Top Banner
D E S I G N D A T A R E F E R E N Roof Type Roof-to-Shell Joint Type Fabrication Appendix J applicable. Purpose Recycle AA Tank Density of Contents 1040 Specific Gravity of Contents G 1.04 - Specific Gravity of Contents (For Appendix A Only) G' 1.04 - Material CS Appendix S not applica Material Group Group IV Minimum Yield Strength 240 MPa Table 3-2 Minimum Tensile Strength 450 MPa Modulus of Elasticity E 195000 MPa Maximum Design Temperature 150.0 Appendix M applicable. Minimum Design Temperature N/A Allowable Product Design Stress at Design Temperature 160 MPa API 650, Sec. 3, Cl. 3 Allowable Hydrostatic Test Stress at Design Temperature 180 MPa API 650, Sec. 3, Cl. 3 Internal Pressure 5.00 Appendix F applicable. External Pressure 0.60 Appendix V applicable. Smallest of the allowable tensile stresses (Roof, Shell, Ring) f 400 High Liquid Level 6.3 m Bottom CA 3.0 mm Shell CA 3.0 mm Roof CA 3.0 mm Structure CA 3.0 mm Anchor Bolts CA 3.0 mm Nozzles, etc. CA 3.0 mm Roof Slope 2 : 10 Roof Angle θ 14.0 Deg. OK [ 9.46 deg. <= Thet Outside Dia. 4.512 m Inside Dia. 4.500 m Check for Diameter in Nominal Dia. ( Inside Dia. + Shell Thk. ) 4.506 m Total Height H 6.30 m Cone Roof Dish Radius 2.32 m Dome Roof Dish Radius 3.60 m 1 Developed Area A' 16.43 1 T J-1 Roof Height - Above Shell 0.56 m 0.56 Fluid Hold Down Weight 1022.252 kN Yield Strength - Structural Parts 250 MPa Density Den. 7850 DL Corroded Uncorroded ROOF Plates 6.33 10.13 kN Based on 8 mm Roof Pla Stiffeners 0.00 0.00 kN Purlins 0.00 0.00 kN Cone pDL/2 Plateform 0.00 kN Frustum p(D+d)L/2 Insulation 0.00 kN Dome pdh Others 15.00 kN 6.33 25.13 kN 0.39 1.53 Dc kg/m 3 FYmin FTmin Tmax o C Tmin o C Sd St Pi kN/m 2 ( kPa ) Pe kN/m 2 ( kPa ) kN/m 2 ( kPa ) H1 Do Di Dn RCone RDome m 2 FYstructure kg/m 3 kN/m 2 ( kPa )
89
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Tank Design

D E S I G N D A T A R E F E R E N C E

Roof Type 1

Roof-to-Shell Joint Type 2

Fabrication 1 Appendix J applicable.

Purpose Recycle AA Tank

Density of Contents 1040

Specific Gravity of Contents G 1.04 -

Specific Gravity of Contents (For Appendix A Only) G' 1.04 -

Material 7 CS Appendix S not applicable.

Material Group Group IV

Minimum Yield Strength 240 MPa Table 3-2

Minimum Tensile Strength 450 MPa

Modulus of Elasticity E 195000 MPa

Maximum Design Temperature 150.0 Appendix M applicable.

Minimum Design Temperature N/A

Allowable Product Design Stress at Design Temperature 160 MPa API 650, Sec. 3, Cl. 3.6.2.1 ~ Table 3-2

Allowable Hydrostatic Test Stress at Design Temperature 180 MPa API 650, Sec. 3, Cl. 3.6.2.2 ~ Table 3-2

Internal Pressure 5.00 Appendix F applicable.

External Pressure 0.60 Appendix V applicable.

Smallest of the allowable tensile stresses (Roof, Shell, Ring) f 400

High Liquid Level 6.3 m

Bottom CA 3.0 mm

Shell CA 3.0 mm

Roof CA 3.0 mm

Structure CA 3.0 mm

Anchor Bolts CA 3.0 mm

Nozzles, etc. CA 3.0 mm

Roof Slope 2 : 10

Roof Angle θ 14.0 Deg. OK [ 9.46 deg. <= Theta <= 37 deg. ]

Outside Dia. 4.512 m

Inside Dia. 4.500 m Check for Diameter in case of Appendix J

Nominal Dia. ( Inside Dia. + Shell Thk. ) 4.506 m

Total Height H 6.30 m

Cone Roof Dish Radius 2.32 m

Dome Roof Dish Radius 3.60 m 1

Developed Area A' 16.43 1 T J-1

Roof Height - Above Shell 0.56 m 0.56 ≤ 0.375

Fluid Hold Down Weight 1022.252 kN

Yield Strength - Structural Parts 250 MPa

Density Den. 7850

DL Corroded Uncorroded

ROOF Plates 6.33 10.13 kN Based on 8 mm Roof Plate Thk.

Stiffeners 0.00 0.00 kN

Purlins 0.00 0.00 kN Cone pDL/2

Plateform 0.00 kN Frustum p(D+d)L/2

Insulation 0.00 kN Dome pdh

Others 15.00 kN

∑ 6.33 25.13 kN

0.39 1.53

Dc kg/m3

FYmin

FTmin

TmaxoC

TminoC

Sd

St

Pi kN/m2 ( kPa )

Pe kN/m2 ( kPa )

kN/m2 ( kPa )

H1

Do

Di

Dn

RCone

RDome

m2

FYstructure

kg/m3

kN/m2 ( kPa )

Page 2: Tank Design

SHELL Top Angle 0.49 1.01 kN

Course(s) 20.60 41.21 kN

Wind Girders 0.00 0.00 kN

Ladder 0.00 kN

Insulation 0.00 kN

Others 0.00 kN

∑ 21.10 42.22 kN

1.28 2.57

ALL 27.43 67.34 kN

1.67 4.10

Superimposed 1.5

Snow Load S 0

External Pressuer 0.60

Basic Wind Speed V 138 kph

RO

OF

COMB1 App. R 3.27

COMB2 App. R 2.73

COMB3 App. R 1.77

COMB4 App. R 2.13

Pr Max(COMB1:COMB4) App.V 3.27

Ps App. V 1.01 1.01 ≤ 1.11

W App. V 0.77 [Condition not satisfied stiffeners not required.]

Table 3-21a 36.10 kN

Table 3-21a 42.43 kN

Table 3-21a 57.22 kN

M A T E R I A L P R O P E R T I E S

PART Factor Factor E Factor E'

ROOF 240 1.00 240 450 1.00 450 195000 1.00 195000

SHELL 240 1.00 240 450 1.00 450 195000 1.00 195000

BOTTOM 240 1.00 240 450 1.00 450 195000 1.00 195000

STIFF. 250 1.00 250 400 1.00 400 195000 1.00 195000

ANCHOR 250 1.00 250 400 1.00 400 205000 1.00 205000

J O I N T E F F I C I E N C Y

Notation Normal Factor Modified Desc.

1.00 1.00 1.00 Btm Plate

1.00 1.00 1.00 Comp. Ring

2 0.70 1.00 0.70 Roof Plate

2 0.85 1.00 0.85 Shell Plate

3 0.70 1.00 0.70 Stiff. Splice

A P P L I C A B L E A P P E N D I C E S

A 1 Optional Design Basis for Small Tanks

E 1 Seismic Design of Storage Tanks

F 1 Design of Tanks for Small Internal Pressures

J 2 Shop-Assembled Storage Tanks

M 1 Requirements for Tanks Operating at Elevated Temperatures

R 1 Load Combinations

S 2 Austenitic Stainless Steel Storage Tanks

V 1 Design of Storage Tanks for External Pressure

kN/m2 ( kPa )

kN/m2 ( kPa )

Lr kN/m2 ( kPa )

kN/m2 ( kPa )

Pe kN/m2 ( kPa )

DL + Lr + 0.4 x Pe kN/m2 ( kPa )

DL + 0.4 x Lr + Pe kN/m2 ( kPa )

DL + S + 0.4 x Pe kN/m2 ( kPa )

DL + 0.4 x S + Pe kN/m2 ( kPa )

kN/m2 ( kPa )

kN/m2 ( kPa )

kN/m2 ( kPa )

W1

W2

W3

FYmin FYmin' FTmin Ftmin'

JEb

JEc

JEr

JEs

JEst

Page 3: Tank Design

S H E L L D E S I G NC

ou

rse

#

Width

m m m mm mm mm mm mm mm mm mm MPa MPa m

3.6.1.2 3.6.3.2 3.6.3.2 3.6.3.2 3.6.1.1 A.4.1 J.3.3 V.8.1.3 3.9.7.2 & V.8.1.4

1 1.950 0.51 6.81 3.93 0.80 3.93 5 4.47 0.00 2.89 6 49.83 23.96 1.950

2 1.950 0.51 4.86 3.65 0.56 3.65 5 4.03 0.00 2.89 6 34.90 16.78 1.950

3 0.450 0.51 2.91 3.37 0.32 3.37 5 3.59 0.00 2.89 6 19.98 9.60 0.450

4 1.950 0.51 2.46 3.31 0.26 3.31 5 3.49 0.00 2.89 6 16.53 7.95 1.950

5 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.000

6 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.000

7 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.000

8 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.000

9 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.000

10 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.000

11 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.000

12 0.000 0.00 0.00 0.00 0.00 0.00 0 0.00 0.00 0.00 0 0.00 0.00 0.000

6.300 6.300

= 6

S H E L L W E I G H T S U M M A R Y

Course # Thk. - CA

m kN kg mm kN kg

1 1.950 12.75 1300.16 3.0 6.38 650.08

2 1.950 12.75 1300.16 3.0 6.38 650.08

3 0.450 2.94 300.04 3.0 1.47 150.02

4 1.950 12.75 1300.16 3.0 6.38 650.08

5 0.000 0.00 0.00 0.0 0.00 0.00

6 0.000 0.00 0.00 0.0 0.00 0.00

7 0.000 0.00 0.00 0.0 0.00 0.00

8 0.000 0.00 0.00 0.0 0.00 0.00

9 0.000 0.00 0.00 0.0 0.00 0.00

10 0.000 0.00 0.00 0.0 0.00 0.00

11 0.000 0.00 0.00 0.0 0.00 0.00

12 0.000 0.00 0.00 0.0 0.00 0.00

6.300 41.21 4200.51 20.60 2100.26

A N N U L A R B O T T O M P L A T E D E S I G N

Use Annular Plate? 1

Lap welded bottom plates may be used in lieu of butt-welded annular bottom plates. (Group IV, IVA, V, or VI Only)

