Top Banner
PRESENTED BY : PRIYANKA M. YADAV M.PHARM (QA) SEM - 3 nroll.No.122080904002 GUIDED BY : Mrs. NISHA H. PARIKH DEPARTMENT OF QUALITY ASSUARANCE ARIHANT SCHOOL OF PHARMACY & BRI
51

Standardisation of herbal drg

Aug 23, 2014

Download

Health & Medicine

Priyanka Yadav

 
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Standardisation of herbal drg

PRESENTED BY : PRIYANKA M. YADAV M.PHARM (QA) SEM - 3

Enroll.No.122080904002

GUIDED BY : Mrs. NISHA H. PARIKH

DEPARTMENT OF QUALITY ASSUARANCEARIHANT SCHOOL OF PHARMACY

& BRI

Page 2: Standardisation of herbal drg

HERBAL DRUGS/ HERBAL FORMULATION

• ARE – Finished labelled products that contain active ingredients such as aerial or underground parts of plant or other plant material or combinations thereof, whether in the crude state or as plant preparations.

• ARE - crude plant material such as leaves, flowers, fruit, seed, stems, wood, bark, roots, rhizomes or other plant parts, which may be entire, fragmented or powdered.

HERBS

Page 3: Standardisation of herbal drg

Phytomedicines or Phytopharmaceuticals sold as Over The Counter ( OTC ) products in modern dosage forms such as Tablets, Capsules & Liquids for oral use.

Dietary Suppliments containing Herbal Products, also called Neutraceuticals available in modern dosage forms.

Herbal Medicines consisting of either Crude, Semi Processed or Processed Medicinal Plants.

HERBAL DRUGS

Page 4: Standardisation of herbal drg

Total 10000 specie

s

8000 Medicinal

3500

Ed

ible

1000

O

ther

s

550

Fibr

ePesticides

Gums, Resins & Dyes

425

325

India’s strength in Herbal Technology

Page 5: Standardisation of herbal drg

THE

IND

IAN

FLO

RA

(ca

1750

0 sp

ecie

s)

Medicinal Pla

nts

are

used

by

Tribal C

ommunities (oral)

8000 species

Ayurveda900 sp.

Unani700 sp.

Siddha600 sp.

Amchi250 sp.

IND

IAN

SYSTEMS O

F MED

ICIN

EModern30 sp.

India’s strength in Herbal Technology

2500 species

Page 6: Standardisation of herbal drg

Guidelines for Quality Control of Herbal formulation

• Quality control of crude drugs material, plant preparations and finished products

• Stability assessment and shelf life

• Safety assessment; documentation of safety based on experience or toxicological studies

• Assessment of efficacy by pharmacological informations and biological activity evaluations

Page 7: Standardisation of herbal drg

STANDARDISATION

• Standardization of drug means “confirmation of its identity and

determination of its quality and purity and detection of nature of adulterant by various parameters like morphological, microscopical, physical, chemical and biological observations.”

Page 8: Standardisation of herbal drg

STANDARDISATION STANDARDISATION OF HERBAL DRUGSOF HERBAL DRUGS

CHEMICALCHEMICAL

BIOLOGICAL

BIOLOGICAL

ORGANOLEPTIC

ORGANOLEPTICBOTANICALBOTANICAL

PHYSIC

AL

PHYSIC

AL

• Moist. Cont.• Extrac. Values• Ash Values• Fluores. Analy.

Macroscopic Microscopic

• Qualitative • Quantitative• SEM Studies • Powder Studies

•Shape•External•Marking

• Colour • Odour• Taste• Texture • Fracture

Antagonistic

Microbial Contamination A) Total viable aerobic count B) Determination of pathogens C) Aflatoxins content

• PharmacologicalBitterness valueHaemolytic activityFoaming indexSwelling index• ToxicologicalDetermination of

pesticide residuesDetermination of heavy

metals

•Bacterial• Fungal

•Qualitative• Quantitative • Chromatography• Radioactive contamination

HPTLC GLC HPLC

HPTLC Finger printing Sec. Metabolites DNA Finger printing

Standardization & Quality Evaluation of Herbal drugs

1

2

3

4

5

Page 9: Standardisation of herbal drg

Macroscopic study

• Visual inspection provides the simplest and quickest means by which to establish identity, purity and quality.

