Top Banner
JRC REFERENCE REPORTS Smart Grid projects in Europe: lessons learned and current developments Vincenzo Giordano, Flavia Gangale, Gianluca Fulli (JRC-IE) Manuel Sánchez Jiménez (DG ENER) Other JRC-IE contributors: Ijeoma Onyeji, Alexandru Colta, Ioulia Papaioannou, Anna Mengolini, Corina Alecu, Tauno Ojala, Isabella Maschio EUR 24856 EN Institute for Energy
118

Smart Grid Projects in Europe: Lessons Learned and Current

Feb 10, 2022

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Smart Grid Projects in Europe: Lessons Learned and Current

J R C R E F E R E N C E R E P O R T S

Smart Grid projects in Europe: lessons learned and current developments

Vincenzo Giordano, Flavia Gangale, Gianluca Fulli (JRC-IE)Manuel Sánchez Jiménez (DG ENER)

Other JRC-IE contributors: Ijeoma Onyeji, Alexandru Colta, Ioulia Papaioannou, Anna Mengolini,

Corina Alecu, Tauno Ojala, Isabella Maschio

EUR 24856 ENInstitute for Energy

Page 2: Smart Grid Projects in Europe: Lessons Learned and Current

The mission of the JRC-IE is to provide support to Community policies related to both nuclear and non-nuclear energy in order to ensure sustainable, secure and efficient energy production, distribution and use.

European CommissionJoint Research CentreInstitute for Energy

Contact informationGianluca Fulli EC, DG JRC, Institute for EnergyPO Box 2, NL-1755 ZG Petten, The [email protected]

http://ie.jrc.ec.europa.eu/http://www.jrc.ec.europa.eu/

This publication is a Reference Report by the Joint Research Centreof the European Commission.

The Smart Electricity Systems (SES) Action of the Energy Security Unit performs independent scientific research and acts as in-house scientific consultant for EU policy-making actors with particular focus on the on-going transformations of smart electricity systems. The SES Action also develops dedicated power system models and hardware / software simulation tools, as well as an energy security Geographic Information System for EU energy infrastructures. For more information on this report and our activities visit: http://ses.jrc.ec.europa.eu or scan this QR (Quick Response) code using a QR reader app on your phone (no typing required)

Legal NoticeNeither the European Commission nor any person acting on behalf of the Commissionis responsible for the use which might be made of this publication.

The use of trademarks in this publication does not constitute an endorsement by the European Commission.

The views expressed in this publication are the sole responsibility of the author(s) and do not necessarily reflect the views of the European Commission.

Europe Direct is a service to help you find answers to your questions about the European Union

Freephone number (*): 00 800 6 7 8 9 10 11

(*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed.

A great deal of additional information on the European Union is available on the Internet.It can be accessed through the Europa server http://europa.eu/.

JRC 65215 EUR 24856 ENISBN 978-92-79-20487-6ISSN 1831-9424 doi:10.2790/32946

Luxembourg: Publications Office of the European Union

© European Union, 2011

Reproduction is authorised provided the source is acknowledged.

Printed in The Netherlands

Page 3: Smart Grid Projects in Europe: Lessons Learned and Current

3

JRC Reference Report

Contents

acKnoWledGementS

eXecutive SummarY

1 introduction

1.1 Definitions and Assumptions 1.1.1 Aim of the study 1.1.2 Boundaries of the Smart Grid catalogue

1.2 Data collection template1.2.1 Qualitative assessment1.2.2 Quantitative assessment

1.3 Reliability and completeness of data

1.4 Overview of Smart Grid landscape in Europe and beyond�

2 inventorY oF collected projectS – in WHicH direction iS europe movinG in tHe

Field oF Smart GridS?

2.1 Projects and budget distribution across countries and project categories

2.2 Project maturity and scale

2.3 Insight into some final applications and their level of maturity

2.4 Who is investing?

3 BuildinG tHe Smart Grid SYStem

3.1 System integration – Smart Grid as a market platform3.1.1 Business models for a transactive grid 3.1.2 Case studies

3.2 What is in it for consumers?

6

7

10

101011

111112

12

13

16

16

21

25

29

35

353838

44

Page 4: Smart Grid Projects in Europe: Lessons Learned and Current

4 Smart Grid contriBution to policY GoalS

4.1.Sustainability4.1.1 Reduction of CO

2 emissions

4.1.2 Integration of DER

4.2 Competitiveness - Open and efficient market4.2.1 Increased market participation through aggregation4.2.2 Interregional markets

4.3 Security and quality of supply

4.4 Activated Smart Grid services and benefits

5 analYSiS oF data protection and SecuritY iSSueS

5.1 Customer security

5.2 A greater number of intelligent devices

5.3 The problem of physical security

5.4 The use of IP and commercial off-the-shelf hardware and software

5.5 More stakeholders�

6 SummarY and Future StepS

6.1 Summary

6.2 Future work

48

484849

505052

53

54

56

57

57

58

58

58

59

59

61

Page 5: Smart Grid Projects in Europe: Lessons Learned and Current

5

JRC Reference Report

reFerenceS

aBBreviationS and acronYmS

countrY codeS

anneX i - data collection template

anneX ii – Smart Grid ServiceS(Smart Grid taSK Force)

anneX iii - Smart Grid BeneFitS and KpiS (Smart Grid taSK Force)

anneX iv - project cataloGue

63

69

69

70

74

76

80

Page 6: Smart Grid Projects in Europe: Lessons Learned and Current

6

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

acKnoWledGementS

We� would� like� to� thank� Marcelo� Masera� (JRC-IE),�Patrick� Van� Hove� (DGRTD),� Patricia� Arsene� (DG�INFSO),� Michal� Spiechowicz� (DGENTR),� Daniel�Hanekuyk�(DGENTR)�and�Steven�Eisenreich�(JRC)�for�their�comments�and�suggestions�regarding�this�re-port.�We�would�also�like�to�express�our�gratitude�to�Ivan�Pearson�(JRC-IE),�Peter�Zeniewski�(JRC-IE)�and�Angelo�L’Abbate�(RSE)�for�scrutinising�the�text.�Our�thanks�also�go�to�all�the�stakeholders�of�the�Smart�Grid� Task� Force,� the� European� Electricity� Grid� Ini-tiative�and�the�Florence�Regulatory�Forum�for�Elec-tricity�who� commented�on�and�provided� feedback�contributing� to� the� improvement� of� intermediate�versions�of�this�report.

Page 7: Smart Grid Projects in Europe: Lessons Learned and Current

7

JRC Reference Report

eXecutive SummarY

Introduction

Meeting�the�EU’s�climate�change�and�energy�policy�objectives�for�2020�and�beyond�will�require�a�major�transformation� of� our� electricity� infrastructure.�Strengthening� and� upgrading� existing� networks�is� of� paramount� importance� to� integrating� an�increasing�amount�of�renewable�energy�generation,�enhancing� grid� security,� developing� the� internal�energy� market� and� realising� energy� saving� and�efficiency.� To� achieve� these� goals� it� is� not� only�necessary� to�build�new� lines�and�substations,�but�it�is�essential�to�make�the�overall�electricity�system�smarter�through�the�integration�of�Information�and�Communication�Technologies�(ICT).�

Smart�Grids�can�be�described�as�an�upgraded�elec-tricity� network� enabling� two-way� information� and�power� exchange� between� suppliers� and� consum-ers,�thanks�to�the�pervasive�incorporation�of�intel-ligent�communication�monitoring�and�management�systems.�For�Smart�Grids�to�deliver�their�envisaged�benefits�however,�the�realisation�of�physical�infra-structures�alone�will�not�be�sufficient�and�must�be�complemented�by�the�emergence�of�new�business�models�and�practices,�new�regulations,�as�well�as�more�intangible�elements�such�as�changes�to�con-sumer�behaviour�and�social�acceptance.�Many�dif-ferent�stakeholders�are�involved�in�this�process�and�different�forms�of�cooperation�are�already�arising.