Use CA Use Lap Projection

mm mm mm mm mm mm mm mm mm mm

3.5.2 3.5.2 [3.5.3] T3-1 J.3.2.1 3.4.2

600 840 840 6 - 3.0 9.0 10 50 50

Press.Head HL1' td tt Max( td,t t ) tsmin tsmin tsmin tsmin *tused Sdmax Stmax Wtr

ts1 (mm)

Width3.6.1.2

Shell Wt.(Uncorroded)

Shell Wt.(Corroded)

Wmin WCalc. tabp-min tabp-min tabp-req'd

Page 4: Tank Design

B O T T O M P L A T E D E S I G N

CA Use Projection

mm mm mm mm mm mm

3.4.1 J.3.2.1 3.4.1 3.4.2

6 6 3.0 9.0 10 50

R O O F P L A T E D E S I G N

Cone 12.5 4.73 4.83 7.83 8

Dome - - - - 0

W E I G H T S U M M A R Y

Bottom Plt. Wt. Annular Plt. Wt. Shell Plt. Wt. Top Wind Girder Inter. Wind Girder(s) Roof Weight Total Weight

kN kgs kN kgs kN kgs kN kgs kN kgs kN kg kN kg

8.16 831.34 4.65 474.28 41.21 4200.51 1.01 102.95 10.5 1066.5 65.49 6675.6

5.71 581.94 3.26 331.99 20.60 2100.26 0.50 50.47 6.5 666.6 36.60 3064.7

T O P W I N D G I R D E R D E S I G N

ANGLE

Hz. Leg Vt. Leg Thk a - t b - t NA Dist. NA Dist. Area MOI Weight

mm mm mm mm mm Kg/m

Uncorroded 49 80 80 6 74 74 57.78 22.22 924 573091 9919 7.26 0.33

Corroded 3 77 77 3 74.0 74 56.63 20.37 453 269278 4755 3.56 0.31

3.97 4.75

R O O F - T O - S H E L L J O I N T D E S I G N [ C H A P T E R 3 ]

Detail Status

mm mm mm mm m mm mm

d - 5 3.0 2250 9300.52 64.69 49.30 288.66 340.55 323.47 453.00 0.00 776.47 OK

tbmin tbmin tb-req'd

tmax tmin tApp v tselec'd + CA tfurn'd

Section Modulus

Surafce Area

mm mm mm2 mm4 mm3 m2/m

Zmin Zfurn'd

cm3 cm3

tb th - CA tc/ts Rc R2 Wh/Comp. Wc Areq'd min Areq'd F- 2 Aroof Aattach't Ashell Afurn'd

mm2 mm2 mm2 mm2 mm2 mm2

Page 5: Tank Design

R O O F - T O - S H E L L & B O T T O M - T O - S H E L L J O I N T D E S I G N

[ A P P E N D I X V ]

Detail Status

mm mm mm mm mm

a - 5 3.0 163.57 69.67 83.18 817.86 453.00 209.02 1479.88 OK

b - 5 3.0 163.57 69.67 83.18 817.86 453.00 209.02 1479.88 OK

c - 5 3.0 163.57 69.67 83.18 817.86 453.00 209.02 1479.88 OK

d - 5 3.0 163.57 69.67 83.18 817.86 453.00 0.00 1270.86 OK

e - 5 3.0 163.57 69.67 83.18 817.86 453.00 0.00 1270.86 OK

f - 5 3.0 163.57 69.67 83.18 817.86 453.00 0.00 1270.86 OK

g - 5 3.0 163.57 69.67 83.18 817.86 906.00 191.02 1914.88 OK

h 10 5 3.0 163.57 69.67 83.18 817.86 1120.00 209.02 2146.88 OK

i 10 5 3.0 163.57 69.67 83.18 - 696.75 209.02 905.77 OK

k 10 5 10 163.57 69.67 83.18 817.86 1600.00 696.75 3114.61 OK

I N T E R M E D I A T E W I N D G I R D E R D E S I G N

RefKz Kzt Kd V I G q Vacuum Total

Ratio

- - - mph - - psf kPa kPa kPa

3.9.7.1 a 1.04 1 0.95 117 1 0.85 29 1.47 0.24 1.710.83

Client Info 1.04 1 0.95 117 1 0.85 29 1.47 0.60 2.07

Max. Height of Unstiffened Shell & transformed shell height

D V

mm m kph m m m

3.00 4.506 138 29.26 24.17 6.30 N/A N/A

As Htr < H1 --- Intermediate Wind Girder is not required.

Verification of Unstiffened Shell ( As per Appendix V )

0.0396 ≥ 0.00675 V.8.1.1 Corroded Thk.

Elastic Buckling Criteria Satisfied.

1.01 ≤ 1.11 V.8.1.2 Corroded Thk.

Design external pressure for an unstiffened tank shell satisfied.

6 ≥ 2.89 V.8.1.3 Actual Thk.

Minimum shell thickness required for a specified external pressure satisfied.

Ps Ns + 1 Ns Use Ns Ls N Use N

kPa m m Nos. Nos. Nos. m Nos.OK

Nos. Nos. Nos. Nos.

1.01 6.30 6.92 0.91 -0.09 -1 #DIV/0! 18.49 4.30 2 10 5

tb th tc/ts Xcone/dome Xshell Areq'd V.7.2.2 Aroof Astiff Ashell Afurn'd

mm2 mm2 mm2 mm2 mm2

ts1 H1 H1 - modified Htr Zreq'd Zfurn'd

cm3 cm3

( D / tsmin )0.75 [ ( HTS / D ) ( FYmin / E )0.5 ] ≥ 0.00675

Ps ≤ E / ( 45609 ( HTS / D ) ( D / tsmin )0.5 )

tsmin ≥ ( 73.05 ( HTS Ps )0.4 D0.6 ) / ( E )0.4

HTS Hsafe N2 N2 < 100 Nmin Nmax

Note: Minimum size of angle for use alone or as a component in a built-up stiffening ring shall be 64 x 64 x 6.4 mm and the minimum nominal thickness of plate shall be 6 mm.

Note: Minimum size of angle for use alone or as a component in a built-up stiffening ring shall be 64 x 64 x 6.4 mm and the minimum nominal thickness of

plate shall be 6 mm.

Page 6: Tank Design

Intermediate Stiffener Ring Design t 6 10

STIFF Q

mm N/m mm

1 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #DIV/0! 755 #DIV/0! #DIV/0! 459 18.43 29.6

2 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #DIV/0! 755 #DIV/0! #DIV/0! 459 18.43 29.6

3 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #DIV/0! 755 #DIV/0! #DIV/0! 459 18.43 29.6

4 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #DIV/0! 755 #DIV/0! #DIV/0! 459 18.43 29.6

5 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #DIV/0! 755 #DIV/0! #DIV/0! 459 18.43 29.6

6 6 #DIV/0! 98.54 #DIV/0! 11 295.61 #DIV/0! 755 #DIV/0! #DIV/0! 459 18.43 29.6

7 0 - - - - - - - - - - - -

8 0 - - - - - - - - - - - -

9 0 - - - - - - - - - - - -

10 0 - - - - - - - - - - - -

mm N/m mm

TOP 6 1586.56 98.54 1.16 11 295.61 8.94 755 -741.24 4.47 459 3.97 29.6

BOTT 6 1586.56 98.54 1.16 11 295.61 8.94 755 -1288.73 4.47 459 18.43 29.6

S T R E N G T H O F S T I F F E N E R A T T A C H M E N T W E L D

V A C U U M C O N D I T I O N [ ASME Sec VIII, Div. 1 ]

E S Pe ρ

45120.70

144 0.60 7850 4.73 8 5.0 0.3842 -0.24 6 3 2.89 -0.11

177.64 20885 0.09 0.28 0.19 0.31 0.20 0.06 -0.03 0.24 0.12 0.11 0.00

-0.09

O V E R T U R N I N G S T A B I L I T Y

BWS Pressure Proj. Area Force Arm Moment Sum

kph kPa kN m kN - m kN - m

1380.45 28.39 12.88 3.15 40.57

42.73

0.76 1.27 0.96 2.25 2.17

kN kN kN m m m kN - m kN - m kN - m kN - m kN - m kN - m kN - m kN - m

79.52 27.14 227.34 2.25 2.25 2.25 179.16 42.73 61.15 512.19 204.80 40.77 114.40 286.67

Unanchored tanks conditions not satisfied - Anchorage is required.

D E S I G N T E N S I O N L O A D P E R A N C H O R

Mw d N W

kN - m m Nos. kN kN

42.73 4.724 8 -4.38 5.07 1.14

tshell 2 x wshell Ireq'd Ifurn'd Ashell cont. Areq'd Afurn'd Astiff req'd Astiff min Astiff furn'd Zreq'd Zfurn'd

cm4 cm4 mm2 mm2 mm2 mm2 mm2 mm2 cm3 cm3

tshell Vl 2 x wshell Ireq'd Ifurn'd Ashell cont. Areq'd Afurn'd Astiff req'd Astiff min Astiff furn'd Zreq'd Zfurn'd

cm4 cm4 mm2 mm2 mm2 mm2 mm2 mm2 cm3 cm3

vs Vs1 Vs2 Ww wmin

Do tbtm (min) tfurn'd tfurn'd - CA Pbtm PResultant tsn tsn - CA tCalc tfurn'd

kPa [Psi]

kPa [Psi]

W I

N D

M O

M E

N T

m2

FPi FDL FF XPi XDL XF MPi Mw MDL MF 0.6Mw + MPi MDL / 1.5 Mw + 0.4MPi ( MDL + MF ) / 2

tB

Page 7: Tank Design

S L I D I N G R E S I S T A N C E

BWS Pressure Proj. Area F - WIND ∑ F - WIND F - FRIC.

kph kPa kN kN kN

1380.454 28.426 12.896

13.86 14.56

0.760 1.267 0.963

F - FRIC. > F - WIND --- Tank is stable, anchorage is not required against sliding.

U P L I F T L O A D S C A S E S

UnitsD Mw Ms P Pf Bolts

Nos.

SI 4.506 8 42735 37635 5.00 6.25 0 36097.98 42426.14 57215.628

US 14.78 0.31 31519.86 27758.40 20.09 25.12 0.00 8114.83 9537.40 12862.07

UPLIFT LOAD CASES FORMULAEU

lbs Psi Psi lbs

DESIGN PRESSURE 7556.81 15000 20000 944.60 0.06 40.63

TEST PRESSURE 12036.47 20000 25000 1504.56 0.08 48.53

FAILURE PRESSURE 0.00 36000 34809 0.00 0.00 0.00

WIND LOAD -1009.40 28800 25000 126.18 0.00 2.83

SEISMIC LOAD -2027.10 28800 25000 253.39 0.01 5.68

DESIGN PRESSURE + WIND 16084.81 20000 25000 2010.60 0.10 64.86

DESIGN PRESSURE + SEISMIC 15067.11 28800 25000 1883.39 0.07 42.19

A N C H O R C H A I R D E S I G N

Anchor Chair Design NOT Adequate.

