Top Banner
Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang Wu (Tsinghua)
28

Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Apr 01, 2015

Download

Documents

Lincoln Ripper
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Testing Surface Area

Ryan O’DonnellCarnegie Mellon & Boğaziçi University

joint work with Pravesh Kothari (UT Austin),Amir Nayyeri (Oregon), Chenggang Wu (Tsinghua)

Page 2: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

In 2 dimensions…

“surface area” is called “perimeter”

BTW: This is one shape,that happens to be

disconnected

Page 3: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

In 1 dimension…

“surface area” equals “# of endpoints”

BTW: This is one shape,that happens to be

disconnected

= “2 × # of intervals”

Page 4: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Our Theorem

Given S, ϵ, and query access to F ⊂ [0,1]n,

there’s an O(1/ϵ)-query (nonadaptive) algorithm s.t.:

• Says YES whp if perim(F) ≤ S;

• Says NO whp if F is ϵ-far from all G with perim(G) ≤ 1.28 S.

vol(F∆G) > ϵ

Page 5: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Our Theorem

Given S, ϵ, and query access to F ⊂ [0,1]n,

there’s an O(1/ϵ)-query (nonadaptive) algorithm s.t.:

• Says YES whp if perim(F) ≤ S;

• Says NO whp if F is ϵ-far from all G with perim(G) ≤ 1.28 S.

No Curse Of Dimensionality!

No assumptions about F!

Page 6: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Our Theorem

Given S, ϵ, and query access to F ⊂ [0,1]n,

there’s an O(1/ϵ) -query (nonadaptive) algorithm s.t.:

• Says YES whp if perim(F) ≤ S;

• Says NO whp if F is ϵ-far from all G

with perim(G) ≤ (κn+δ) S.

1

ϵ δ2.5

Page 7: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Prior work

who dim. queries approx factor κ

[KR98]

[BBBY12]

[KNOW14]

[Nee14]

1 O(1/ϵ) 1/ϵ

1 O(1/ϵ4) 1

n O(1/ϵ) < 1.28 ∀nany 1+δ if n=1

n O(1/ϵ) any 1+δ

1 O(1/ϵ3.5) 1

Page 8: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Prior work

who dim. queries approx factor κ

[KR98]

[BBBY12]

[KNOW14]

[Nee14]

1 O(1/ϵ) 1/ϵ

1 O(1/ϵ4) 1

n O(1/ϵ) < 1.28 ∀nany 1+δ if n=1

n O(1/ϵ) any 1+δ

1 O(1/ϵ3.5) 1

Remark: We obtained same results inGaussian space. So did Neeman.

Page 9: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Property Testing framework is necessary

Theorem [BNN06]:

If F ⊂ [0,1]n promised to be convex,

can estimate perim(F) to factor 1+δwhp using poly(n/δ) queries.

No “ϵ-far” stuff.

We don’t assume convexity, curvature bounds,

connectedness — nothing.

Page 10: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Property Testing framework is necessary

Page 11: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Property Testing framework is necessary

Page 12: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Soundness theorem challenge:Cut string, smooth side, fill in holes.

Page 13: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Algorithm: Buffon’s Needle

Crofton Formula.

Let F ⊂ [0,1]n

Pick x ~ ℝn / ℤn uniformly.

Pick y ~ Bλ(x).

Line segment xy called “the needle”.Then…

ℝn / ℤn.

xyE[ #( xy∩∂F ) ]

=

cn · λ · perim(F) F

Page 14: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Algorithm: Buffon’s Needle

Crofton Formula.

Let F ⊂ [0,1]n

Pick x ~ ℝn / ℤn uniformly.

Pick y ~ Bλ(x).