In� the� last� few� years,� initiatives� on� Smart� Grids,�with�different�aims�and�results,�have�been�growing�in�number�and�scope�throughout�Europe.�Substan-tial�public�and�private�investments�have�been�made�in�research�and�development�(R&D),�demonstration�and�deployment�activities.�At�this�stage,�there�is�a�clear� need� to� survey� the� implemented� projects� in�order� to�monitor� the�direction�Europe� is� taking,� to�benchmark� investments,� and� to� tackle� challenges�and�possible�distortions�from�an�early�stage.�Shar-ing�the�results�of�these�projects�can�also�contribute�in�increasing�the�stock�of�knowledge�and�accelerate�the�innovation�process.

In� this� perspective,� the�main� goal� of� this� study� is�to�prepare�a�comprehensive�inventory�of�Smart�Grid�projects�in�Europe�and�use�project�data�to�support�the� analysis� of� trends� and� developments.� The� re-port� looks�into�several�aspects�of�the�Smart�Grids�landscape� to�describe� the�state�of� the�art�of� their�implementation,�the�emerging�hallmarks�of�the�new�electricity� system�and� some� foreseeable�develop-ments.�

This�report�results�from�a�request�from�Directorate-General�for�Energy�(DG�ENER)�to�start�a�data�collec-tion� effort� to� develop� a� catalogue� of� Smart� Grids�projects� in� Europe� and� to� carry� out� a� qualitative�analysis� of� their� results.� The� analysis� we� carried�out�contributed� to� the�drafting�of� the�Commission�Communication� “Smart� Grids:� from� innovation� to�deployment”,�adopted�in�April�2011�[24].��

This�survey�of�Smart�Grid�projects�in�Europe�brings�together�input�and�feedback�from�a�variety�of�stake-holders� through� a� cooperative� and� transparent�process.�The�interim�version�of�this�study�has�been�presented�on�many�occasions�at�expert�meetings,�including� the� EU� Task� Force� on� Smart� Grids1� and�the�European�Electricity�Grid�Initiative2.�Their�com-ments�and�observations�have�been�carefully�taken�into�consideration�and,�where�possible,�integrated�into�the�analysis.�

This�work� is� intended�to�be�the� first�of�a�series�of�snapshots�that�the�JRC�will�periodically�prepare�on�the� development� status� of� Smart� Grids� in� Europe�to� offer� a� basis� for� discussion� among� Smart� Grid�stakeholders�and�promote�the�sharing�of�knowledge,�experiences�and�best�practices.

Methodology

To� ensure� that� all� projects� could� be� compared� on�a� fair�basis�and� to�support�subsequent�analysis,�a�data�collection�format�was�distributed�to�hundreds�of�stakeholders�at�the�end�of�November�2010.�Within�five� months,� more� than� 300� project� respondents�replied� to� our� survey.� The� responses� were� then�passed� through� a� filtering� process� to� screen� out�projects,� which� did� not� fall� into� the� scope� of� our�study�or�that�did�not�provide�enough�information�for�the�analysis.�Presently,�the�final�catalogue�includes�219�projects�and�represents�the�most�updated�and�comprehensive� inventory�of�Smart�Grid�projects� in�Europe�to�date.

1� http://ec.europa.eu/energy/gas_electricity/smartgrids/taskforce_en.htm

2� http://setis.ec.europa.eu/activities/implementationplans/Grid_EII_Implementation_plan_final.pdf/view

Page 8: Smart Grid Projects in Europe: Lessons Learned and Current

8

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Data� collected� from� the� project� respondents� were�double-checked� to� ensure� their� consistency.� All�projects’� web� sites,� where� in� place,� and� the� web�site� of� the� leading� organisation�were� examined� to�support� the� information� we� received.� In� the� case�of� discrepancies� or� of� missing� data,� the� leading�organisation� was� contacted� either� via� email� or�telephone.�

This�data�collection�and�analysis�was�complemented�by� a� further� investigation� of� a� restricted� number�of� projects� (around� 30),� shortlisted� in� such� a�way�as� to� ensure� a� fair� representation� of� different�project� sizes,� categories,� development� stages� and�geographical�areas.�The�availability�of�data�was�also�a�main�criterion�for� their�selection.�The�aim�of� this�further�analysis�was�to�get�a�closer�insight�into�the�projects�in�order�to�highlight�the�main�opportunities�and� obstacles� in� the� development� of� Smart�Grids.�To�carry�out� this�analysis,�we�have� interacted�with�project� coordinators,� retrieved� information� from�project�websites�and�gone�through�related�reports,�papers�and�presentations.

Key messages

The� analysis� of� the� collected� projects� highlighted�several�key�observations�and�learning�points.�

Project� investments� and� scale�The� total� budget� of�the�collected�projects� (over�€5�billion)�shows� that�significant� efforts� have� already� been� undertaken,�but� that�we�are� just�at� the�beginning�of� the�Smart�Grid�transition.�To�put�the�investments�in�our�cata-logue�into�context,�conservative�estimates�quantify�Smart�Grid�investments�by�2020�[47]�at�€56�billion.

Deployment�projects�(mainly�smart�meter�roll-outs)�cover�the�lion’s�share�of�investment�commitments-�about�56%�of�the�total-�while�R&D�and�demonstra-tion� projects� account� for� a�much� smaller� share� of�the� total� budget.� Most� R&D� and� demonstration�projects� are� small� to� medium� size� (€4.4� million�for�R&D�projects�and�about�€12�million�for�demon-stration�projects),�suggesting�the�need�to�invest�in�larger�scale�demonstration�projects�to�gain�a�better�knowledge�of�the�functioning�and�impacts�of�some�innovative� solutions� and� to� validate� results� to� a�broader�extent.

Geographical� distribution� Smart� Grid� projects� are�not� uniformly� distributed� across� Europe.� Most� of�the� projects� and� investments� are� located� in� EU15�countries,�while� EU12�Member� States� still� lag� be-hind.� The� uneven� distribution� of� projects� and� the�different�pace,�at�which�Smart�Grids�are�being�de-ployed�across�Europe,�could�make�trade�and�coop-eration�across�national�borders�more�difficult� and�jeopardize�the�timely�achievement�of�the�EU�energy�policy�goals.�

Multidisciplinary� cooperation� The� increased� com-plexity� of� the� electricity� system� requires�multidis-ciplinary� consortia� to� share� competencies� and� re-duce� risks.� Collected� projects� highlight� the� trend�towards� a� fruitful� cooperation� between� different�organisations,� which� brings� together� network� op-erators,� academia,� research� centres,� manufactur-ers�and�IT�companies.�The�implementation�of�Smart�Grids�is�also�a�significant�opportunity�for�European�industry� to� research,�market�and�export�new�tech-nologies,�to�create�new�jobs�and�to�maintain�global�technological�leadership.

