediction-based best-effort RT service for these applications

• Mapping algorithms• Execution time model• Host load prediction

Page 3: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

3

Application Characteristics• Interactivity

• Users initiate tasks with deadlines• Timely, consistent, and predictable feedback

• Resilience• Missed deadlines are acceptable

• Distributability• Tasks can be initiated on any host

• Adaptability• Task computation and communication can be adjusted

Shared, unreserved computing environments

Page 4: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

4

Teora, Italy1980

Motivation for QuakeViz

Page 5: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

5

Northridge Earthquake Simulation

40 seconds of an aftershock of Jan 17, 1994 Northridge quake in San Fernando Valley of Southern California

50 x 50 x 10 km region13,422,563 nodes76,778,630 tetrahedrons1 Hz frequency resolution20 meter spatial resolution

16,666 40M x 40M SMVPs15 GBytes of RAM6.5 hours on 256 T3D PEs 80 trillion (1012) FLOPs3.5 sustained GFLOP/s1.4 peak GB/s

16,666 time steps13,422,563 3-tuples

per step

6 Terabytes6 Terabytes

Real Event

Huge Model

High Perf. Simulation

HUGE OUTPUT

Page 6: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

6

Must Visualize Massive Remote Datasets

ProblemOne Month Turnaround Time

Datasets must be kept at remote supercomputing site due to their sheer size

Visualization is inherently distributed

Page 7: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

7

QuakeViz: Distributed Interactive Visualizationof Massive Remote Earthquake Datasets

GoalInteractive manipulation of massive remote datasets from arbitrary clients

Sample 2 host visualization of Northridge Earthquake

Page 8: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

8

DV: A Framework For Building Distributed Interactive Visualizations of Massive Remote Datasets

Dataset

interpolationinterpolation isosurfaceextraction

isosurfaceextraction

scenesynthesis

scenesynthesis

interpolationinterpolation morphologyreconstruction

morphologyreconstruction

localdisplay

anduser

renderingrenderingreadingreading

ROI resolution contours

•Logical View: Distributed pipelines of vtk* modules

*Visualization Toolkit, open source C++ library

User feedback and quality settings

Display update latency

•Example:

deadline

Page 9: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

9

DV: A Framework For Building Distributed Interactive Visualizations of Massive Remote Datasets

Dataset

interpolationinterpolation isosurfaceextraction

isosurfaceextraction

scenesynthesis

scenesynthesis

interpolationinterpolation morphologyreconstruction

morphologyreconstruction

localdisplay

anduser

renderingrenderingreadingreading

ROI resolution contours

•Logical View: Distributed pipelines of vtk* modules

*Visualization Toolkit, open source C++ library

User feedback and quality settings

Display update latency

•Example:

deadline

Page 10: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

10

Active Frames

Active Frame

n+2?

interpolationinterpolation isosurfaceextraction

isosurfaceextraction

scenesynthesis

scenesynthesis

Physical View of Example Pipeline:

deadlineActive Frame

n+1?

deadlineActive Frame

n?

deadline

•Encapsulates data, computation, and path through pipeline•Launched from server by user interaction•Dynamically chose on which host each pipeline stage will execute and what quality settings to use

Page 11: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

11

Active Frames

Active Frame

n+2?

interpolationinterpolation isosurfaceextraction

isosurfaceextraction

scenesynthesis

scenesynthesis

Physical View of Example Pipeline:

deadlineActive Frame

n+1?

deadlineActive Frame

n?

deadline

•Encapsulates data, computation, and path through pipeline•Launched from server by user interaction•Dynamically chose on which host each pipeline stage will execute and what quality settings to use

Page 12: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

12

Active Frame Execution ModelActive Frame

Host LoadMeasurement

NetworkMeasurementRemos

Measurement Infrastructure

Mapping Algorithm

Prediction Prediction

CMU Remos API

ResourcePredictionsExec Time Model

•pipeline stage•quality params

deadline

Page 13: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

13

Active Frame Execution ModelActive Frame

Host LoadMeasurement

NetworkMeasurementRemos

Measurement Infrastructure

Mapping Algorithm

Prediction Prediction

CMU Remos API

ResourcePredictionsExec Time Model

•pipeline stage•quality params

deadline

Page 14: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

14

Active Frame Execution ModelActive Frame

Host LoadMeasurement

NetworkMeasurementRemos

Measurement Infrastructure

Mapping Algorithm

Prediction Prediction

CMU Remos API

ResourcePredictionsExec Time Model

•pipeline stage•quality params

deadline

Page 15: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

15

Feasibility of Best-effort Mapping Algorithms

0

10

20

30

40

50

60

70

80

90

100

0.01 0.1 1 10 100tnominal (seconds)