Line segment xy called “the needle”.Then…

ℝn / ℤn.

xyE[ #( xy∩∂F ) ]

=

cn · λ · perim(F)

explicit dimension-dependent constant,

Θ(n–1/2)

F

Page 15: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

xyE[ #( xy∩∂F ) ]

=

cn · λ · perim(F) F

E[ 1{x∈F, y∉F, or vice versa} ]

Pr[ 1F(x)≠1F(y) ]

=

NSF(λ)

:=

The “Noise Sensitivity” of F:

Page 16: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Algorithm and Completeness

Recall: NSF(λ) = Pr [ 1F(x) ≠ 1F(y) ]x ~ ℝn/ℤn

y ~ Bλ(x)’ ≤ cn · λ · perim(F)

0. Given S, ϵ, set λ such that ϵ = .01 · cn · λ · S.

1. Empirically estimate NSF(λ).

2. Say YES iff ≤ (1+δ) · cn · λ · S.

Query complexity, Completeness: ✔

Page 17: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Soundness?

Recall: NSF(λ) = Pr [ 1F(x) ≠ 1F(y) ]x ~ ℝn/ℤn

y ~ Bλ(x)’ ≤ cn · λ · perim(F)

0. Given S, ϵ, set λ such that ϵ = .01 · cn · λ · S.

1. Empirically estimate NSF(λ).

2. Say YES iff ≤ (1+δ) · cn · λ · S.

Query complexity, Completeness: ✔

Page 18: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Recall: NSF(λ) = Pr [ 1F(x) ≠ 1F(y) ]x ~ ℝn/ℤn

y ~ Bλ(x)’ ≤ cn · λ · perim(F)

Soundness?

Q: If NSF(λ) ≤ cn · λ · S, is perim(F) ≾ S?

A: Not necessarily. (F may “wiggle at a scale ≪ λ”.)

Q: I.e., is perim(F) ≾ (cn λ)–1 · NSF(λ) always?

Q: Is F at least close to some G with

perim(G) ≾ (cn λ)–1 · NSF(λ) ? YES!

Page 19: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Recall: NSF(λ) = Pr [ 1F(x) ≠ 1F(y) ]x ~ ℝn/ℤn

y ~ Bλ(x)’ ≤ cn · λ · perim(F)

Soundness?

Our Theorem:

For every F ⊂ ℝn / ℤn and every λ,

F is O(NSF(λ))-close to a set G with

perim(G) ≤ Cn λ–1 · NSF(λ).

(Here Cn/cn =: κn ∈ [1, 4/π] for all n.)

Page 20: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Our Theorem:

For every F ⊂ ℝn / ℤn and every λ,

F is O(NSF(λ))-close to a set G with

perim(G) ≤ Cn λ–1 · NSF(λ).

Given F, how do you “find” G?

Page 21: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Finding G from F

F

Page 22: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Finding G from F

1. Define g : ℝn / ℤn → [0,1]

by y~Bλ(x)

g(x) = Pr [ y ∈ F ].

F

Page 23: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Finding G from F

1. Define g : ℝn / ℤn → [0,1]

by y~Bλ(x)

g(x) = Pr [ y ∈ F ].

2. Choose θ ∈ [0,1] from

the triangular distribution:

0 1

2 pdf: φθ

3. G := {x : g(x) > θ}.

Page 24: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

1-Slide Sketch of Analysis

G being O(NSF(λ))-close to F (whp) is easy.

Theorem: E[ perim(G) ?

Page 25: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

1-Slide Sketch of Analysis

G being O(NSF(λ))-close to F (whp) is easy.

Theorem: E[ perim(G) ] ?

Page 26: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

1-Slide Sketch of Analysis

G being O(NSF(λ))-close to F (whp) is easy.

Theorem: E[ perim(G) ] = E[ φθ(g(x)) · ‖∇g(x)‖ ]x~ℝn/ℤn

(“Coarea Formula”)

Theorem: E[ perim(G) ] ≤ Lip(g) · E[ φθ(g(x)) ]

Theorem: E[ perim(G) ] ≤ Lip(g) · 4 NSF(λ)

Theorem: E[ perim(G) ] ≤ O(n–1/2) λ–1 · 4 NSF(λ)

Theorem: E[ perim(G) ] = Cn λ–1 · NSF(λ)

Page 27: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

[Neeman 14]’s version

• Picks needles of Gaussian length,rather than uniform on a ball.

• Uses a more clever pdf φθ.

Page 28: Testing Surface Area Ryan O’Donnell Carnegie Mellon & Boğaziçi University joint work with Pravesh Kothari (UT Austin), Amir Nayyeri (Oregon), Chenggang.

Thanks!