System� integration� Most� Smart� Grid� benefits� are�systemic� in� nature� as� they� arise� from� the� combin-ation� of� technological,� regulatory,� economic� and�behavioural� changes.� The� survey� indicates� that� in�almost�all�countries,�a�significant�amount�of�invest-ments�has�been�devoted�to�projects,�which�address�the�integration�of�different�Smart�Grid�technologies�and�applications.�Most�technologies�are�known,�but�the�new�challenge�that�these�projects�are�now�con-fronting�is�their�integration.�

Role� of� regulation� Data� in� the� catalogue� confirm�the� leading� role� that� Distribution� System�Opera-tors� (DSOs)� play� in� coordinating� Smart� Grid� de-ployment� across� Europe.� DSO-led� projects� rep-resent� about� 27%� of� all� projects� and� about� 67%�of� investment.� Current� regulation� in� EU� Member�States�generally�provides�network�owners/opera-tors�with� the� incentive� to� improve�cost�efficiency�by� reducing� operation� costs� rather� than� by� up-grading�grids�towards�a�smarter�system.�The�regu-latory�incentive�model�should�be�revised�in�order�to�accelerate�the�investment�potential�of�network�owners/operators�and�to�encourage�them�to�move�to�a�more�service-based�business�model.�Regula-tion�should�also�ensure�a�fair�sharing�of�costs�and�benefits� in� the� set-up� of� service-based� market�platforms.�Network�owners/operators�are�expect-ed�to�sustain�the�majority�of�upfront�investments�whereas�several�players�might�get�benefits�when�market�platforms�become�operational.�

Page 9: Smart Grid Projects in Europe: Lessons Learned and Current

9

JRC Reference Report

Consumer�awareness�and�participation�Consumers’�awareness�and�participation� is� crucial� for� the� suc-cess�of�Smart�Grid�projects.�Most�projects�highlight�the�need� to� involve�consumers�at� the�early� stages�of�project�development,�to�give�consumers�the�free-dom� to� choose� their� level� of� involvement� and� to�ensure�data�privacy�and�protection.�It�is�imperative�to�ensure�that�consumers�have�trust� in�and�under-standing� of� the�whole� Smart� Grid� process� and� re-ceive� clear� tangible� benefits.� To� differing� extents,�consumers�will�be�able�to�reap�numerous�potential�benefits:�energy�savings,�the�reduction�of�outages,�more� transparent�and� frequent�billing� information,�participation� in� the�electricity�market� via� aggrega-tors,�and�a�better�business�case�for�the�purchase�of�electric�vehicles,�heat�pumps�and�smart�appliances.�

Contribution� to� energy� policy� goals� The� results� of�collected�projects�illustrate�the�numerous�contribu-tions�that�Smart�Grids�can�make�to�the�achievement�of�EU�energy�policy�goals.�A�Smart�Grid�can�contrib-ute�to�sustainability�by�facilitating�the�reduction�of�CO2� emissions,� enabling� the� integration� of� large-scale�renewables�and�increasing�energy�efficiency�in�the�power� sector.� It� supports� competitiveness�and�open� and� efficient� markets� by� increasing� market�participation�through�the�aggregation�of�distributed�prosumers�(consumers�also�able�to�produce�power)�and�through�the�strengthening�of�interregional�mar-kets.�It�contributes�to�security�and�quality�of�supply�by�integrating�technologies/mechanisms�to�balance�flexible�generation�and�by�increasing�the�observabil-ity�and�controllability�of�the�grid�in�order�to�reduce�outage�times.�All�these�potential�benefits�need�to�be�monitored�and�verified�to�adjust�the�framework�for�better�results.�

The� role�of� ICT�An�open�and� secure� ICT� infrastruc-ture�is�at�the�core�of�the�successful�implementation�of�the�Smart�Grid.�Addressing�interoperability,�data�privacy� and� security� is� a� priority� requirement� for�making�the�ICT�infrastructure�truly�open�and�secure�and� reducing� transaction� costs� among� Smart� Grid�users.� A� scan� of� collected� projects� highlights� the�convergence� towards�proven�standards�and� indus-try�best�practices�used�for�IT�systems�(e.g.�Internet�Protocol� communication).� However� further� coord-inated� efforts� are� needed� to� fully� tap� European�potential� in� this� field�and�move�to� the�deployment�phase.�Standardization�developments�are�a�step�in�the� right� direction.�Also,� new�projects� focusing�on�data�handling�would�be�useful�to�assess�how�data�handling� principles� from�other� industries� (e.g.� the�banking�industry)�could�be�applied�to�Smart�Grids.�

Data� collection� and� knowledge� sharing� Finally,� ef-fective�knowledge�sharing�and�the�dissemination�of�best�practices�among�Smart�Grid�stakeholders�are�crucial� for� the�success�of� the�European�Smart�Grid�programme.�The�difficulties�encountered�during�the�data� collection� process� of� this� study� suggest� the�need�for�improvements�in�data�collection/exchange,�such�as�through�a�common�structure�for�data�collec-tion�in�terms�of�definitions,�terminology,�categories,�and� benchmarks,� etc.� and� coordinated� project� re-positories�at�the�national�and�European�levels.�

Page 10: Smart Grid Projects in Europe: Lessons Learned and Current

10

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

�1 introduction

A� shift� in� energy� policy� goals� is� at� the� heart� of�current�transformations�in�the�electricity�sector.�The�smooth� integration� of� renewable� energy� sources,�a�more� efficient� and� secure� electricity� supply,� and�an� internal� energy� market� with� full� inclusion� of�consumers�are�key�priorities�for�the�European�Union�[21,�22,�23].

To� this� end,� it� is� necessary� to� strengthen� the�electricity� system� that� we� have� today� by� building�new�lines,�substations�and�power�plants.�In�parallel,�it� is�also�necessary� to�make� the�electricity� system�smarter� through� the� integration� of� ICT� solutions.�A� smart�electricity�grid� in�place�opens� the�door� to�new� applications� with� far� reaching� impacts:� the�adaptation�of�electricity�demand�to�grid�and�market�conditions,� automatic� grid� reconfiguration� to�prevent�or�restore�outages,�and�the�safe�integration�of�distributed�generators,�electric�vehicles�and�large�scale�renewables�[7,�19,�20,�55,�56,�62].�

Smart� Grids� are� electricity� networks� that� can�efficiently� integrate� the� behaviour� and� actions� of�all�users�connected�to�it�—�generators,�consumers�and� those� that� do� both� —� in� order� to� ensure� an�economically� efficient,� sustainable� power� system�with� low� losses� and� high� quality� and� security� of�supply�and�safety�[24].�In�this�perspective,�a�Smart�Grid� can� be� considered� as� a� Smart� Electricity�System,�which�encompasses�both�the�grid�and�the�users� connected� to� it,� and� includes�both� technical�and�non-technical�building�blocks.

Building� a� Smart� Grid� is� therefore� not� only� a�matter� of� modernisation� of� the� electricity� grid� or�of� deploying� physical� assets� and� technologies.�A� key� role� is� played� by� new� business� models�and� practices,� new� regulations,� as� well� as� more�intangible� elements� like� consumers’� behavioural�changes� and� social� acceptance� [29,� 57,� 58,� 59,].�Steering� this� transition� is�a�challenging,� long-term�task.�It�requires�coupling�a�policy-led�vision�with�a�market-driven�deployment,�balancing�energy�policy�goals�and�market�profitability.��

In� the� last� few� years,� initiatives� on� Smart� Grids�have�been�growing�in�number�and�scope�[37,�63].�A�variety�of�projects�have�been�deployed�throughout�Europe�with�different�aims�and�results.�Substantial�public�and�private� investments�have�been�made� in�research� and� development� (R&D),� demonstration�and� deployment� activities.� At� this� stage,� there�is� a� need� to� evaluate� the� outcome� of� Smart� Grid�projects� in� order� to� monitor� the� direction� Europe�is�taking,�to�benchmark�investments,�and�to�tackle�

challenges� and� possible� distortions� from� an� early�stage.�Particularly,� there� is� the�need� to�unlock� the�investment�potential�of�the�market.�A�clear�business�case�for�investment�is�presently�among�the�biggest�challenges�in�Smart�Grid�implementation.�

Following�a�request�from�DG�ENER,�the�Joint�Research�Centre�Institute�for�Energy�started�a�data�collection�to� assemble� a� catalogue� of� Smart� Grids� projects�in�Europe�and�to�carry�out�a�qualitative�analysis�of�project�results.�In�this�study,�building�on�the�work�of�the�European�Smart�Grid�Task�Force�[18,�19,�20],�we�have� collected� and� analyzed� around� 300� projects.�On�the�basis�of�feedbacks�from�the�field,�this�report�addresses�the�following�specific�questions:

In�which�direction�is�Europe�moving�in�the�•�field� of� Smart� Grids?� Who� is� investing?�What�are�the�motivations?

How� can� system� integration� create� busi-•�ness�value?�What�is�in�it�for�consumers?