Tank Outside Dia. Do 4512 mm

Bolt Circle Dia. ( BCD ) BCD 4912 mm

Basic Wind Speed BWS 138 kph 85.75 mph

Earthquake (Y = Yes, N = No) 2

Design Load kN kips

Maximum Allowable Anchor-Bolt Load kN kips

1.5 x Actual bolt Load kN kips

P kN 16.08 kips

Top-Plate Width ( along shell ) a 300 mm 11.81 in. OK

Top-Plate Length ( radial direction ) b 200 mm 7.87 in. OK

Top-Plate Thickness 16 mm 0.630 in. OK

Anchor-bolt Diameter d 50.8 mm 2.00 in.

Anchor-bolt Eccentricity 200 mm 7.87 in. OK

Distance from Outside of Top-Plate to edge of hole 50 mm 1.97 in. OK

Distance between Vertical Plates 100 mm 3.94 in. OK

Chair Height 310 mm 12.20 in. OK

Vertical-Plate Thickness 16 mm 0.63 in. OK

Bottom or Base Plate Thickness m 8 mm 0.31 in.

Shell or Column Thickness t 6 mm 0.236 in.

m2

th Pt W1 W2 W3

m [ ft ]

mm [ in. ]

N-m [ ft-lbs ]

N-m [ ft-lbs ]

kPa [in. of water ]

kPa [in. of water ]

kPa [in. of water ]

N [ lbs ]

N [ lbs ]

N [ lbs ]

Fall - Anchor Fall - Shell tb = U / N Abolt - req'd

in2 mm2

[ ( P - th ) 4.08 D2 ] - W1

[ ( Pt - 8 th ) 4.08 D2 ] - W2

[ ( 1.5 Pf - 8 th ) 4.08 D2 ] -W3

[ ( 4 Mw ) / D ] - W2

[ ( 4 Ms ) / D ] - W2

[ ( P - 8 th ) 4.08 D2 ] + [ ( 4 Mw ) / D ] - W1

[ ( P - 8 th ) 4.08 D2 ] + [ ( 4 Ms ) / D ] - W1

Pd

Pall.

Pact.

cused

eused

fused

gused

hused

jused

Page 8: Tank Design

Top-Plate Width ( along shell ) a 300 mm 11.81 in.

Top-Plate Length ( radial direction ) b 200 mm 7.87 in.

Top-Plate Thickness 9.17 mm 0.361 in.

16.00 mm 0.630 in.

Anchor-bolt Diameter d 50.8 mm 2.00 in.

Anchor-bolt Eccentricity 200 mm 7.87 in.

60 mm 2.344 in.

Distance from Outside of Top-Plate to edge of hole 50 mm 1.97 in.

29 mm 1.13 in.

Distance between Vertical Plates 100 3.94 in.

76 mm 3.00 in.

Chair Height 310 mm 12.20 in.

900 mm 35.43 in.

152.4 mm 6.00 in.

Vertical-Plate Thickness 16 mm 0.63 in.

12.70 mm 0.50 in.

Vertical-Plate Width ( average width for tapered plates ) k 125 mm 4.92 in.

Column Length L mm in.

Bottom or Base Plate Thickness m 8 mm 0.31 in.

Load P kN 16.08 kips

Least Radius of Gyration r mm in.

Nominal Shell Radius R 2256 mm 177.6 in.

Stress at Point kPa 42.96 ksi NOT OK

Stress at Point kPa 25.00 ksi

Shell or Column Thickness t 6 mm 0.236 in.

Cone Angle ( measured from axis of cone ) θ deg. deg.

Reduction for Factor Z - 0.847 -

Check to limit slenderness upto 86.6 jK 3.100 OK

Weld Size 6 mm 0.236 in.

Vertical Load 0.444 kips / lin in. of weld length

Horizontal Load 0.520 kips / lin in. of weld length

Total Load on Weld W 0.684 kips / lin in. of weld length

For an allowable stress of 13.6 ksi on a fillet weld, the allowable load per lin in. is 9.62 kips per lin in. of weld size.

For weld size of 0.24 in. the allowable load therefore is 2.27 kips.

Gusset Plate - Shell Weld 1 8.347 kips NOT OK

Top Plate 1 5.385 kips NOT OK

P R O B L E M S T A T I S T I C S

L I V E L O A D T R A N S F E R R E D T O F O U N D A T I O N

Live Load on roof 1.5

Area of Roof 16.4

Total Live Load 24.7 KN

Circumference of Tank C 14.2 m

Live Load transferred to Foundation 1.74 KN/m

D E A D L O A D T R A N S F E R R E D T O F O U N D A T I O N

Self Weight of Roof 25.1 KN

Self Weight of Bottom Plate 12.8 KN

Self Weight of Shell 41.2 KN

Self Weight of shell & Attachmnets 1.0 KN

Total Dead Load acting on shell 67.3 KN

Dead Load Transferred to Foundation 4.75 KN/m

A N C H O R C H A I R D E S I G N C A L C U L A T I O N S( A I S I - E - 1 , V O L U M E II, P A R T V I I )

cmin

cused

eused

emin

fused

fmin

gused

gmin

hused

hmax

hmin

jused

jmin

Sinduced

Sallowable

wmin

WV

WH

Lr KN/m2

Ar m2

WL

wL

Wr

Wb

Ws

Wa

WD

wD

Page 9: Tank Design

O P E R A T I N G & H Y D R O S T A T I C T E S T L O A D S

Self Weight of Tank W 80.1 KN

Weight of Fluid in Tank at Operating Conditions 1022.3 KN

Weight of Water in Tank at Hydrotest Conditions 982.9 KN

Uniform Load Operating Condition 69.1

Uniform Load Hydrotest Condition 66.7

W I N D L O A D T R A N S F E R R E D T O F O U N D A T I O N

Base Shear due to wind load 13.6 KN

Reaction due to wind load 3.0 KN/m

Moment due to wind load 42.7 KN-m

S U M M A R Y O F F O U N D A T I O N L O A D I N G D A T A

Dead load, shell, roof & ext. structure loads 4.75 KN/m

Live Load 1.74 KN/m

Uniform load, operating condition 69.13

Uniform load, hydrotest load 66.66

Base shear due to wind 13.57 KN

Reaction due to wind 3.01 KN/m

Moment due to wind load 42.73 KN-m

Consider 15-20 % variation in weight while designing the foundation.

C E N T R E O F G R A V I T Y

E M P T Y C O N D I T I O N

Base Plate Thickness 0.008 m

Height of Shell 6.70 m

Height of Roof 0.610 m

0.0040 m

3.36 m

6.91 m

Weight of Bottom Plate 1583 kg

Weight of Shell 5522 kg

Weight of Roof 1970 kg

Total Empty Weight of Tank 9075 kg

C.O.G. in Empty Condition C.O.G. 3.544 m

F U L L O F W A T E R C O N D I T I O N

Weight of Water 100197 kg

Weight of Shell + Weight of Water 105719 kg

Weight of Tank (Full of Water) 109272 kg

C.O.G. in Full of Water Condition C.O.G. 3.388 m

F U L L O F W A T E R C O N D I T I O N

Design Liquid Level 6.30 m

3.16 m

Weight of Liquid 104762 kg

Weight of Liquid + Contributing Weight of Shell 109954 kg

Weight of Shell Without Liquid 329.67 kg

Height of Remaining Shell Center From Base 7.11 m

Operating Weight 113837 Kg

C.O.G in Operating Condition C.O.G. 3.191 m

Wf

Ww

Wo KN/m2

Wh KN/m2

Fw

Rw

Mw

DL

LL

Wo KN/m2

Wh KN/m2

Fw

Rw

Mw

h1

h2

h3

a1 = h1 / 2 a1

a2 = h2 / 2 +h1 a2

a3 = h3 / 3 + h1 + h2 a3

w1

w2

w3

WE

W6

WF

a4

a4 = (Liquid Level / 2) + h1 WL

w4

a5

WO

Page 10: Tank Design

S E I S M I C D E S I G N [ A P P E N D I X E ]

Aspact Ratio D/H 0.72

Inverse Aspact Ratio H/D 1.40

Seismic Use Group SUG 2

Importance Factor I 1.25

Site Class SC 1

Anchorage Condition 2

Vertical Acceleration 1

MCE Ground Motion Definitions

So = 0.4Ss 0.112 0

0 Ss 0.28

0 S1 1.40

2.4 So 0.112

0.760 0

0

Fa 1.6

Fv 2.4

Q 1

S T R U C T U R A L P E R I O D O F V I B R A T I O N S

I m p u l s I v e N a t u r a l P e r I o d & C o n v e c t I v e ( S l o s h I n g ) P e r I o d

Ci H tu D p E Ti Ks Tc T

- m mm m Mpa seconds - seconds seconds

6.4 6.30 6 4.51 1040 195000 1.80 0.58 2.21 1.89

S P E C T R A L A C C E L E R A T I O N P A R A M E T E R

I m p u l s I v e S p e c t r a l A c c . P a r a m e t e r

So I Fa Rwi Q Ai

%g %g %g - - -

0.112 0 0.30 1.25 1.6 4 0.67 0.09

0.09

Ai 0.09338

C o n v e c t I v e S p e c t r a l A c c . P a r a m e t e r

S1 Ss So K I Fa Fv Tc Ts Rwc Q

%g %g %g %g %g - - - - seconds seconds seconds - -

1.40 0.28 0.112 0 0 1.5 1.25 1.6 2.4 2.21 7.50 4 2 0.67

Ac N/A

Ac = 2.5 Q Fa So ( Ts / Tc ) ( I / Rwc ) Ac 0.63421

SP

Ss = 2.5SP

S1 = 1.25SP

Ss = 1.5Fa

S1 = 0.6Fv/T SP

SDS

kg / m3

SP SDS

SD1 SP TL

TC < TL

Ac = KSD1 ( I / Tc ) ( I / Rwc )

K454
odpk-smalvi: Peak ground acceleration
K455
odpk-smalvi: Mapped, maximum considered earthquake, 5-percent-damped, spectral response acceleration parameter at short period ( 0.2 seconds ), Ss
K456
odpk-smalvi: Mapped, maximum considered earthquake, 5-percent-damped, spectral response acceleration parameter at a period of 1 second, S1
K457
odpk-smalvi: Mapped, maximum considered earthquake, 5-percent-damped, spectral response acceleration parameter at zero seconds, So.
K458
odpk-smalvi: Peak ground acceleration
Page 11: Tank Design