• Macroscopic identity of medicinal plant materials is based on shape, size, colour, surface characteristics, texture, fracture characteristics and appearance of the cut surface.

Page 10: Standardisation of herbal drg

Microscopic study

• Detail of cell structure and arrangement of the cells useful for differentiating similar species.

• Select a representative sample of the material & If it is dried parts of a plant than it may require softening before preparation for microscopy, preferably by being placed in a moist atmosphere, or by soaking in water.

• Any water-soluble contents can be removed from the cells by soaking in water. Starch grains can be gelatinized by heating in water.

Page 11: Standardisation of herbal drg

•Histochemical detection

• Starch grains • Aleurone grains • Fats, fatty oils, volatile oils and resins • Calcium oxalate/carbonate crystals• Lignified cell wall• Cellulose cell wall• Mucilage• Tannin

Page 12: Standardisation of herbal drg

•Measurement of specimen

• Stomatal number• Stomatal index• Palisade ratio• Vein-islet number• Vein termination number• Lycopodium spore method

Page 13: Standardisation of herbal drg

Foreign organic matter

• Parts of the medicinal plant material or materials other than those named with the limits specified for the plant material concerned;

• Any organism, part or product of an organism, other than that named in the specification and description of the plant material concerned;

• Mineral admixtures that is adhering to the medicinal plant materials, such as soil, stones, sand, and dust.

Foreign matter: NMT 2%w/w

Page 14: Standardisation of herbal drg

Ash value• It involves non-volatile inorganic components.

• High ash value is the indicative of contamination, substitution, adulteration or carelessness in preparing the crude drugs.

Page 15: Standardisation of herbal drg

Total ash• Total ash is designed to measure the total amount of material

produced after complete incineration of the drug material at as low temperature as possible (about 450°C) to remove all the carbons.

• Total ash usually consists of carbonates, phosphates, silicates and silica.

• IP and USP: 675±25°C• BP : 600±25°C• WHO: 500-600°C

Page 16: Standardisation of herbal drg

Acid insoluble ash • Ash insoluble in HCl is the residue obtained after

extracting the total ash with HCl. It gives idea about the earthy matter

• IP method: 25mL 2M HCL solution• USP method: 25mL 3N HCL solution• BP method: 15mLwater and 10mL HCL• WHO method: 25 ml of hydrochloric acid (~70g/l)

Page 17: Standardisation of herbal drg

Water soluble ash• Total ash content which is soluble in water. It’s good

indicator of presence of previous extraction of water soluble salts in the drug or incorrect preparation or amount of inorg. matter

• Carbonated ash: Ash is treated with ammonium carbonate.

• Nitrated ash: Ash is treated with dilute nitric acid.

Page 18: Standardisation of herbal drg

Extractive value

• Amount of the active constituents present in crude drug material when extracted with specific solvent.

• There are following Methods for determin- -nation of Extractive value.

a) Cold methodb) Hot methodc)Soxhlet method

Page 19: Standardisation of herbal drg

COLD EXTRACTION METHOD :

Page 20: Standardisation of herbal drg

• Volatile ether soluble extractive value:

Anhydrous ether- continuous extraction for 20hours

• Nonvolatile ether soluble extractive value:

Drugs having lipid content, fixed oils eg.Colocynth fruits : NMT 3% (Pulp-medicinal value)

• Water soluble extractive value

• Alcohol soluble extractive value: Solvent strength: 20-95% v/v

• Solvent Hexane soluble extractive value: Continuous extraction for 20 hours

eg.Phyllanthus amarus: NLT 3%

Page 21: Standardisation of herbal drg

Insoluble matter:

• Presence of woody matter or vegetable debris or pieces of bark materials.