How�do�Smart�Grid� projects� contribute� to�•�the�EU’s�main�policy�goals?�

1.1 Definitions and Assumptions

1.1.1 Aim of the study

The�aim�of� this� study� is� to� collect� lessons� learned�and� assess� current� developments� on� Smart� Grids�in�Europe.�In�order�to�support�our�analysis,�we�will�use� data� and� information� collected� from� Smart�Grid� projects� throughout� Europe.� To� the� best� of�our� knowledge,� the� collected� Smart� Grid� projects�represent� the� most� comprehensive� and� up-to-date�inventory�in�Europe�at�present.�An�exhaustive�mapping� of� Smart� Grid� projects� in� the� different�Member� States� is� not� the� primary� scope� of� this�report.� Rather,� this� is� an� ongoing� task.� Further�collected� projects� will� be� included� in� subsequent�updates�of�this�study.

Page 11: Smart Grid Projects in Europe: Lessons Learned and Current

11

JRC Reference Report

1.1.2 Boundaries of the Smart Grid catalogue

In� line�with� the�definition�of� Smart�Grids� reported�above,�we�have�followed�three�main�screening�rules�in�assembling�our�catalogue:

1.� We�have�included�projects�focusing�on�individual�new�energy�technologies�and�resources�(e.g.�new�storage� devices,� Electric� vehicles,� distributed�renewable�generators),�only�if�their�integration�in� the� grid� was� also� part� of� the� project.�

2.� We�have�included�projects�aiming�at�making�the�grid� smarter� (through� new� technologies� and�new�ICT�capabilities).�

3.� We� have� not� included� projects� aiming� at�making� the� grid� stronger� (e.g.� through� new�lines,� substations� and� power� plants)� using�conventional�design�approaches.

Around�80�projects�(out�of�the�300�we�have�received)�have�been�screened�out�from�the�catalogue�because�either� they�did�not�comply�with� the�screening�rules�or�because�insufficient�data�had�been�provided�to�be�fairly�evaluated.�At�this�stage,�these�projects�have�not�been�taken�into�consideration�in�the�analysis�but�they�will�be� included� in�an�update�of� this�study�as�soon�as�more�detailed�information�becomes�available.�The�final�catalogue�includes�219�projects�(see�ANNEX�IV).�

It� is� worth� stressing� that� projects� intended� to� re-inforce�the�transmission�grid,�as�much�as�they�are�crucial�to�modernizing�the�European�power�system�(see�e.g.� [13]),�have�not�been�included�in�our�cata-logue.� In� fact,� transmission� operators� are� mainly�and� heavily� investing� in� what� can� be� defined� as�strengthening�rather�than�smartening�the�transmis-sion�grid,�as� the� transmission�system� is�already�a�partly�smart�system�capable�of�managing�and�bal-ancing�the�resources�(currently)�connected�to�it.�

1.2 Data collection template

To� ensure� that� all� projects� could� be� compared� on�a� fair� basis� and� to� support� later� analysis,� a� data�collection� template� was� prepared� and� distributed�on� the� 5th� of� November� 2010.� The� template� had�to�be� returned�by� the�25th�of�November.�The�data�collection�exercise�was�originally�intended�to�collect�pilot�projects�but�was�then�extended�to�Smart�Grid�projects� across� the� innovation� chain� (from�R&D� to�demonstration/deployment),�by� further� interacting�with� national� contact� points,� project� coordinators�

and�other� relevant�stakeholders.� �Due� to� the� large�number�of� requests�by�project� coordinators� for� an�extension� of� the� deadline,� projects�were� accepted�through� March� 2011.� In� total,� more� than� 300�responses�were�received.

The�data�collection�template�has�been�structured�in�two�parts:�one� for�qualitative�assessment�and�one�for�quantitative�assessment�(see�ANNEX�I).

1.2.1 Qualitative assessment

The�qualitative�assessment�section�of�the�template�included� a� brief� description� of� the� project� and� a�summary�of�goals�and�outcomes.�Other�information�requested�included�the�location�and�duration�of�the�project,�the�budget,�the�participating�organisations�and� their� budget� share� and� the� EU� contribution�(where�applicable).

The�qualitative�assessment�section�of�the�template�also� included� a� specific� request� for� information�on�how� the�project�addressed�data�protection�and�security�issues.

In� addition,� we� have� asked� project� coordinators�to� classify� their� project� according� to� the� following�categories:�

1.� Smart� Meter� and� Advanced� Metering�Infrastructure

2.� Grid�Automation�Transmission

3.� Grid�Automation�Distribution

4.� Integrated�System�

5.� Home�application��Customer�Behaviour�

6.� Specific�Storage�Technology�Demonstration

7.� Other

Page 12: Smart Grid Projects in Europe: Lessons Learned and Current

12

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

This�classification�is�in�line�with�the�mapping�exercise�of� Smart� Grid� projects� that� is� currently� ongoing�in� the� US� (Virginia� Tech� Clearinghouse)3� and� is�intended�to�facilitate�international�sharing�of�Smart�Grid�experiences.�In�the�context�of�the�EUUS�council,�the�JRC�is�collaborating�with�the�US�Department�of�Energy� on� common� assessment� methodologies� of�Smart�Grids.

The� first� category� “Smart� Meter� and� Advanced�Metering� Infrastructure”� includes� projects� which�specifically� address� smart� meter� implementation.�The�second�and� third�categories�“Grid�Automation�Transmission”� and� “Grid� Automation� Distribution”�refer�to�projects�dealing�with�automation�upgrades�of�the�electricity�grid�(e.g.�feeder�automation,�wide�area� monitoring� etc.),� at� the� transmission� and�distribution�level�respectively.

The�fourth�category�“Integrated�System”�focuses�on�the�integration�of�different�Smart�Grid�technologies�and� applications� (e.g.� Smart� meter,� Demand�Response,� grid� automation,� distributed� storage,�renewables,�etc.).�

The� fifth� category� “Home� application� -� Customer�Behaviour”� includes� projects� which� address� new�applications�at�home�or�directly�involve�consumers.Finally,� the� sixth� category� “Specific� Storage�Technology�Demonstration”�includes�projects�which�address� the� potentialities� of� storage� technologies�both�new�and�more�conventional�ones�(e.g.�hydro,�chemical,�and�mechanical).

A�single�project�can�span�over�different�categories.�In� that� case,� project� coordinators� have� expressed�the� relevance� of� the� applicable� categories� with� a�number�between�0�and�1.

1.2.2 Quantitative assessment

The�quantitative�assessment�part�of�the�template�has�been�divided�in�three�sections.��

In� the� first� section,� we� have� asked� participants�who�had�already�performed�a�cost-benefit�analysis�to�share�their�results.�

The� second� section� provided� guidelines� for� the�collection� of� cost-benefit� quantitative� data� from�those�participants�who�had�not�performed�a�study�themselves.� The� respondents� have� been� asked� to�choose� among� the� list� of� benefits� and� KPIs� (Key�Performance� Indicators)�defined�by�the�Smart�Grid�Task�Force�(see�Annex�III).