Ac N/A

Ac 1.14864

Ac 0.08596 < Ai 0.0934 Satisfied

SEISMIC DESIGN FACTORS

DESIGN FORCES

Equivalent lateral seismic design force F = A . Weff

lateral acceleration coefficient A ( %g )

Effective Weight contributing to seismic response Weff

D E S I G N L O A D S

I m p u l s I v e N a t u r a l P e r I o d & C o n v e c t I v e ( S l o s h I n g ) P e r I o d

Ws Wr Wf Wi Wc Ai Ac Vi Vc V

N N N N N N %g %g N N N

89100 18950 15530 1383984 269710 1639640 0.0934 0.0860 140776 23184 142673

E F F E C T I V E W E I G H T O F P R O D U C T

E f f e c t i v e I m p u l s I v e W e i g h t & E f f e c t I v e C o n v e c t i v e W e i g h t

D H D/H Wi Wc

m m - N N N

4.51 6.30 0.72 1639640 1383984 269710

V E R T I C A L S E I S M I C E F F E C T S

Av Wi Wc Weff Fv

%g N N N N

0.299 0.04183424 1383984 269710 1410020 58987

O V E R T U R N I N G M O M E N T

R I n g w a l l M o m e n t

Ai Wi Xi Ws Xs Wr Xr Ac Wc Xc Mrw

- N m N m N m - N m N-m

0.09338 1383984.21 2.73 89100 3.15 18950 0.2384 0.08596 269709.748 5.85 402509

S l a b M o m e n t

Ai Wi Xis Ws Xs Wr Xr Ac Wc Xcs Ms

- N m N m N m - N m N-m

0.0934 1383984.21 5.85 89100.00 3.15 18950.00 0.2384 0.0860 269710 6.12 795890

A N C H O R A G E

R e s I s t a n c e t o t h e d e s I g n o v e r t u r n I n g m o m e n t a t t h e b a s e o f s h e l l

ta S Mrw Ws Wss Wr Wrs Wt Wa Ge J

mm N %g N-m N N/m N N/m N/m N/m -

7.0 0 0.04183424 402509 55322 3908 18953 1339 5247 27250 1.023 0.61

27250 ≤ 37 Tank is self Anchored.

TC > TL

Ac = KSD1 ( TL / Tc2 ) ( I / Rwc )

Ac = 2.5 Q Fa So ( ( Ts TL / Tc2 ) ( I / Rwc )

WP

WP

SDS

Av

Page 12: Tank Design

A N N U L A R P L A T E R E Q U I R E M E N T S

R e s I s t a n c e t o t h e d e s I g n o v e r t u r n I n g m o m e n t a t t h e b a s e o f s h e l l

Thickness of the tank floor plate provided under the shell may be greater than or equal to the thickness of the general

tank floor plate ( i.e., ta > tb ) with the following restrictions:

less Corrosion Allowance ts - CA 3.00 mm a [Not Satisfied.]

Actual Thk. Btm Plt. 7.00 mm b [Not Satisfied.]

Tank Self Anchored?

a ) The resisting force is adequate for tank stability ( i.e. the anchorage ratio, J > 1.54 ) [Satisfied]

b ) The maximum width of annulus for determining the resisting force is 3.5% of the tank diameter. L = 158 mm

c ) The shell compression satisfies E.6.2.2 [Not Satisfied]

d ) The req'd annular plate thickness does not exceed the thickness of the btm shell course. [Not Satisfied]

e ) Piping flexibility requirements are satisfied. See API 650 Sec. E.7.3

Shell Compression in Self-Anchored Tanks

Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift, J > 0.785, σc

wt 5247 N/m

Av 0.04183424 %g

Mrw 402509 N-m

D 4.506 m

ts 3.00 mm

wa 27250 N/m

J 0.61 - J < 0.785 Long. Shell Comp. Stress = 10.19 MPa

10.190 MPa J > 0.785 Long. Shell Comp. Stress = 10.78 MPa

Shell Compression in Mechanically-Anchored Tanks

wt 5247 N/m

Av 0.0418 %g

Mrw 402509 N-m

D 4.506 m

ts 3.00 mm

10.190 MPa

Allowable Longitudinal Membrane Compression Stress in Tank Shell

G 1.04 -

H 6.30 m

D 4.506 m

ts 3.00 mm Thickness of the shell ring under consideration, mm.

14.78 Allowable longitudinal shell membrane compression stress, MPa.

Fc 8.17 MPa

Fc = 55.26 MPa Fc = 83 ts / D

Fc = 8.17 MPa Fc = 83 ts / ( ( 2.5 D ) + 7.5 SQRT ( G H ) )

G H < 0.5 Fty 28.39 120 Satisfied

tb

Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift, J < 0.785, σc

σc = ( wt ( 1 + 0.4 Av ) + ( 1.273 Mrw / D2 ) ) ( 1 / ( 1000 ts ) )

σc = ( ( ( wt (1 + 0.4 Av ) + wa ) / ( 0.607 -0.18667 J2.3 ) ) - wa ) ( 1 / ( 1000 ts ) )

σc

Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift, J < 0.785, σc

σc = ( wt ( 1 + 0.4 Av ) + ( 1.273 Mrw / D2 ) ) ( 1 / ( 1000 ts ) )

σc

G H D2 / t2

G H D2 / t2 ≥ 44

G H D2 / t2 < 44

Page 13: Tank Design

DYNAMIC LIQUID HOOP FORCES

When D / H is greater than or equal to 1.333

D H D / H 0.866 ( D / H ) TANH 4 Y Y / H 0.5 ( Y / H ) Ai G Ni

4.51 6.30 0.72 0.6194 0.5507 6.30 1.000 0.500 0.0934 1.04 6.44

When D / H is less than 1.333 and Y is less than 0.75 D

D Y Y / D Ai G Ni

D / H 0.72

4.51 4.00 0.89 0.0934 1.04 4.97 Use '2 & 3'

Y 6.70

When D / H is less than 1.333 and Y is greater than or equal to 0.75 D 1 6.41 N/mm

2 & 3 5.13 N/mm

D Ai G Ni 1, 2 & 3 5.13 N/mm

4.51 0.0934 1.04 5.13

Use Ni = 5.13 N/mm

For Convective Use Nc = 0.04 N/mm

Nc = 1.85 Ac G D2 COSH ( 3.68 ( H - Y ) / D ) / COSH (3.68 H / D )

D H Y 3.68 ( H - Y ) / D3.68 ( H / D ) COSH 4 COSH 5 Ac G Nc

0.00 0.00 6.70 #DIV/0! #DIV/0! #DIV/0! #DIV/0! 0.0860 0.00 #DIV/0!

When purchaser specifies that vertical acceleration need not be considered (i.e. Av = 0), the combined hoop

stress shall be defined by Equation E-22. The dynamic hoop tensile stress shall be directly combined with the

product hydrostatic design stress in determining the total stress.

When vertical acceleration not specified

t

When vertical acceleration specified

t

Ni = 8.48 Ai G D H ( ( Y / H ) - 0.5 ( Y / H )2 ) TANH ( 0.866 D / H )

Ni = 5.22 Ai G D2 ( ( Y / ( 0.75 D ) ) - 0.5 ( Y / ( 0.75 D ))2 )

Ni = 2.6 Ai G D2

σT = σh ± σs = ( Nh ± SQRT ( Ni2 + Nc

2 ) ) / t

σh σs Nh Ni Nc σT

σT = σh ± σs = ( Nh ± ( SQRT ( Ni2 + Nc

2 + ( Ac Nh )2 ) ) ) / t

σh σs Nh Ni Nc Av σT

Page 14: Tank Design

APPENDIX E - SEISMIC DESIGN OF STORAGE TANKS

Specific Gravity G 1.04 -

Tank Dia. D 4.506 m

Tank Height H 6.30 m

Aspact Ratio D/H 0.72 -

Inverse Aspact Ratio H/D 1.40 -

Bottom Plt. Thk. 7.00 mm

First Shell Course Thk. tsn 3.00 mm

Minimum specified yield strength of shell course 240.00 MPa

Height from bottom of the shell to CG Xs 3.15 m

Height from top of shell to the roof and roof appurtenance Xr 0.167 m

Seismic Use Group SUG II

Importance Factor I 1.25

Site Class SC D

Anchorage Condition Mechanically Anchored

Vertical Acceleration Consider

MCE Ground Motion Definitions

0

Ss 0.28

S1 1.4

So 0.112

Fa 1.6

Fv 2.4 So = 0.4Ss 0.112

0

0

2.4

0.760

Structural Period of Vibration

Impulsive Natural Period Ci = 6.4 -

tbtm

FYmin

SP

SP Ss = 2.5SP

SDS S1 = 1.25SP

Ss = 1.5Fa

S1 = 0.6Fv/T

E19
odpk-smalvi: Peak ground acceleration
E20
odpk-smalvi: Mapped, maximum considered earthquake, 5-percent-damped, spectral response acceleration parameter at short period ( 0.2 seconds ), Ss
E21
odpk-smalvi: Mapped, maximum considered earthquake, 5-percent-damped, spectral response acceleration parameter at a period of 1 second, S1
E22
odpk-smalvi: Mapped, maximum considered earthquake, 5-percent-damped, spectral response acceleration parameter at zero seconds, So.
B25
odpk-smalvi: Peak ground acceleration
Page 15: Tank Design

H = 6.30 m

tu = 6 mm

D = 4.51 m

p = 1040

E = 195000 Mpa

Ti = 1.80 seconds

Convective (Sloshing) Period

Tc = 1.8 Ks sqrt ( D ) Tc = 2.21 seconds

Ks = 0.578 / ( sqrt ( ( 3.68 H ) / D ) ) Ks = 0.58

Design Spectral Response Acceleration T 1.89

Impulsive spectral acceleration parameter, Ai

Probabilistic or Mapped Design Method (Approach 1)

So = 0.112 %g

N/A 0 %g

N/A 0.45 %g

I = 1.25 -

Fa = 1.6 -

Rwi = 4 -

Q = 1.00 -

0.14

Ai = 2.5 Q Fa So ( I / Rwi ) 0.14

For Site Class A, B, C and D Satisfied

For Site Class E and F N/A N/A

For Site Class E and F N/A N/A

kg/m3

SP =

SDS = 2.5 Q Fa So ( E-4 ) SDS =

Ai = SDS ( I / Rwi )

Ai ≥ 0.007

Ai ≥ 0.5 S1 ( I / Rwi )

Ai ≥ 0.875 SP ( I / Rwi )

Page 16: Tank Design

Ai 0.14000

Concevtice spectral acceleration parameter, Ac

Probabilistic or Mapped Design Method (Approach 1)

S1 = 0.14 %g

Ss = 0.28 %g

So = 0.112 %g

0 %g

0 %g

K = 1.5 -

I = 1.25 -

Fa = 1.6 -

Fv = 2.4 -

Tc = 2.21 seconds

Ts = 0.75 seconds

4 seconds

Rwc = 2 -

Q = 1.00 -

Ac N/A

Ac 0.09508

Ac N/A

Ac 0.17221

Ac 0.08596 < Ai

SEISMIC DESIGN FACTORS

So = SP

SD1 =

SP =

TL =

TC < TL

Ac = KSD1 ( I / Tc ) ( I / Rwc )

Ac = 2.5 Q Fa So ( Ts / Tc ) ( I / Rwc )

TC > TL

Ac = KSD1 ( TL / Tc2 ) ( I / Rwc )

Ac = 2.5 Q Fa So ( ( Ts TL / Tc2 ) ( I / Rwc )

Page 17: Tank Design

DESIGN FORCES

Equivalent lateral seismic design force F = A . Weff

lateral acceleration coefficient A ( %g )

Effective Weight contributing to seismic response Weff

DESIGN LOADS

Ws 89100 N

Wr 18950 N

Wf 15530 N

Wi 1383984 N

Wc 269710 N

1639640 N

Ai 0.1400 %g

Ac 0.0860 %g

Vi = Ai ( Ws + Wr + Wf + Wi ) Vi 211059 N

Vc = Ac Wc Vc 23184 N

V 212329 N

EFFECTIVE WEIGHT OF PRODUCT

EFFECTIVE IMPULSIVE WT.