Random

Best Individual Host

RangeCounter(50)

Optimal (RC)

Page 16: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

16

Active Frame Execution ModelActive Frame

Host LoadMeasurement

NetworkMeasurementRemos

Measurement Infrastructure

Mapping Algorithm

Prediction Prediction

CMU Remos API

ResourcePredictionsExec Time Model

•pipeline stage•quality params

deadline

Page 17: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

17

Feasibility of Execution Time Models

1 3 5 7Measured Load

0

5

10

15

20

25E

xecu

tion

TIm

e (S

econ

ds)

42,000 pointsCoefficient of Correlation = 0.998

nominal

tt

t

tdttload

execnow

now

)(1

1

Page 18: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

18

Active Frame Execution ModelActive Frame

Host LoadMeasurement

NetworkMeasurementRemos

Measurement Infrastructure

Mapping Algorithm

Prediction Prediction

CMU Remos API

ResourcePredictionsExec Time Model

•pipeline stage•quality params

deadline

Page 19: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

19

Why Is Prediction Important?Bad Prediction

No obvious choiceGood PredictionTwo good choices

Pre

dict

ed E

xec

Tim

e

Good predictions result in smaller confidence intervals

Smaller confidence intervals simplify mapping decision

Pre

dict

ed E

xec

Tim

e

deadline

Page 20: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

20

Feasibility of Host Load Prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 150

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Lead (seconds)

testcase 1681847547 from unix16 trace from all4.txt - resampled

By signal variance

By AR(9)

Page 21: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

21

Comparing Prediction Models

Good models achieve consistently low error

Mea

n S

quar

ed E

rror

Model A Model B Model C

Inconsistentlow error

Consistent low error

Consistent high error

Run 1000s of randomized testcases, measure prediction error for each, datamine results:

2.5%

25%

50%

Mean

75%

97.5%

Page 22: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

22

Comparing Linear Models for Host Load Prediction15 second predictions for one host

Title:axp0_lead15_8to8.epsCreator:MATLAB, The Mathworks, Inc.Preview:This EPS picture was not savedwith a preview included in it.Comment:This EPS picture will print to aPostScript printer, but not toother types of printers.

2.5%

25%

50%

Mean

75%

97.5%

Raw Cheap Expensive Very $

Page 23: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

23

Conclusions

• Identified and described class of applications that benefit from best-effort real-time

• Distributed interactive applications• Example: QuakeViz / DV

• Showed feasibility of prediction-based best-effort real-time systems

• Mapping algorithms, execution time model, host load prediction

Page 24: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

24

Status - http://www.cs.cmu.edu/~cmcl• QuakeViz / DV

• Overview: PDPTA'99, Aeschlimann, et al• http://www.cs.cmu.edu/~quake • Currently under construction

• Remos• Overview: HPDC’98, DeWitt, et al• Available from http://www.cs.cmu.edu/~cmcl/remulac/remos.html• Integrating prediction services

• Network measurement and analysis• HPDC’98, DeWitt, et al; HPDC’99, Lowekamp, et al• Currently studying network prediction

• Host load measurement and analysis• LCR’98, Dinda; SciProg’99, Dinda

• Host load prediction• HPDC’99, Dinda, et al

Page 25: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

25

Feasibility of Best-effort Mapping Algorithms

0

10

20

30

40

50

60

70

80

90

100

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3tmax/tnominal

Random

Best Individual Host

RangeCounter(50)

Optimal(RC)

Page 26: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

26

Feasibility of Host Load Prediction

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 250

0.5

1

1.5

2

2.5

Lead (seconds)

testcase -1619784968 from axpfea.psc trace

By signal variance

By AR(18)

Page 27: The Case For Prediction-based Best-effort Real-time Peter A. Dinda Bruce Lowekamp Loukas F. Kallivokas David R. O’Hallaron Carnegie Mellon University.

27

Comparing Linear Models for Host Load Prediction

Title:all_lead15_8to8.epsCreator:MATLAB, The Mathworks, Inc.Preview:This EPS picture was not savedwith a preview included in it.Comment:This EPS picture will print to aPostScript printer, but not toother types of printers.

15 second predictions aggregated over 38 hosts

2.5%

25%

50%

Mean

75%

97.5%

Raw Cheap Expensive Very $