In�the�third�section�project�coordinators�were�asked�to�fill�in�the�service/benefit�merit�deployment�matrix�developed�by�the�Smart�Grid�Task�Force�[20].�

1.3 Reliability and completeness of data

Data� collected� from� the� project� respondents� were�double-checked�to�ensure�their�consistency�through�different� means.� For� all� projects� we� checked� the�project� web� site� -� where� in� place� -� and� the� web�site�of� the� leading�organisation� to�corroborate� the�information�we�received.�In�case�of�discrepancies�or�in�case�the�template�was�not�clear�enough�we�also�contacted�the�leading�organisation�either�via�email�or�phone.�

For�the�most�relevant�information�there�seems�to�be�fairly� reliable�data.�The� level� of� reliability� of� some�data��particularly�those�concerning�the�budget,�the�project�duration�and� results� � is�higher� for�projects�which� have� already� been� completed:� 33%� of� the�projects� in� the� catalogue�were� completed�by�April�2011,� while� the� remaining� projects� have� different�closing�dates�spanning�up�to�2020.�34%�of�collected�projects�are�expected� to�be� completed�by� the�end�of�2012.�

The�catalogue�includes�a�relatively�small�number�of�projects�which�started�in�2011.�This�circumstance�is�strictly� related�to� the�deadline�set� for� filling� in� the�questionnaire�and�not�to�a�decrease�in�the�number�of�projects�over�time.�

Shortlisted�projects�The�data�collection�and�analysis�was� complemented�by� a� further� investigation� of� a�restricted�number�of�projects�(about�30),�shortlisted�in�a�way�to�ensure�a�fair�representation�of�different�project�size,�categories,�stages�of�development�and�geographical�areas.�The�availability�of�data�was�also�a�main�criterion�for� their�selection.�The�aim�of� this�further�analysis�was�to�get�a�closer�insight�into�the�projects�in�order�to�highlight�the�main�opportunities�and� obstacles� in� the� development� of� Smart�Grids.�This� supplementary� scrutiny� also� allowed� us� to�survey�and�to�compare�the�projects’�expected�results�and�their�contribution�to�the�EU�policy�goals.�To�carry�out�this�deeper�analysis�we�have�contacted�project�coordinators� either� via� phone� or� email,� retrieved�information�from�project�websites�and�gone�through�reports,�papers�and�presentations.

3�http://www.sgiclearinghouse.org/

Page 13: Smart Grid Projects in Europe: Lessons Learned and Current

13

JRC Reference Report

1.4 Overview of the Smart Grid landscape in Europe and beyond

Worldwide,�the�Smart�Grid�landscape�is�highly�dy-namic�and�rapidly�changing�with�emerging�econo-mies�as�major�players� in�Smart�Grid� investments.�The� information�presented� in� this�section�aims�at�giving�an�overview�of�the�main�estimates�of�overall�investments� in� the� electrical� system� and� a� snap-shot� of� the� investments� already� committed� for�Smart�Grid�development�(see�table�I).�Where�avail-able,�we�also�reported�the�plans�concerning�smart�meter�roll-outs.�

European�Union� A� recent� report� by� Pike� Research�[47]� forecasts� that� during� the� period� from�2010� to�2020,�cumulative�European�investment�in�Smart�Grid�technologies�will�reach�€56.5�billion,�with�transmis-sion�counting�for�37%�of�the�total�amount.�The�re-port�also�suggests�that�by�2020�almost�240�million�smart�meters�will�have�been�deployed�in�Europe.�

According�to�the�International�Energy�Agency�(IEA),�Europe� requires� investments� of� €1.5� trillion� over�2007-2030�to�renew�the�electrical�system�from�gen-eration� to� transmission� and� distribution� [30].� This�figure� includes� investments� for� Smart� Grid� imple-mentation� and� for�maintaining� and� expanding� the�current�electricity�system.

United�States��According�to�[16],�full�implementation�of�Smart�Grids� in�the�United�States�will� require� in-vestments�between�$338�and�$476�billion�over�the�next�20�years.�Costs�allocated�for�transmission�and�substations�are�between�19�and�24�%�of�total�costs,�while� costs� allocated� for� distribution� are� between�69� and� 71�%� and� costs� for� consumer� systems� are�between�7�and�10�%.�These�costs�are�in�addition�to�investments�needed�to�maintain�the�existing�system�and�meet�electric�load�growth.

According�to�[5],�$1.5�(€1.06)�trillion�is�necessary�to�update�the�grid�by�2030�(under�current�trends�and�policies)�of�which�$560�(€395)�billion�is�needed�for�new� and� replacement� generating� plants� and� $900�(€635)�billion�for�transmission�and�distribution�to-gether;� the� report� adds� that� benefits� from� Smart�Grids�could�amount�to�$227�(€160)�billion�over�the�next�40�years�[5].�

In�2009,�The�Recovery�Act�provided�additional�fund-ing� for�$4� (€2.8)�billion� in�cost-shared�Smart�Grid�projects.�In�total,�the�funding�will�enable�more�than�$7� (€4.9)� billion� worth� of� pilot� projects� deploy-ment.�At�the�end�of�2009,�the�number�of�Smart�Grid�projects� in�the�US�exceeded�130,�spread�across�44�States�and�two�territories�[42].

According�to�recent�estimates,�more�than�eight�mil-lion� smart� meters� have� been� deployed� by� United�States’�electric�utilities�with�60�million�expected�to�be�in�use�by�2020�[50].�

China� The� State� Grid� Corporation� of� China� (SGCC)�is�the�driving�force�behind�China’s�effort�to�build�a�nationwide�Smart�Grid.�SGCC�plans�to�invest�in�the�period�2009-2020�a�total�of�$601�(€423)�billion�into�a�nationwide�transmission�network�with�$101�(€71)�billion�of�these�funds�to�be�dedicated�to�developing�Smart�Grid� technology� [65].� In�2010�China�granted�Smart�Grid�Stimulus�investments�of�more�than�$7,3�(€5.1)�billion�[49].

Presently,� Chinese� Smart� Grid� efforts� are� focusing�on� the� creation� of� a� large� capacity� interconnected�transmission�backbone�to� transfer�bulk�power�and�to�accommodate�fast�growing�electricity�demand.�

The�distribution�grid�in�China�is�less�mature�than�in�most� developed� countries� and� the� penetration� of�small-scale� renewables� is� limited� at� the� moment.�However,� according� to� a� report� by� Innovation� Ob-servatory� [31],� China� is� set� to� roll-out� 360�million�smart� meters� by� 2030� and� is� investing� heavily� in�more�efficient�distribution�transformers.

South�Korea�The�South�Korean�Government�has�laid�out�plans�to�establish�a�national�Smart�Grid.�Accord-ing�to�[39],�South�Korea�plans�to�spend�$24�(€16.8)�billion� over� the� next� two� decades� on� Smart� Grids�to� make� electricity� distribution�more� efficient,� cut�greenhouse�gas�emissions�and�save�$26�(€18.2)�bil-lion�in�energy�imports.�In�2010�South�Korea�invested�$824�(€580)�million� in�stimulus�funding�for�Smart�Grids�[49].�

State-run�electricity�monopoly�Korea�Electric�Power�Corp�(KEPCO)�plans�to�install�500,000�smart�meters�in� 2010,� 750,000� in� 2011� and� complete� roll-out� by�2020�with�a�total�of�24�million�smart�meters�installed.�The�company�is�expected�to�cover�all�metering�costs�and�retrieve�them�through�regular�power�bills�[51].

Page 14: Smart Grid Projects in Europe: Lessons Learned and Current

14

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Australia�In�2010�Australia�invested�US$360�(€253)�million�in�stimulus�funding�for�Smart�Grids�[49].�Aus-tralian�utilities�have�a�mandate� for� the� installation�of�smart�meters.�Under� the�Smart�Grid,�Smart�City�initiative�the�Australian�Government�has�committed�AUS$74.6�(€52.5)�million�to�develop,�in�partnership�with�the�energy�sector,�a�Smart�Grid�demonstration�project� which� will� provide� cost-benefit� analysis� of�Smart�Grid�technology�[2].�The�State�of�Victoria�has�planned� a� State-wide� roll-out� of� 2.4�million� smart�meters�by�2013.�

India� According� to� the� Ministry� of� Power,� India’s�transmission� and� distribution� losses� are� among�the� highest� in� the� world,� averaging� 26%� of� total�electricity�production,�with�some�States�as�high�as�62%.�When�nontechnical�losses�such�as�energy�theft�are�included�in�the�total,�average�losses�are�as�high�as� 50%.� The� need� to� decrease� losses� and� energy�theft,�together�with�the�new�trend�towards�increasing�energy� efficiency� and� the� share� of� renewables� in�electricity� generation,� are� all� important� drivers� for�the� development� of� a� smarter� grid� [64].� A� recent�report� by� Innovation� Observatory� [31]� ranks� India�third� among� the� top� ten� countries� for� Smart� Grid�investment� and� reports� that� India� has� announced�massive�smart�meter�roll-out�projects�with�a�plan�for�more�than�130�million�smart�meters�by�2020.