D 4.51 m

WP

V = SQRT ( Vi2 + Vc2 )

Page 18: Tank Design

H 6.30 m

D/H 0.72 -

1639640 N

When D / H greater than or equal to 1.333

( tanh ( 0.866 D / H ) / (0.866 D / H ) ) Wp

Wi 1457810 N

When D / H less than 1.333

Wi 1383984 N

Use Wi =

EFFECTIVE CONVECTIVE WT.

D 4.51 m

H 6.30 m

D/H 0.72

1639640 N

For Convective

Wc 269710 N Use Wc =

CENTER OF ACTION FOR EFFECTIVE LATERAL FORCES

CENTRE OF ACTION OF RINGWALL OVERTURNING MOMENT

D 4.51 m

H 6.30 m

D/H 0.72 -

H/D 1.40 -

WP

( 1 - 0.218 ( D / H ) ) WP

WP

0.23 ( D / H ) tanh ( ( 3.67 H ) / D ) WP

Page 19: Tank Design

When D / H greater than or equal to 1.333

Xi = 0.375 H

Xi 1.69 m Not Applicable in this case.

When D / H less than 1.333

Xi = ( 0.5 - 0.094 ( D / H ) ) H

Xi 2.73 m Applicable in this case.

Use Xi =

For Convective

Xc = ( 1.0 - ( COSH ( (3.67 H / D ) -1 ) / ( ( 3.67 H / D ) SINH ( 3.67 H /D ) )

H H/D 3.67 ( H / D ) ( 3.67 ( H / D ) - 1 ) COSH 4 SINH 3 Xc

6.3 1.4 5.1 4.1 31.1 84.6 5.85

Use Xc =

CENTRE OF ACTION OF SLAB OVERTURNING MOMENT

D 4.51 m

H 6.30 m

D/H 0.72 -

When D / H greater than or equal to 1.333

Xis = 0.375 ( 1.0 + 1.333 ( ( ( 0.866 D / H ) / TANH ( 0.866 D / H ) ) -1.0 ) ) H

D H D / H 0.866 ( D / H ) TANH 4 Xis

4.51 6.30 0.72 0.62 0.55 2.76

When D / H less than 1.333

Xis = ( 0.5 + 0.6 ( D / H ) ) H

D H D / H 0.6 ( D / H ) Xis

Page 20: Tank Design

4.51 6.30 0.72 0.43 5.85

Use Xis =

For Convective

Xcs = ( 1.0 - ( COSH ( ( 3.67 H / D ) -1.937 ) / ( 3.67 ( H / D ) SINH ( 3.67 ( H / D ) ) ) ) H

D H H / D 3.67 ( H / D ) 3.67 ( H / D ) - 1.937 COSH 5 SINH 3

4.51 6.30 1.40 5.13 3.19 12.22 84.60

Use Xcs =

VERTICAL SEISMIC EFFECTS

0.448

Av = 0.06272 %g

Fv = ± Av Weff Wi = 1383984 N

Wc = 269710 N

Weff = 1410020 N

Fv = 88436 N

DYNAMIC LIQUID HOOP FORCES

When D / H is greater than or equal to 1.333

D H D / H 0.866 ( D / H ) TANH 4 Y Y / H

4.51 6.30 0.72 0.6194 0.5507 6.30 1.000

When D / H is less than 1.333 and Y is less than 0.75 D

D Y Y / D Ai G Ni

4.51 4.00 0.89 0.1400 1.04 7.46

SDS =

Ni = 8.48 Ai G D H ( ( Y / H ) - 0.5 ( Y / H )2 ) TANH ( 0.866 D / H )

Ni = 5.22 Ai G D2 ( ( Y / ( 0.75 D ) ) - 0.5 ( Y / ( 0.75 D ))2 )

Page 21: Tank Design

When D / H is less than 1.333 and Y is greater than or equal to 0.75 D

D Ai G Ni

4.51 0.1400 1.04 7.69

For Convective

Nc = 1.85 Ac G D2 COSH ( 3.68 ( H - Y ) / D ) / COSH (3.68 H / D )

D H Y 3.68 ( H - Y ) / D 3.68 ( H / D ) COSH 4 COSH 5

4.51 6.30 6.70 -0.33 5.15 1.0538 85.801

When purchaser specifies that vertical acceleration need not be considered (i.e. Av = 0), the combined hoop

stress shall be defined by Equation E-22. The dynamic hoop tensile stress shall be directly combined with the

product hydrostatic design stress in determining the total stress.

When vertical acceleration not specified

When vertical acceleration specified

OVERTURNING MOMENT

Ni = 2.6 Ai G D2

σT = σh ± σs = ( Nh ± SQRT ( Ni2 + Nc

2 ) ) / t

σh σs Nh Ni Nc

σT = σh ± σs = ( Nh ± ( SQRT ( Ni2 + Nc

2 + ( Ac Nh )2 ) ) ) / t

σh σs Nh Ni Nc

Mrw = SQRT ( ( Ai ( Wi Xi + Ws Xs + Wr Xr ) )2 + ( Ac ( Wc Xc ) )2 )

Page 22: Tank Design

RINGWALL MOMENT Ai 0.14

Wi 1383984.208

Xi 2.83

Ws 89100

Xs 3.15

Wr 18950

Xr 0.167

Ac 0.08596

Wc 269709.7481

Xc 6.1

Mrw 604837 N-m

SLAB MOMENT

Ai 0.1400

Wi 1383984.208

Xis 6.66

Ws 89100.00

Xs 3.15

Wr 18950.00

Xr 0.167

Ac 0.0860

Wc 269710

Xcs 6.48

Ms 1338620 N-m

Anchorage [Resistance to the design overturning (ringwall) moment at the base of the shell]

Ms = SQRT ( ( Ai ( Wi Xis + Ws Xs + Wr Xr ) )2 + ( Ac ( Wc Xcs ) )2 )

Page 23: Tank Design

Resistance is contributed by:

For unanchored tanks

Weight of the tank shell

Weight of roof reaction on shell

Weight of a portion of the tank contents adacent to the shell

For anchored tanks

Mechanical anchorage devices (i.e., Anchor chair with anchor boldts)

ta 7.00 mm

S 0 N

0.06272 %g

Anchorage Ratio, J Mrw 604837 N-m

Ws 55322 N

Wss 3908 N/m

Wr 18953 N

Wrs 1339 N/m

Wt 5247 N/m

Wa = 99 ta SQRT ( Fy H Ge ) ≤ 1.28 H D Ge Wa 27134 N/m

27134 ≤ 37 Ge 1.014 -

J 0.92

Annular Plate Requirements Tank is self Anchored.

Thickness of the tank floor plate provided under the shell may be greater than or equal to the thickness of the general

tank floor plate ( i.e., ta > tb ) with the following restrictions:

ts - CA 3.00 mm

Actual Thk. Btm Plt. 7.00 mm

Av

J = Mrw / ( D2 ( Wt ( 1 - 0.4 Av ) )+ Wa )

Wt = ( ( Ws / PI() D ) + Wrs )

tb

Page 24: Tank Design

a [Not Satisfied.]

b [Not Satisfied.]

Tank Self Anchored?

a ) The resisting force is adequate for tank stability ( i.e. the anchorage ratio, J > 1.54 )

b ) The maximum width of annulus for determining the resisting force is 3.5% of the tank diameter.

c ) The shell compression satisfies E.6.2.2

d ) The req'd annular plate thickness does not exceed the thickness of the btm shell course.

e ) Piping flexibility requirements are satisfied.

Shell Compression in Self-Anchored Tanks

Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift, J > 0.785, σc

wt 5247 N/m

Av 0.06272 %g

Mrw 604837 N-m

D 4.506 m

ts 3.00 mm

wa 27134 N/m

J 0.92 -

14.960 MPa

Shell Compression in Mechanically-Anchored Tanks

Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift, J < 0.785, σc

σc = ( wt ( 1 + 0.4 Av ) + ( 1.273 Mrw / D2 ) ) ( 1 / ( 1000 ts ) )

σc = ( ( ( wt (1 + 0.4 Av ) + wa ) / ( 0.607 -0.18667 J2.3 ) ) - wa ) ( 1 / ( 1000 ts ) )

σc

Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift, J < 0.785, σc

Page 25: Tank Design

wt 5247 N/m

Av 0.06272 %g

Mrw 604837 N-m

D 4.506 m

ts 3.00 mm

14.433 MPa

Allowable Longitudinal Membrane Compression Stress in Tank Shell

G 1.04

H 6.30

D 4.506

ts 3.00 Corroded

14.78

Fc 8.17 MPa

σc = ( wt ( 1 + 0.4 Av ) + ( 1.273 Mrw / D2 ) ) ( 1 / ( 1000 ts ) )

σc

G H D2 / t2

Page 26: Tank Design

Self Anchored Consider

Mechanically Anchored Do not consider

Where the site properties are not known in sufficient detail to determine the site class, Site Class D shall be assumed

unless the authority having jurisdiction determines that Site Class E or F should apply at the site.

Corroded

Corroded

Seismic Use Group

I Not assigned to SUG II and III

II Hazardous substance, public exposure, direct service to major facilities

III Post earthquake recovery, life and health of public, hazardous substance

Note:

Seismic Use Group (SUG) for the tank shall be specified by the purchaser.