• Eg. In catechuWater insoluble matter: NMT 33%Alcohol insoluble matter: NMT 30%

Page 22: Standardisation of herbal drg

Total solid content

• The residue obtained when prescribed amount of preparation is dried to constant weight under the specified condition

(Residue on evaporation)

• Powdered extract: NLT 95%

• Semisolid extract: NLT 70%

Page 23: Standardisation of herbal drg

Water Content

• Loss on drying (Gravimetric determination)

• Volumetric Azeotropic distillation (toluene distillation) method

• Titrimetric Karl fisher method

• Gas chromatographic method

Page 24: Standardisation of herbal drg

Volatile oil content

• Volatile oils are the liquid components of the plant cells, immiscible with water, volatile at ordinary temperature and can be steam distilled at ordinary pressure

• Many herbal drugs contain volatile oil which is used as flavourig agent.

• E.g. Clove: NLT 15%v/w

Page 25: Standardisation of herbal drg

Bitterness value

• Medicinal plant materials that have a strong bitter taste ("bitters") are employed therapeutically, mostly as appetizing agents. Their bitterness stimulates secretions in the gastrointestinal tract, especially of gastric juice.

• The bitter properties of plant material are determined by comparing the threshold bitter concentration of an extract of the materials with that of a dilute solution of quinine hydrochloride.

• The bitterness value is expressed in units equivalent to the bitterness of a solution containing 1g of quinine hydrochloride R in 2000 ml.

Page 26: Standardisation of herbal drg

• Bitterness value calculated in units per g using the following formula:

Where,a= the concentration of the stock test solution (ST) (mg/ml), b = the volume of test solution ST (in ml) in the tube with the threshold bitter concentration, c = the volume of quinine hydrochloride R (in mg) in the tube with the threshold bitter concentration.

Page 27: Standardisation of herbal drg

Haemolytic activity

• Many medicinal plant materials, of the families Caryophyllaceae, Araliaceae, Sapindaceae, Primulaceae, and Dioscoreaceae contain saponins.

• The most characteristic property of saponins is their ability to cause haemolysis; when added to a suspension of blood, saponins produce changes in erythrocyte membranes, causing haemoglobin to diffuse into the surrounding medium.

• The haemolytic activity of plant materials, or a preparation containing saponins, is determined by comparison with that of a reference material, saponin R, which has a haemolytic activity of 1000 units per g.

Page 28: Standardisation of herbal drg

Serial dilution for the preliminary test

Page 29: Standardisation of herbal drg

• Calculate the haemolytic activity of the medicinal plant material using the following formula:

1000 ×a/b

Where,1000 = the defined haemolytic activity of saponin R in relation to ox

blood, a = quantity of saponin R that produces total haemolysis (g)b = quantity of plant material that produces total haemolysis (g)

Page 30: Standardisation of herbal drg

Determination of tannins • Tannins (or tanning substances) are

substances capable of turning animal hides into leather by binding proteins to form water-insoluble substances that are resistant to proteolytic enzymes.

• This process, when applied to living tissue, is known as an "astringent" action and is

the reason for the therapeutic application of tannins.

• Chemically, tannins are complex substances; usually occur as mixtures of polyphenols that are difficult to separate and crystallize.

Page 31: Standardisation of herbal drg

• Calculate the quantity of tannins as a percentage using the following formula:

where w = the weight of the plant material in grams T1= Weight of material extracted in water T2= Weight of material not bound to hide powder T0= Weight of hide powder material soluble in water

Page 32: Standardisation of herbal drg

Determination of swelling index

• The swelling index is the volume in ml taken up by the swelling of 1 g of plant material under specified conditions.

• Its determination is based on the addition of water or a swelling agent as specified in the test procedure for each individual plant material (either whole, cut or pulverized).

Page 33: Standardisation of herbal drg

Determination of foaming index

• Many medicinal plant materials contain saponins that can cause a persistent foam when an aqueous decoction is shaken.