Brazil�In�2010�Brazil�invested�$240�(€143.6)�million�in�stimulus�funding�for�Smart�Grids�[49].�While�Brazil�has�moved�slowly�to�set�guidelines�for�its�smart�meter�mandates,�it�could�see�some�mass�deployments�as�early�as�2012,�and�could�become�one�of�the�biggest�smart�meter�markets�of�the�world�by�the�second�half�of�the�decade.�Brazil�has�announced�massive�smart�meter�roll-out�projects�and�is�planning�to�replace�63�million�electricity�meters�with�smart�meters�by�2021.��As�one�of�the�first�South�American�countries�to�plan�nationwide�smart�metering,�Brazil�could�also�be�an�important� testing� ground� for� deployments� in� the�rest�of�the�continent.�As�with�emerging�economies,�such�as�India,�stopping�power�theft�and�fixing�too-frequent�power�outages�are�key�functions�that�Latin�American� utilities� want� out� of� their� smart� meter�networks.�

Japan�In�2010�Japan�invested�$849�(€143.6)�million�in�stimulus�funding�for�Smart�Grids�[49].�According�to� recent� news,� Japan� is� planning� to� increase�renewable�energy�sources�in�its�new�energy�plan�and�is� considering� the� use� of� Smart� Grid� technologies�in�establishing�a�new�energy�system� following� the�nuclear�crisis�of�Fukushima�[48].�

Page 15: Smart Grid Projects in Europe: Lessons Learned and Current

15

JRC Reference Report

Country / Region

Forecast Smart Grid investments (€/$)

Funding for Smart Grid development (€/$)

Number of smart meters deployed and/or planned

European Union

€56�billion�by�2020�[47]*���������������������������������������������������������������������������������������������

(estimated Smart Grid investments)

€184�million�(FP6�and�FP7�European�funding�for�projects�in�the�JRC�

catalogue)�������������������������������������������������������������������������������������������������������������������About�€200�million�from�European�Recovery�Fund,��

ERDF,�EERA.National�funding:�n/a

45�million�already�installed�(JRC�

catalogue,2011)��������������������������������������������������������������������������������240�million�by�2020�[47]

USA $338�(€238)��to�476�(€334)�billion�

by�2030��[16]���������������������������������������������������������������������������������(estimated investments

for implementation of fully functional

Smart Grid)

$7�(€4.9)��billion�in�2009�[49]

8�million�in�2011�[50]�����������������������������������������������������������������������������������������60�million�by�2020�[50]

China $101�(€71)�billion��[65]�����������������������������������������������������������������������������������������(Smart Grid technology

development)

$7.3�billion�in�2009�(€5.1)�[49]

360�million�by�2030�[31]

South Korea

$24�(€16.8)�billion��by�2030�[40]]�

(estimated�Smart�Grid�investments)

$824��(€580)�million�in�2009�[49]

500,000�in�2010,�750,000�in�2011�and�24�million�by�2020

Australia n/a

n/a

n/a

n/a n/a

n/a

$204�(€143.6)��million��in�2009�

[49]

63�million�by�2020�[31]

$360�(€253)��million�in�2009�[49]

2.4�million�by�2013��in�State�of�Victoria

India 130�million�by�2020�[31]

Brazil

Japan $849�(€143.6)�millions�in�2009�

[49]

*� Other�estimates�(http://setis.ec.europa.eu/newsroom-items-folder/electricity-grids,�June�2011),�referring�to�the�upgrade�of�

transmission�and�distribution�grids�(not�only�Smart�Grids)�forecast�a�required�investment�of�€500�billion�by�2030,�where�distri-bution�accounts�for�75%�and�transmission�for�25%.

Table I Smart Grid investments in Europe and beyond

Page 16: Smart Grid Projects in Europe: Lessons Learned and Current

16

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

2. inventorY oF collected projectS – in WHicH direction iS europe movinG in tHe Field oF Smart GridS?

The� main� goal� of� our� study� is� to� collect� a� wide�inventory� of� Smart� Grid� projects� in� Europe� and�use�project�data� to�support�analysis�of� trends�and�developments.�In�this�chapter�we�will�use�the�results�of� our� analysis� to� describe� what� is� happening� in�the� field� of� Smart� Grids� in� Europe� from� different�perspectives.� In� the� first�paragraph�we�will� look�at�the� projects� to� examine� their� distribution� across�countries� and� project� categories� and� survey� the�budget� allocated� by� each� country� to� Smart� Grid�development.� In� the� second� paragraph� we� will�have�a�closer�look�at�the�projects�to�determine�how�they� distribute� along� the� stages� of� the� innovation�process�and�how�this�distribution�has�changed�with�time.� In� the� third�paragraph�we�will�get�an� insight�on� selected� Smart� Grid� applications,� namely� the�integration� of� distributed� energy� resources� (DER),�Demand�Response�(DR)�and�the�safe�integration�of�large-scale� renewables� (RES).� We� will� survey� the�development� trend�of� these�applications�and� their�level�of�maturity.�Finally,�in�the�fourth�paragraph�we�will� focus�on� the�actors� involved� in� the� innovation�process�to�see�where�they�are�investing�and�why.�

2.1 Projects and budget distribution across countries and project categories

Geographical� distribution� of� projects� and�investments�Projects�are�not�uniformly�distributed�across�Europe.�The�majority�of�them�are�located�in�EU15�Member�States,�while�most�of� the�EU12� still�lag�behind.�Figure�1�shows�the�location�of�projects�and�their�distribution�between�the�EU15�and�EU12.�For� demonstration� and� deployment� projects,� the�project� was� assigned� to� the� country� where� the�demonstration� or� roll-out� actually� took� place,�while�in�the�case�of�R&D�projects,�the�project�was�counted� towards� all� the� participating� countries.�Most� of� the� projects� are� concentrated� in� a� few�countries;� Denmark,� Germany,� Spain� and� the� UK�together�account�for�about�half�of�the�total�number�of�projects.�

Figure 1. Distribution of projects between EU15 and EU12 Countries

EU15 countries

As� for� investments,� Figure� 2� shows� the� allocation�of� budget� across� different� countries� and� project�categories.� In� the� case� of� demonstration� and�deployment� projects,� the� budget�was� allocated� to�the� country� or� countries�where� the� project� had� at�least�one�implementation�site.�When�a�project�had�several� implementation� sites� located� in� different�countries,� the� project� budget� was� shared� evenly�among�them.�In�case�of�R&D�projects,�when�budget�shares�were� not� available,� the� budget� was� evenly�spread�across�the�participating�organizations.

A� few� countries� stand� out� in� terms� of� spending.�With�a�budget�of�over�€2�billion,�Italy�accounts�for�almost�half�of� the�total�spending� in�our�catalogue.�The� great� majority� of� this� budget� is� however�attributable� to� only� one� project,� the Telegestore�project,�which� consisted� in� the�national� roll-out�of�smart�meters�in�Italy.�Due�to�graphical�constraints,�the�corresponding�bar�in�Figure�2�had�to�be�cut�down�to�allow� its� representation�without�overshadowing�the�other�countries.�In�general,�EU12�countries�show�

BG

0.4

%C

Y 0

.4 %

CZ

1.7

%

EE 0

.2 %

HU

1.1

%LT

0.4

%LV

0.7

%M

T 0

.4 %

PL

1.7

%

RO

0.6

%

SI 3

.1 %

SK

0.7

%

UK6.8 %

Others11.3 %

AT6.1 %

BE4.2 %

DE11.1 %

DK22.0 %

EL2.0 %

FI1.5 %

FR4.2 %

IE2.4 %

IT5.5 %

NL6.8 %

SE5.0 %

PT2.4 %

ES8.7 %

Page 17: Smart Grid Projects in Europe: Lessons Learned and Current

17

JRC Reference Report

Other90

Project investments (M€)