If it is not specified, the tank shall be assigned to SUG I

Importance Factor Site Class

SUG I A Hard rock

I 1 B Rock

II 1.25 C Very dense soil

III 1.5 D Stiff soil

E Soil

F N/A

T = Natural period of vibration of the tank and contents, seconds.

Ci = Coefficient for determining impulsive period of tank system

N28
odpk-smalvi: Requiring site-specific evaluations
Page 27: Tank Design

H = Maximum design product level, m

tu = Equivalent uniform thickness of tank shell, mm

D = Nominal tank diameter, m

p =

E = Elastic Modulus of tank material, MPa

Ti = Natural period of vibration for impulsive mode of behavior, seconds

Tc = Natural period of vibration for convective (sloshing) mode of behavior, seconds

So = Mapped, maximum considered earthquake, 5-percent-damped, spectral response acceleration parameter at a period of one second, %g.

Design level peak ground acceleration parameter for sites not addressed by ASCE methods.

The design, 5-percent-damped, spectral response acceleration parameter at short periods ( T = 0.2 seconds ) based on ASCE 7 methods, %g.

I = Importance factor coefficient based on seismic use group.

Fa = Acceleration-based site coefficient ( at 0.2 seconds period ).

Rwi = Force reduction factor for the impulsive mode using allowable stress design methods.

Q =

Mass density of fluid, kg/m3

SP =

SDS =

Scaling factor from the MCE to the design level spectral acceleration. Q = 2 / 3 for ASCE 7 and Q = 1 UOS.

Page 28: Tank Design

S1 = Mapped, MCE, 5-percent-damped, spectral response acceleration parameter at a period of one second, %g.

Ss = Mapped, MCE, 5-percent-damped, spectral response acceleration parameter at short periods ( T = 0.2 seconds ), %g.

So = Mapped, MCE, 5-percent-damped, spectral response acceleration parameter at a period of one second, %g.

The design, 5-percent-damped, spectral response acceleration parameter at one second based on ASCE 7 methods, %g.

K =

I = Importance factor coefficient based on seismic use group.

Fa = Acceleration-based site coefficient ( at 0.2 seconds period ). Table E - 1

Fv = Velocity-based site coefficient ( at 1.0 seconds period ).

Tc = Natural period of the covective (sloshing) mode of behavior of the liquid, seconds.

Ts = ( Fv . S1 ) / ( Fa . Ss )

Regional-dependent transition period for longer period ground motion, seconds. For ASCE 7 Mapped value and for Outside USA 4.

Rwc = Force reduction coefficient for the convective mode using allowable stress design methods.

Q =

0.1400 Satisfied

SD1 =

SP =

Coefficient to adjust the spectral acceleration from 5% to 0.5% damping = 1.5 UOS.

TL =

Scaling factor from the MCE to the design level spectral acceleration. Q = 2 / 3 for ASCE 7 and Q = 1 UOS.

Page 29: Tank Design

Ws Total weight of tank shell and appurtenances, N.

Wr Total weight of fixed tank roof including framing, knuckles, any permanent attachments and 10% of the roof design snow load, N.

Wf Weight of the tank floor, N.

Wi Effective impulsive weight of the liquid, N.

Wc Effective convective (sloshing) portion of the liquid weight, N.

Total weight of the tank contents based on the design specific gravity of the product, N.

Ai Impulsive design response spectrum acceleration coefficient, %g.

Ac Convective design response spectrum acceleration coefficient %g.

Vi Design base shear due to impulsive component from effective weight of tank and contents, N.

Vc Design base shear due to the convective component of the effective sloshing wieght, N.

V Total design base shear, N.

WP

Page 30: Tank Design

1383984 N

269710 N

Page 31: Tank Design

2.83 m

6.10 m

Page 32: Tank Design

6.66 m

Xcs

6.12

6.48 m

Av = Vertical earthquake acceleration coefficient, %g.

Wi = Effective weight contributing to seismic response.

Wc = Velocity-based site coefficient ( at 1.0 seconds period ).

Y = Distance from liquid surface to analysis point, (positive down), m.

Ni = Impulsive hoop membrane force in tank wall, N/mm.

0.5 ( Y / H ) Ai G Ni

0.500 0.1400 1.04 9.65

D / H 0.72

Use '2 & 3'

Y 6.70

Av = 0.14 SDS

SDS = 2.5 Q Fa So

Page 33: Tank Design

1 9.61 N/mm

2 & 3 7.69 N/mm

1, 2 & 3 7.69 N/mm

Use Ni = 7.69 N/mm

Use Nc = 0.04 N/mm

Ac G Nc

0.0860 1.04 0.04

When purchaser specifies that vertical acceleration need not be considered (i.e. Av = 0), the combined hoop

stress shall be defined by Equation E-22. The dynamic hoop tensile stress shall be directly combined with the

t Product hydrostatic hoop stress in the shell, MPa.

Hoop stress in the shell due to impulsive and convective force of the stored liquid, MPa.

Total combined hoop stress in te shell, MPa.

Product hydrostatice membrane force, N/mm.

Impulsive hoop membrane force in tank wall, N/mm.

Convective hoop membrane force in tank wall, N/mm.

t Thickness of the shell ring under consideration, mm.

Vertical earthquake acceleration coefficient, %g.

t

σT σh

σs

σT

Nh

Ni

Nc

± ( SQRT ( Ni2 + Nc

2 + ( Ac Nh )2 ) ) ) / t

Av

Av σT

Mrw = SQRT ( ( Ai ( Wi Xi + Ws Xs + Wr Xr ) )2 + ( Ac ( Wc Xc ) )2 )

Page 34: Tank Design

Ms = SQRT ( ( Ai ( Wi Xis + Ws Xs + Wr Xr ) )2 + ( Ac ( Wc Xcs ) )2 )

Page 35: Tank Design

ta Thickness of the bottom plate under the shell extending at least the distance, L, from the inside of the shell, less CA, mm.

S Design snow load, N.

Vertical earthquake acceleration coefficient, %g.

Mrw Ringwall moment - Portion of the total overturning moment that acts at the base of the tank shell perimeter, N-m.

Ws Total weight of tank shell and appurtenances, N. (Shell + Btm Plt + Curb Angle + Rings )

Wss Total weight of tank shell and appurtenances per unit length of shell circumference, N/mm.

Wr Total weight of fixed tank roof including framing, knuckles, any permanent attachments and 10% of the roof design snow load, N.

Wrs Roof load acting on the shell, including 10% of the specified snow load, N/m.

Wt Tank and roof weight acting at base of shell, N/m.

Wa Resisting force of tank contents per unit length of shell circumference that may be used to resist the shell overturning moment, N/m.

Ge Effective specific gravity including vertical seismic effects = G ( 1.0 - 0.4 Av )

J < 0.785 No calculated uplift under the design seismic overturning moment. The tank is self anchored.

0.785 < J < 1. Tank is uplifting, but the tak is stable for the design load providing the shell compression requirements are satisfied. Tank is self anchored.

J >1.54 Tank is not stable and cannot be self-anchored for the design load. Modify the annular plate if L < 0.035D is not controlling or add mechanical anchorage.

Thickness of the tank floor plate provided under the shell may be greater than or equal to the thickness of the general

Av

Page 36: Tank Design

a ) The thickness, ta, used to calculate wa in Equ E-23 shall not exceed the first shell course thickness, ts, less the shell CA.

b ) Nor shall the thickness, ta, used in Equ E-23 exceed the actual thickness of the plate under the shell less the CA for tank bottom.

c ) when the bottom plate under the shell is thicker than the remainder of the tank bottom (i.e. ta > tb) the min. projection of the supplied

thicker annular plate inside the tank wall, Ls, shall be equal to or greater than L:

[Satisfied]

L = 158 mm

[Not Satisfiend]

[Not Satisfied]

See API 650 Sec. E.7.3

Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift, J > 0.785, σc

J < 0.785 Long. Shell Comp. Stress = 14.43 MPa

J > 0.785 Long. Shell Comp. Stress = 14.96 MPa

Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift, J < 0.785, σc

Max. longitudinal shell compression stress at the bottom of the shell when there is no calculated uplift, J < 0.785, σc

Page 37: Tank Design

Thickness of the shell ring under consideration, mm. corroded

Allowable longitudinal shell membrane compression stress, MPa.

Fc = 55.26 MPFc = 83 ts / D

Fc = 8.17 MPaFc = 83 ts / ( ( 2.5 D ) + 7.5 SQRT ( G H ) )

G H < 0.5 Fty 28.3878 120 Satisfied

G H D2 / t2 ≥ 44

G H D2 / t2 < 44

Page 38: Tank Design

Where the site properties are not known in sufficient detail to determine the site class, Site Class D shall be assumed

unless the authority having jurisdiction determines that Site Class E or F should apply at the site.

Hazardous substance, public exposure, direct service to major facilities

Post earthquake recovery, life and health of public, hazardous substance

Seismic Use Group (SUG) for the tank shall be specified by the purchaser.

Very dense soil

Page 39: Tank Design

Natural period of vibration for convective (sloshing) mode of behavior, seconds

Mapped, maximum considered earthquake, 5-percent-damped, spectral response acceleration parameter at a period of one second, %g.

Design level peak ground acceleration parameter for sites not addressed by ASCE methods.

The design, 5-percent-damped, spectral response acceleration parameter at short periods ( T = 0.2 seconds ) based on ASCE 7 methods, %g.

Force reduction factor for the impulsive mode using allowable stress design methods.

Scaling factor from the MCE to the design level spectral acceleration. Q = 2 / 3 for ASCE 7 and Q = 1 UOS.

Page 40: Tank Design

Mapped, MCE, 5-percent-damped, spectral response acceleration parameter at a period of one second, %g.

Mapped, MCE, 5-percent-damped, spectral response acceleration parameter at short periods ( T = 0.2 seconds ), %g.

Mapped, MCE, 5-percent-damped, spectral response acceleration parameter at a period of one second, %g.

The design, 5-percent-damped, spectral response acceleration parameter at one second based on ASCE 7 methods, %g.

Natural period of the covective (sloshing) mode of behavior of the liquid, seconds.

Regional-dependent transition period for longer period ground motion, seconds. For ASCE 7 Mapped value and for Outside USA 4.

Force reduction coefficient for the convective mode using allowable stress design methods.

Coefficient to adjust the spectral acceleration from 5% to 0.5% damping = 1.5 UOS.

Scaling factor from the MCE to the design level spectral acceleration. Q = 2 / 3 for ASCE 7 and Q = 1 UOS.

Page 41: Tank Design

Total weight of fixed tank roof including framing, knuckles, any permanent attachments and 10% of the roof design snow load, N.

Total weight of the tank contents based on the design specific gravity of the product, N.