• The foaming ability of an aqueous decoction of plant materials and their extracts is measured in terms of a foaming index. Calculate the foaming index using the following formula:

where a = the volume in ml of the decoction used for preparing the dilution in the tube where foaming to a height of 1 cm is observed.

foaming index =

Page 34: Standardisation of herbal drg

Determination of pesticide residues

• Not more than 1%• An ARL (in mg of pesticide per kg of plant material) can be

calculated on the basis of the maximum acceptable daily intake of the pesticide for humans (ADI), as, recommended WHO, and the mean daily intake (MDI) of the medicinal plant material.

ADI = maximum acceptable daily intake of pesticide (mg/kg of body weight); E = extraction factor, which determines the transition rate of the pesticide from the plant material into the dosage form; MDI = mean daily intake of medicinal plant product.

Page 35: Standardisation of herbal drg

Some example of Pesticides :• Chlorinated hydrocarbons and related pesticides: BHC, DDT

• Chlorinated phenoxyalkanoic acid herbicides: 2,4-D; 2,4,5-T

• Organophosphorus pesticides: malathion, methyl parathion, parathion

• Carbamate insecticides: carbaryl (carbaril)

• Dithiocarbamate fungicides: ferbam, maneb, nabam, thiram, zineb

• Inorganic pesticides: calcium arsenate, lead arsenate

• Miscellaneous: ethylene dibromide, ethylene oxide, methyl bromide

• Pesticides of plant origin: tobacco leaf and nicotine; pyrethrum flower, pyrethrum extract and pyrethroids; derris root and rotenoids.

Page 36: Standardisation of herbal drg

Determination of arsenic and heavy metals

• Contamination of medicinal plant materials with arsenic and heavy metals can be attributed to many causes including environmental pollution and traces of pesticides.

• Limit test for arsenic • Limit test for cadmium and lead

• The contents of lead and cadmium may be determined by inverse voltametry or by atomic emission spectrophotometry.

• The following maximum amounts in dried plant materials, which are based on the ADI values, are proposed: ▫ lead, 10 mg/kg; ▫cadmium, 0.3 mg/kg.

Page 37: Standardisation of herbal drg

Determination of microorganisms

Test strains and culture media for use in validating the tests for specific microorganisms

Page 38: Standardisation of herbal drg

Table 1. Limits for microbial contaminants in finished products & Raw materials

Page 39: Standardisation of herbal drg

Aflatoxins Content

• Aflatoxins are naturally occuring mycotoxins produced mainly by Aspergillus flavus and Aspergillus parasiticus.

• The presence of aflatoxins can be determined by chromatographic methods using standard aflatoxins B1, B2, G1, G2 mixtures.

• IP method: NMT 2 µg/kg of aflatoxins B1& Total aflatoxins 4 µg/kg • USP method: NMT 5ppb of aflatoxins B1& Total aflatoxins 20ppb

Page 40: Standardisation of herbal drg

Radioactive contamination • The range of radionuclides that may be released into the

environment as the result of a nuclear accident might include long-lived and short-lived fission products, actinides, and activation products.

• Microbial growth in herbals is usually avoided by irradiation. This process may sterilize the plant material but the radioactivity hazard should be taken into account.

• The nature and the intensity of radionuclides released may differ markedly and depend on the source (reactor, reprocessing plant, fuel fabrication plant, isotope production unit, etc.).

• The radioactivity of the plant samples should be checked accordingly to the guidelines of International Atomic EnergyAgency(IAEA) in Vienna, Australia.