StorageTransmission automationHome applicationDistribution automation

Smart metersintegrated systems

16.7

171.4

FR

195.2

157.98

ES

PT

18.81

BE

NL

59.65

6.96

CH

NO

12.75

139.62

DK

DE

IT

SE

113.2

220.51

0.23EE

LV

LT

SK

CZ

AT

2.55

1.85

PL

3.74

5.99HU

SI

RO

1.64

BG

GRMT

86.8

2153.17

2.74

CY

0.70

9.3

41.15

7.39

29.06

128.3

FI

228.68

113.9

IE

UK

Investments/categoryTotal 3939 M€

a�much�lower�level�of�investments�compared�to�EU15�countries�(see�Figure�3),�circumstance�which�is�mainly�explicable� with� the� lower� number� of� projects� and�generally�to�a�later�start�in�Smart�Grid�development.�A�remarkable�exception�is�Malta,�which�is�investing�over�€80�million�for�the�deployment�of�smart�meters�and� the� implementation� of� a� remote�management�system.�

The�different�pace�at�which�Smart�Grids�are�deployed�across� Europe� could� make� trade� and� cooperation�across� national� borders� more� difficult� and�jeopardize�the�achievement�of�the�EU�energy�policy�goals.� Knowledge� sharing� and� the� dissemination�of� lessons� learned� in� other� countries� can� help� to�bridge�the�gap�in�the�future.

4�This�figure�does�not�include�the�total�budget�of�the�Swedish�

smart�meter�programme�(estimated�budget�€1.5�billion),�as�not�enough�details�were�made�available�at�this�stage.��

Figure 2. Geographical distribution of investments and project categories4

Page 18: Smart Grid Projects in Europe: Lessons Learned and Current

18

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Figure 3. Distribution of investments between EU15 and EU12 countries

Project�distribution�across�project�categories�Figure�2�shows�remarkable�differences� in� the�distribution�of� project� categories� in� Europe.� Generally� speak-ing,� the� investment�pattern�and�project� categories�coverage� in� different� countries� is� strongly� influ-enced� by� different� starting� points� in� the� adoption�of�the�various�Smart�Grid�solutions�and�by�national�circumstances.� Investments� depend� crucially� on�regulation,�generation�and�consumption�structures�in� each� country.� For� example,� countries�with� large�penetration� of� RES�may� favour� developments� that�increase� hosting� capacity� (i.e.� Transmission� Auto-mation,�Integrated�System,�Storage),�whereas�coun-tries�with�a�high�share�of�flexible�electricity�use�(e.g.�space� and�water� heating)�may� favour� investments�that� promote� Demand� Response� (i.e.� Distribution�Automation,� Integrated�System,�Home�Application,�Smart�Meters).

In�our�catalogue,�the�most�represented�project�cate-gories,�which�also�attract�the�highest�level�of�invest-ments,� are� Smart� Meters� and� Integrated� Systems�(Figure�2).�

About�27%�of�the�projects�collected�in�the�catalogue�fall�in�the�Smart�Meters�category;�as�we�will�see�better�later�(see�Box.1)�these�projects�involve�the�installa-tion�of�about�40�million�devices�for�a�total�investment�of�around�€3�billion.�These�figures�are�quite�signifi-cant,� but� a� lot�more�of� investments� are� needed� in�this�field,�as�smart�meters�are�a�key�enabler�for�many�Smart� Grid� applications.� Estimates� forecast� about�240�million�smart�meters�to�be�installed�by�2020�[47].�

The�country�leading�investments�in�smart�meters�is�Italy,�where�a�national�roll-out�(Telegestore�project)�has� already� been� achieved.� In� two� other� coun-tries,�France�and�Finland,� the�great�majority�of� the�budget�is�also�attributable�to�smart�meter�projects.�In�France�the�demonstration�project�Pilot Linky�ac-counts� for� about�75%�of� the� total� spending,�while�in�Finland�the�Smart Meters roll-out�project�by�For-tum�accounts�for�over�80%�of�the�whole�budget.�It�is�worth�stressing�that�the�Swedish�smart�meter�roll-out�is�largely�underrepresented�in�our�catalogue�at�the�moment.�We�have�received�communication�from�the�Swedish�regulator�that�the�full�smart�meter�roll-out� program� consisted� of� 150� projects� for� a� total�estimated� amount� of� €1.5� billion.� However,� so� far�we�have�received�and�included�in�our�analysis�data�from�only�three�projects,� involving�the�deployment�of�about�1.2�million�smart�meters.�

As�for�the�Integrated�System�category,�Figure�2�shows�that�in�almost�all�countries,�a�significant�amount�of�investments� has� been� devoted� to� projects,� which�address� the� integration� of� different� Smart� Grid�technologies� and� applications.� Integrated� System�projects� represent� about� 34%� of� the� projects� and�about�15%�of�the�total�budget.�Most�of�the�technolo-gies�are�known,�but�their�integration�is�the�new�chal-lenge.� This� result� highlights� the� need� to� consider�the�Smart�Grid�as�a�system�rather�than�simply�a�col-lection� of� different� technologies� and� applications.�For�a�more�detailed�discussion,� refer� to�Chapter�3.

***

Combining�the�overall�investment�from�the�catalogue�(around�€4�billion)�with�the�investment�costs�of�the�Swedish�smart�meter�roll-out�(around�€1.5�billion),�we� can� estimate� the� investments� in� Smart� Grid�projects� in�Europe� to�be�about�€5.5�billion� so� far.�

NL PT

SE

UK

Other

AT

BE

BG, CY

CZ

EEHU, LT, LV

MT

PL, RO

SI

SK

DE

DK

ELES

FIFR

IT

IE

Page 19: Smart Grid Projects in Europe: Lessons Learned and Current

19

JRC Reference Report

These� figures�show�that� important�efforts�have�al-ready�been�undertaken,�but�we�are�just�at�the�begin-ning�of�the�Smart�Grid�transition.�To�put�the�invest-ments� in� our� catalogue� into� context,� conservative�estimates�quantify�Smart�Grid�investments�by�2020�[47]�at�€56�billion�(see�Chapter�1).

BOX 1. SMART METERING

The� introduction�of�smart�metering�systems� in�Eu-rope�has�received�an�important�regulatory�push�by�the� European�Union’s� Third� Energy� Package� provi-sions�and�especially�Annex�I.2�of�the�Electricity�Di-rective�.�The�Annex�explicitly�asks�Member�States�to�assess� the� roll-out�of� intelligent�metering�systems�as�a�key�step�towards�the�implementation�of�Smart�Grids�and� to� roll�out�80%�of� those� that�have�been�positively�assessed.�

Many�Member� States� have� already� started� imple-menting�provisions� in�their� legislation,�while�some�others�are�still�lagging�behind.�

Independently� of� the� legislative� and� regulatory�framework,� in� some� Member� States� utilities� have�started� to� introduce� smart� meters� as� a� means� to�modernise�the�grids�and�to�bring�about�operational�changes,�i.e.�reduce�nontechnical�losses,�introduce�remote�reading�and�switching�or�simplify�the�billing�procedures.�

In�our�catalogue,�a�set�of�Member�States�is�leading�the�investments�in�the�deployment�of�smart�meters.�

ITALY� started� a� national� roll-out� already� in� 2001�(Telegestore�project).�By�the�end�of�2006�about�30�million�meters�had�already�been�installed.�Pursuant�to� Regulatory� Order� No.� 292/06� of� 18� December�2006,� automatic� metering� infrastructure� is� now�mandatory.�The�focus�of�the�Italian�metering�system�is�on�reduction�of�nontechnical�losses�more�than�on�energy�savings�[1].