Design base shear due to impulsive component from effective weight of tank and contents, N.

Design base shear due to the convective component of the effective sloshing wieght, N.

Page 42: Tank Design

DS = 2.5 Q Fa So

Page 43: Tank Design

Product hydrostatic hoop stress in the shell, MPa.

Hoop stress in the shell due to impulsive and convective force of the stored liquid, MPa.

Total combined hoop stress in te shell, MPa.

Product hydrostatice membrane force, N/mm.

Impulsive hoop membrane force in tank wall, N/mm.

Convective hoop membrane force in tank wall, N/mm.

Thickness of the shell ring under consideration, mm.

Vertical earthquake acceleration coefficient, %g.

Page 44: Tank Design

Thickness of the bottom plate under the shell extending at least the distance, L, from the inside of the shell, less CA, mm.

Ringwall moment - Portion of the total overturning moment that acts at the base of the tank shell perimeter, N-m.

Total weight of tank shell and appurtenances, N. (Shell + Btm Plt + Curb Angle + Rings )

Total weight of tank shell and appurtenances per unit length of shell circumference, N/mm.

Total weight of fixed tank roof including framing, knuckles, any permanent attachments and 10% of the roof design snow load, N.

Roof load acting on the shell, including 10% of the specified snow load, N/m.

Resisting force of tank contents per unit length of shell circumference that may be used to resist the shell overturning moment, N/m.

Effective specific gravity including vertical seismic effects = G ( 1.0 - 0.4 Av )

No calculated uplift under the design seismic overturning moment. The tank is self anchored.

Tank is uplifting, but the tak is stable for the design load providing the shell compression requirements are satisfied. Tank is self anchored.

Tank is not stable and cannot be self-anchored for the design load. Modify the annular plate if L < 0.035D is not controlling or add mechanical anchorage.

Page 45: Tank Design

a ) The thickness, ta, used to calculate wa in Equ E-23 shall not exceed the first shell course thickness, ts, less the shell CA.

b ) Nor shall the thickness, ta, used in Equ E-23 exceed the actual thickness of the plate under the shell less the CA for tank bottom.

c ) when the bottom plate under the shell is thicker than the remainder of the tank bottom (i.e. ta > tb) the min. projection of the supplied

thicker annular plate inside the tank wall, Ls, shall be equal to or greater than L:

Page 46: Tank Design
Page 47: Tank Design
Page 48: Tank Design
Page 49: Tank Design

F.1 Scope

F.1.1 This appendix applies to the storage of nonrefrigerated liquids.

F.1.2 When net uplift does not exceed the nominal weight of the shell, roof and framing supported b the shell or roof F.2 through F.6.

F.1.3 Internal Pressure exceed 18 kPa gauge covered in F.7.

F.1.4

F.1.5 Tank nameplate shall indicate whether the tank has been designed in accordance with F.1.2

F.1.6 Figure F-1 provided to aid in the determination of the applicability of various sections of this appendix.

F.2 Venting (Deleted)

F.3 Roof Details

F.4 Maximum Design Pressure and Test Procedure

F.4.1 The design pressure, P, for a tank that has been constructed or that has had its design details established

may be calculated from the following equation (subjected to the limitations of Pmax in F.4.2)

P Internal design pressure, kPa

A

θ Angle between the roof and a horizontal plane at the roof-to-shell junction, degrees

tan θ Slope of the roof, expressed as a decimal quantity

D Tank diameter, m

Nominal roof thickness, mm

F.4.2 The maximum design pressure, limited by uplift at the base of the shell, shall not exceed the value calculated

from the following equation unlesss further limited by F.4.3

Pmax Maximum design pressure, kPa

Total weight of the shell and any framing (but not roof plates) supported by the shell and roof, N

D Tank diameter, m

Nominal roof thickness, mm

P = ( 1.1 ) ( A ) ( tan θ ) / D2 + 0.08th

Area resisting the compressive force, as illustrated in Figure F-2, mm2

th

DLS

th

Page 50: Tank Design

M Wind moment, N - m

F.4.3 As top angle size and roof slope decrease and tank diameter increases, the design presure permitted by F.4.1 and F.4.2

approaches the failure pressure of F.6 for the roof-to-shell junction, In order to provide a safe margin between the maximum

operating pressure and the calculated failure pressure, a suggested further limitation on the maximum design pressure for

tanks with a weak rof-to-shell attachment (frangible joint) is:

Pmax < 0.8 Pf

F.4.4 When the entire tank is completed, it shall be filled with water to the top angle or the design liquid level, and the design

internal air pressure shall be applied to the enclosed space above the water level and held for 15 minutes. The air pressure

shall then be reduced to one-half the design pressure, and all welded joints above the liquid level shall be checked for leaks

by means of a soap film, linseed oil, or another suitable material. Tank vents shall be tested during or after this test.

F.5 Required Compression Area at the Roof-to-Shell Junction

F.5.1

A

D Tank diameter

Pi Design internal pressure, kPa

th Roof Thickness, mm

V Design wind speed ( 3-second gust ), km / h

F.5.2 For self-supporting roofs, the compression area shall not be less than the cross-sectional area calculated in 3.10.5 and 3.10.6

F.6 Calculate Failure Pressure ( Frangible Roofs )

a

b

c

A = ( D2 ( Pi - 0.08th ) ) / ( 1.1 ( tanθ ) )

A = ( D2 ( 0.4Pi - 0.08th + 0.72 ( V / 120 )2 ) ) / ( 1.1 ( tanθ ) )

Total required compression area at the roof-to-shell junction, mm2

Page 51: Tank Design

d

e

f

g

h

F.7 Anchored Tanks with Design Pressures up to 18 kPa Gauge

F.7.1 Shell Design Modification

F.7.2 Compression Area

F.7.3 Roof Design

F.7.4 Anchorage

Column 1 Column 2 Column 3

Manhole DiameBolt Circle Dia Cover Plate Diameter

mm (in.) Db mm (in.) Dc mm (in.)

Bolt Circle Dia 656 (261/4) 720 (283/4)

Db mm (in.) 756 (301/4) 820 (323/4)

Cover Plate Di906 (361/4) 970 (383/4)

Dc mm (in.) 1056 (421/4) 1120 (443/4)

Pf = 1.6P - 0.047th

Page 52: Tank Design

Type

MPa MPa Temperature Range

40 90

304 205 515 155 155

304L 170 485 145 132

316 205 515 155 155

316L 170 485 145 131

317 205 515 155 155

317L 205 515 155 155

2

Temp 120

th R2 Wh

0.39 9800.17 37.27

10 248924 947

Rc tc Wc

MinimumYield

Strength

MinimumTensile

Strength

Allowable Stress fpr Maximum Design TemperatureNot Exceeding (Sd), MPa

FY min FT min

Page 53: Tank Design

610.24 0.55 11.00

15500 14 279

Page 54: Tank Design

Leg 1 Leg 2 Thk

L1 L2 t

mm mm mm

20 x 20 x 2 20 20 2

20 x 20 x 2.5 20 20 2.5

20 x 20 x 3 20 20 3

25 x 25 x 2.5 25 25 2.5

25 x 25 x 3 25 25 3

25 x 25 x 4 25 25 4

30 x 30 x 2.5 30 30 2.5

30 x 30 x 2.7 30 30 2.7

30 x 30 x 3 30 30 3

30 x 30 x 4 30 30 4

30 x 30 x 5 30 30 5

35 x 35 x 2.5 35 35 2.5

35 x 35 x 3 35 35 3

35 x 35 x 3.2 35 35 3.2

35 x 35 x 3.5 35 35 3.2

35 x 35 x 4 35 35 4

35 x 35 x 5 35 35 5

37 x 37 x 3.3 37 37 3.3

40 x 40 x 3 40 40 3

40 x 40 x 4 40 40 4

40 x 40 x 5 40 40 5

40 x 40 x 6 40 40 6

45 x 45 x 3 45 45 3

45 x 45 x 4 4 4 4

45 x 45 x 4.5 4.5 4.5 4.5

45 x 45 x 5 5 5 5

Page 55: Tank Design

45 x 45 x 6 6 6 6

50 x 50 x 3 50 50 3

50 x 50 x 4 50 50 4

50 x 50 x 4.5 50 50 4.5

50 x 50 x 5 50 50 5

50 x 50 x 6 50 50 6

50 x 50 x 7 50 50 7

50 x 50 x 8 50 50 8

60 x 60 x 4 60 60 4

60 x 60 x 4.5 60 60 4.5

60 x 60 x 5 60 60 5

60 x 60 x 5.5 60 60 5.5

60 x 60 x 6 60 60 6

60 x 60 x 8 60 60 8

60 x 60 x 10 60 60 10

70 x 70 x 5 70 70 5

70 x 70 x 5.5 70 70 5.5

70 x 70 x 6 70 70 6

70 x 70 x 6.5 70 70 6.5

70 x 70 x 7 70 70 7

70 x 70 x 9 70 70 9

80 x 80 x 5.5 80 80 5.5

80 x 80 x 6 80 80 6

80 x 80 x 7 80 80 7

80 x 80 x 7.5 80 80 7.5

80 x 80 x 8 80 80 8

80 x 80 x 10 80 80 10

90 x 90 x 6.5 90 90 6.5

90 x 90 x 7 90 90 7

90 x 90 x 8 90 90 8

90 x 90 x 8.5 90 90 8.5

90 x 90 x 9 90 90 9

100 100 6.5100 x 100 x 6.5

Page 56: Tank Design

100 x 100 x 7 100 100 7

100 x 100 x 8 100 100 8

100 x 100 x 9 100 100 9

100 100 10

100 100 12

120 x 120 x 8 120 120 8

120 120 10

120 120 11

120 120 12

120 120 14

120 120 15

150 150 10

150 150 12

150 150 12.5

150 150 14

150 150 15

150 150 18

180 180 18

200 200 16

200 200 18

200 200 20

200 200 24

200 200 25

200 200 26

100 x 100 x 10100 x 100 x 12

120 x 120 x 10120 x 120 x 11120 x 120 x 12120 x 120 x 14120 x 120 x 15150 x 150 x 10150 x 150 x 12150 x 150 x 12.5150 x 150 x 14150 x 150 x 15150 x 150 x 18180 x 180 x 18200 x 200 x 16200 x 200 x 18200 x 200 x 20200 x 200 x 24200 x 200 x 25200 x 200 x 26

Page 57: Tank Design

When net uplift does not exceed the nominal weight of the shell, roof and framing supported b the shell or roof F.2 through F.6.