Page 41: Standardisation of herbal drg

CHROMATOGRAPHY OF HERBAL DRUG

• Seperation, identification, impurity detection and assay of herbal drug in the formulation or in the extract are carried out by following methods :-

a)TLCb)HPTLCc)HPLC/Densitometric

chromatographyd)GLC

Page 42: Standardisation of herbal drg

a) T.L.C. Finger-print profile of Methanolic extract of Coscinium fenestratum

Dectetion :(a) Under UV 366nm (b) Under UV 254 nm. (c) Under visible light after

Page 43: Standardisation of herbal drg

b) Comparative HPTLC profile of Berberine in different market samples

Page 44: Standardisation of herbal drg

c) Densitometric scan of different samples of Berberis spp. at UV 266 nm

Page 45: Standardisation of herbal drg

ANALYTICAL SPECIFICATIONS OF VATI/GUTIKA (TABLET/PILLS)

1. Description Colour Odour2. Weight variation3. Disintegration time -Not more than 15 min4. Identification TLC/HPTLC/GLC5. Assay6. Test for heavy/Toxic metals Lead Cadmium Mercury Arsenic

7. Microbial contamination Total bacterial count Total fungal count8. Test for specific Pathogen E. coli Salmonella spp. S.aureus Pseudomonas aeruginosa9. Pesticide residue Organochlorine pesticides Organophosphorus pesticides Pyrethroids11 Test for Aflatoxins (B1,B2,G1,G2)

Page 46: Standardisation of herbal drg

ANALYTICAL SPECIFICATIONS OF SYRUP (LIQUID ORAL)

1. Description, Colour2. Odour3. Total – ash4. Acid – insoluble ash5. Water-soluble extractive6. Alcohol – soluble extractive7. PH8. Total sugar content9. Viscosity10. Identification TLC/HPTLC/HPLC11. Test for heavy metals Lead Cadmium Mercury Arsenic

12. Microbial contamination Total bacterial count Total fungal count13. Test for specific Pathogen E. coli Salmonella spp. S.aureus Pseudomonas aeruginosa14. Pesticide residue Organochlorine pesticides Organophosphorus pesticides Pyrethroids

Page 47: Standardisation of herbal drg

ANALYTICAL SPECIFICATIONS OF ASAVA AND ARISHTA

(FERMENTED LIQUIDS)

1. Specific gravity at 250 C.

2. Alcohol content Test for methanol.

3. Total acidity.

4. Non reducing and reducing sugar.

Other specifications same as oral liquids.

Page 48: Standardisation of herbal drg

ANALYTICAL SPECIFICATIONS OF CURNA/CHOORNAM

(FINE POWDER)/KVATHA CURNA(COARSE POWDER FOR DECOCTION)

1. Loss on drying at 105 ºC

2. Particle size (80-100 mesh for Churna; 40-60 mesh for Kvatha churna)

Other specifications are same as vati/gutika.

Page 49: Standardisation of herbal drg

Parameter & its specifications

1.Microbial contamination

Total Bacterial count - 1 x 105 5

CFU/gm Yeast & Mould - 1 x 103 CFU/gm E. coli - Absent Salmonella - Absent P. Aeruginosa - Absent S. Aureus - Absent

2. Pesticide Residue – Less than 1 ppm

ACCEPTABLE LIMITS FOR PRODUCTS

3. Heavy metals Lead - 10 ppm Mercury - 01 ppm Arsenic - 03 ppm Cadmium - 0.3 ppm

4. Aflatoxin B1 - 0.5 ppm G1 - 0.5 ppm B2 - 0.1 ppm G2 - 0.1 ppm

Page 50: Standardisation of herbal drg

References1. Kokate C.K., Gokhale, S.B. 2001. Practical Pharmacognosy. 2nded. Nirali Prakashan, Pune, p. 14-19.

2. Mukherjee P.K. 2010. Quality control of herbal drugs. 4 th ed. Business Horizones, New Delhi, P. 184-219.

3. Ansari S.H. 2006. Essentials of Pharmacognosy. 1st ed. Birla Publications, New Delhi, p. 581-596.

4. http://www.ncbi.nlm.nih.gov/pubmed/18396809.

5. WHO guidelines ISBN 978 92 4 1547 16 1.

6. Anonymous, 2010. Indian Pharmacopoeia. Vol.-3, Government of India, Ministry of Health and Family Welfare, New Delhi p. 2467-2472.

Page 51: Standardisation of herbal drg