Internal Pressure

Pressure Force

Tank nameplate shall indicate whether the tank has been designed in accordance with F.1.2 Wt. of roof plates

Figure F-1 provided to aid in the determination of the applicability of various sections of this appendix. Wt. of shell, roof and attached framing

The design pressure, P, for a tank that has been constructed or that has had its design details established

may be calculated from the following equation (subjected to the limitations of Pmax in F.4.2)

10.89 kPa

776.47

Angle between the roof and a horizontal plane at the roof-to-shell junction, degrees 14 degrees

0.249 -

4.506 m

5 mm

The maximum design pressure, limited by uplift at the base of the shell, shall not exceed the value calculated

-0.66 kPa

Total weight of the shell and any framing (but not roof plates) supported by the shell and roof, N 14769.83 N

4.506 m

5.00 mm

Area resisting the compressive force, as illustrated in Figure F-2, mm2 mm2

Page 58: Tank Design

42734.81 N-m

As top angle size and roof slope decrease and tank diameter increases, the design presure permitted by F.4.1 and F.4.2

approaches the failure pressure of F.6 for the roof-to-shell junction, In order to provide a safe margin between the maximum

operating pressure and the calculated failure pressure, a suggested further limitation on the maximum design pressure for

-1.03 kPa

When the entire tank is completed, it shall be filled with water to the top angle or the design liquid level, and the design

internal air pressure shall be applied to the enclosed space above the water level and held for 15 minutes. The air pressure

shall then be reduced to one-half the design pressure, and all welded joints above the liquid level shall be checked for leaks

by means of a soap film, linseed oil, or another suitable material. Tank vents shall be tested during or after this test.

340.55

188.94

4.506 mm

5.00 kPa

5 mm Corroded

138 km / h

14 Degrees

For self-supporting roofs, the compression area shall not be less than the cross-sectional area calculated in 3.10.5 and 3.10.6

mm2

mm2

Total required compression area at the roof-to-shell junction, mm2

Page 59: Tank Design

-1.29 kPa

Page 60: Tank Design

Temperature Range

150 200 260 Ambient

140 128 121 186 Table S-2 --- Allowable Stress for Tank Shells

119 109 101 155

145 133 123 186

117 107 99 155

145 133 123 186

145 133 123 186

˚C

t L Wh + L + ts A

3.74 59.84 97.11 363.21 947

95 1520 2467 234330.80

ts

Allowable Stress fpr Maximum Design TemperatureNot Exceeding (Sd), MPa

HydrostaticTest Stress

(St)MPa

Page 61: Tank Design

3.74 41.16

95 26552.46

Sum 404.37

260883.2534

Wt./m 2047.933539

Wt. 199446.9618

Page 62: Tank Design

20L2 1 #REF! #REF! #REF!

20L2.5 2 #REF! #REF! #REF!

20L3 3 #REF! #REF! #REF!

25L2.5 4 #REF! #REF! #REF!

25lL3 5 #REF! #REF! #REF!

25L4 6 #REF! #REF! #REF!

30L2.5 7 #REF! #REF! #REF!

30L2.7 8 #REF! #REF! #REF!

30L3 9 #REF! #REF! #REF!

30L4 10 #REF! #REF! #REF!

30L4 11 #REF! #REF! #REF!

35L2.5 12 #REF! #REF! #REF!

35L3 13 #REF! #REF! #REF!

35L3.2 14 #REF! #REF! #REF!

35L3.5 15 #REF! #REF! #REF!

35L4 16 #REF! #REF! #REF!

35L5 17 #REF! #REF! #REF!

37L3.3 18 #REF! #REF! #REF!

40L3 19 #REF! #REF! #REF!

40L4 20 #REF! #REF! #REF!

40L5 21 #REF! #REF! #REF!

40L6 22 #REF! #REF! #REF!

45L3 23 #REF! #REF! #REF!

45L4 24 #REF! #REF! #REF!

45L4.5 25 #REF! #REF! #REF!

45L5 26 #REF! #REF! #REF!

Page 63: Tank Design

45L6 27 #REF! #REF! #REF!

50L3 28 #REF! #REF! #REF!

50L4 29 #REF! #REF! #REF!

50L4.5 30 #REF! #REF! #REF!

50L5 31 #REF! #REF! #REF!

50L6 32 #REF! #REF! #REF!

50L7 33 #REF! #REF! #REF!

50L8 34 #REF! #REF! #REF!

60L4 35 #REF! #REF! #REF!

60L4.5 36 #REF! #REF! #REF!

60L5 37 #REF! #REF! #REF!

60L5.5 38 #REF! #REF! #REF!

60L6 39 #REF! #REF! #REF!

60L8 40 #REF! #REF! #REF!

60L10 41 #REF! #REF! #REF!

70L5 42 #REF! #REF! #REF!

70L5.5 43 #REF! #REF! #REF!

70L6 44 #REF! #REF! #REF!

70L6.5 45 #REF! #REF! #REF!

70L7 46 #REF! #REF! #REF!

70L9 47 #REF! #REF! #REF!

80L5.5 48 #REF! #REF! #REF!

80L6 49 #REF! #REF! #REF!

80L7 50 #REF! #REF! #REF!

80L7.5 51 #REF! #REF! #REF!

80L8 52 #REF! #REF! #REF!

80L10 53 #REF! #REF! #REF!

90L6.5 54 #REF! #REF! #REF!

90L7 55 #REF! #REF! #REF!

90L8 56 #REF! #REF! #REF!

90L8.5 57 #REF! #REF! #REF!

90L9 58 #REF! #REF! #REF!

10L6.5 59 #REF! #REF! #REF!

Page 64: Tank Design

100L7 60 #REF! #REF! #REF!

100L8 61 #REF! #REF! #REF!

100L9 62 #REF! #REF! #REF!

100L10 63 #REF! #REF! #REF!

100L12 64 #REF! #REF! #REF!

120L8 65 #REF! #REF! #REF!

120L10 66 #REF! #REF! #REF!

120L11 67 #REF! #REF! #REF!

120L12 68 #REF! #REF! #REF!

120L14 69 #REF! #REF! #REF!

120L15 70 #REF! #REF! #REF!

150L10 71 #REF! #REF! #REF!

150L12 72 #REF! #REF! #REF!

150L12.5 73 #REF! #REF! #REF!

150L14 74 #REF! #REF! #REF!

150L15 75 #REF! #REF! #REF!

150L18 76 #REF! #REF! #REF!

180L18 77 #REF! #REF! #REF!

200L16 78 #REF! #REF! #REF!

200L18 79 #REF! #REF! #REF!

200L20 80 #REF! #REF! #REF!

200L24 81 #REF! #REF! #REF!

200L25 82 #REF! #REF! #REF!

200L26 83 #REF! #REF! #REF!

Page 65: Tank Design

Pi = 5.00 kPa -

79.52 kN

6.54 kNYes

Wt. of shell, roof and attached framing 36.11 kN

-

Yes

-

Yes

No

-

Use API 620

Does tank have internal pressure?

PForce =

Wroof plates =

WTotal =

Does internal pressure exceed weight of roof

plates?

Does internal pressure exceed the weight of the shell, roof and attached

framing?

Provide anchors and conform to F.7.

Does internal pressure exceed 18 kPa?

Page 66: Tank Design

A roof is considered frangible if the roof-to-shell joint will fail prior to the shell-to-bottom joint in the event of excessive internal pressure.

A roof is considered frangible if the roof-to-shell joint will fail prior to the shell-to-bottom joint in the event ofexcessive internal pressure.

Frangible Roof Conditionsa. The tank shall be 15.25 m (50 ft) diameter or greater.

b. The slope of the roof at the top angleattachment does not exceed 2 in 12.

c. The roof is attached to the top angle with a single continuours fillet weld that

does not exceed 5 mm (3/16 in.). d. The roof support members shall not be

attached to the roof plate. e. The roof-to-top angle compression ring

limited to details a - e in Figure F-2. f. The top angle may be smaller than that

required by 3.1.5.9.e.-g. All members in the region of the roof-to

shell junction, including insulation rings-considered as contributing to the crosssectional area (A).-h. The cross sectional area (A) of the roof

to-shell junction is less than the limitshown below:

A = W / ( 1390 tan Theta )

Frangible Roof Conditions a. The tank shall be 15.25 m (50 ft)

diameter or greater.b. The slope of the roof at the top angle attachment does not exceed 2 in 12.

c. The roof is attached to the top angle with a single continuours fillet weld that does not exceed 5 mm (3/16 in.).

d. The roof support members shall not be attached to the roof plate.

e. The roof-to-top angle compression ring limited to details a - e in Figure F-2.

f. The top angle may be smaller than that required by 3.1.5.9.e.

g. All members in the region of the roof-to-shell junction, including insulation rings considered as contributing to the cross-sectional area (A).

h. The cross sectional area (A) of the roof-to-shell junction is less than the limit shown below:

A = W / ( 1390 tan Theta )

Page 67: Tank Design

Table S-2 --- Allowable Stress for Tank Shells

Page 68: Tank Design

Basic Design

Basic Design

Basic Design plus Appendix F.1 through F.6.Anchors for pressure not required.Do not exceed Pmax.Limit roof/shell compression area per F.5.

API 650 with Appendix F orAPI 620 shall be used

Page 69: Tank Design

A roof is considered frangible if the roof-to-shell joint will fail prior to the shell-to-bottom joint in the event of excessive internal pressure.

A roof is considered frangible if the roof-to-shell joint will fail prior to the shell-to-bottom joint in the event ofexcessive internal pressure.

Frangible Roof Conditionsa. The tank shall be 15.25 m (50 ft) diameter or greater.

b. The slope of the roof at the top angleattachment does not exceed 2 in 12.

c. The roof is attached to the top angle with a single continuours fillet weld that

does not exceed 5 mm (3/16 in.). d. The roof support members shall not be

attached to the roof plate. e. The roof-to-top angle compression ring

limited to details a - e in Figure F-2. f. The top angle may be smaller than that

required by 3.1.5.9.e.-g. All members in the region of the roof-to

shell junction, including insulation rings-considered as contributing to the crosssectional area (A).-h. The cross sectional area (A) of the roof

to-shell junction is less than the limitshown below:

A = W / ( 1390 tan Theta )

Frangible Roof Conditions a. The tank shall be 15.25 m (50 ft)

diameter or greater.b. The slope of the roof at the top angle attachment does not exceed 2 in 12.

c. The roof is attached to the top angle with a single continuours fillet weld that does not exceed 5 mm (3/16 in.).

d. The roof support members shall not be attached to the roof plate.

e. The roof-to-top angle compression ring limited to details a - e in Figure F-2.

f. The top angle may be smaller than that required by 3.1.5.9.e.

g. All members in the region of the roof-to-shell junction, including insulation rings considered as contributing to the cross-sectional area (A).

h. The cross sectional area (A) of the roof-to-shell junction is less than the limit shown below:

A = W / ( 1390 tan Theta )