SWEDEN� Already� in� 2003,� Sweden� mandated�monthly�automatic�meter� reading� for�all�electricity�meters� by� July� 2009.� Within� the� given� timeframe�DSOs�were�free�to�decide�the�pace�of�implementation.�Thanks� to� the� new� legislation,� investments� in�Smart�Metering�developed� fast� and� the� roll-out� at�national�level�was�achieved�in�time.�Given�the�high�number� of� DSOs� in� the� country,� since� 2003� there�has�been�a� correspondingly�high�number�of� smart�meter� roll-outs.� Overall,� the� national� deployment�

of�smart�meters�was�carried�out�by�means�of�about�150�projects,�amounting�to�around�€1.5�billion�and�involving�the�installation�of�approximately�5�million�smart�meters.�In�our�analysis�we�have�included�three�of�these�projects,�accounting�for�the�installation�of�about�1.2�million�smart�meters.��FRANCE�The�demonstration�project Pilot Linky�start-ed�in�2007�and�involved�the�installation�of�300,000�smart�meters.� Building� on� the� results� of� the� pilot�phase,�a�national�roll-out�is�in�preparation.�The�roll-out�phase�envisages� the�deployment�of�35�million�smart�meters,�with�an�expected�investment�of�about�€4�billion.�The�goal� is�from�January�2012�to� install�only�electronic�meters�and�to�have�95%�coverage�by�the�end�of�2016.�The�regulator�defined�some�guide-lines�and�minimum�functional�requirements�for�elec-tricity�meters.�A�cost-benefit�analysis�with�a�positive�result�was�presented�in�2007.

MALTA� The� deployment� of� smart� meters� started�in�Malta� in� 2008� with� a� 5� year� pilot� phase� which�provides�for�the�installation�of�250,000�meters.�The�pilot�project�uses�the�Enel�technology�and�it�is�aimed�at� identifying� any� problems� ahead� of� the� planned�replacement� of� all� electricity� and�water�meters.� In�2010�Enemalta� launched�a� roll-out�plan� to� replace�all�electricity�and�water�meters�by�the�end�of�2012.

FINLAND�The�smart�meter�roll-out�is�well�on�its�way�in�Finland.�The�new�electricity�market�act�(66/2009�Act�on�electricity�supply�reporting�and�metering)�re-quired�all�connection�points�over�63�Ampere�to�have�remotely�readable�hourly�metering�by�2011.�By�2014�the� Act� demands� for� full� smart� meter� penetration�with�no�more� than�20%�exception.�The�Ministry�of�Employment� and� Economy� has� estimated� roughly�that� the�cost�of�a� full� roll-out� is�€565–940�million�(for�2.2�million�customers�who�do�not�yet�have�AMR�–�Automated�Meter�Reading).�

Page 20: Smart Grid Projects in Europe: Lessons Learned and Current

20

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

UK�The� Smart�Meter� National� Roll-out� Program� in�the�UK�is�planned�to�start�in�2012�and�be�completed�in�2020,�with�an�estimated�investment�of�more�than�€11�billion.�

Highlights�from�collected�projects�Most�of�the�smart�metering�projects�are�demonstration�projects�(59%),�followed� by� deployment� (32%)� and� R&D� projects�(9%).� All� the� smart� metering� projects� together�account� for� about� 75%� of� the� catalogue’s� total�budget,�but�a�considerable�share�of�this�figure�(71%)�is�attributable� to�a�single�project,� the�smart�meter�roll-out� in� Italy.� Although� a� substantial� amount� of�money�has�already�been�invested�in�this�field,�there�is�still�need�for�considerable�investments.

Estimates�forecast�€51�billion�investments�in�smart�meters�by�2020�[27].�The�projects� in�the�catalogue�will�result�in�the�installation�of�more�than�40�million�smart�meters,�of�which�32�million�in�Italy.�

Business�case�for�investments�Investment�in�smart�meters� is�currently�mainly� justified�on�the�basis�of�the�expected�reduction�of�DSO’s�operational�expen-ditures,� typically� resulting� from� the� elimination� of�meter� reading� costs,� reduction� of� power� theft,� re-mote� activation� and� deactivation� of� service,� faster�detection�of�power�outages,�and�improved�manage-ment�of�bad-payers.�This�investment�is�also�likely�to�yield�additional�benefits�arising�from�the�provision�of� dynamic� pricing� for� consumers.� These� benefits�are�usually�not�considered�in�the�business�case�for�deployment�of�smart�meters,�as�they�depend�on�the�development� of� future� functionalities� and� applica-tions�(i.e.�in-home�displays,�smart�appliances).�

Examples�of�operational�benefits� recorded�by�DSO�from�smart�meter�deployment

� •�With� the� Telegestore� project,� Enel� has� gained�approximately €500� million� in� yearly� savings,�with�a�5�year�payback�period,�and�a�16%�internal�rate�of�return.

� •�The�period�for�settlement�of�balance�power�was�reduced� from� 13� to� 2� months� after� the� delivery�month�(Storstad Smart Metering project).

� •� Contribution� to� a� decrease� in� the� SAIDI� index�(System�Average�Interruption�Duration�Index)�from�128�min�to�49�min,�and�a�consequent�decrease�of�cash�cost/customer�from�€80�to�€48�from�2001�to�2009�(Telegestore).

� •� With� the� Telegestore� Project,� Enel� managed�3,027,000�bad�payers�in�2008�(Telegestore).

� •� Lead� time� for� exporting� meter� readings� to�suppliers�was�shortened� from�30�days� to�5�days�(Project�AMR).�

� •�Over�a�two�year�period,�the�number�of�calls�for�both� meter-reading� and� invoice� related� issues�dropped� by� 56%� (Storstad Smart Metering project).

Page 21: Smart Grid Projects in Europe: Lessons Learned and Current

21

JRC Reference Report

2.2 Project maturity and scale

Projects�were�classified�according�to�their�stage� in�the� innovation� chain.� To� identify� R&D� projects� we�used�the�definition�laid�out�in�the�Frascati�Manual,�according�to�which�R&D�projects�comprise�creative work undertaken on a systematic basis in order to increase the stock of knowledge, including knowledge of man, culture and society, and the use of this stock of knowledge to devise new applications�[43].� The� term� R&D� covers� three� activities:� basic�research,� applied� research� and� experimental�development.

For� demonstration� projects� we� referred� to� the�conceptualisation� largely� used� in� the� literature,�which� defines� a� demonstration� project� as� a� finite�initiative�to�test�a�technology�according�to�the�project�objectives.� A� technology� could�be� everything� from�a� base� technology� to� a� complete� system� concept�[33].� The� project� starts� with� a� conceptual� design�and� ends� when� the� technology� is� implemented�and� the� results� are� evaluated� and� communicated�[11].�Demonstration�projects�can� therefore�be�seen�as�a�‘preview’�phase�when�the�interaction�between�users�and�support�systems�and�emergent�products�is�tested.�The�concept�includes�projects�designed�to�test�the�performance�of�the�technology�in�different�operational� environments,� through� to� full� market�trials� in�which� the� technology� is�used� in� customer�installations�[3].�These�projects�aim�at�exposing�the�technology�to�realistic�user�environments�to�test�its�suitability�for�more�extensive�diffusion.�

Finally,� deployment� projects� refer� to� the�implementation� of� a� technology,� application� or�system� as� a� default� solution� within� the� project�geographical� boundaries.� Some� deployment�projects�are�nationwide;�some�others�are�limited�to�a�more�restricted�geographical�area.�

Some�projects�in�the�catalogue�include�two�different�stages,� typically�R&D�and�demonstration.� In� these�cases,�for�the�sake�of�simplicity,�we�have�assigned�the� project� to� the� stage� that� seemed� to� best�characterize� the� project� and� to�which�most� of� the�time�and�budget�were�allocated.

***

! "# $ %& ( ) "* + % ", $ + "- . - / 0 %- 1& 2 + *

3 4- . # + 5 & * + 3 # & * - / + 5 &

". .- 6 3 + "- . 2 5 3 ".

! "# $ %& ' ( ' ) "* + % ", $ + "- . ' - / '

". 0 & * + 1 & . + * ' 2 3- . # ' + 4 & ' * + 2 # & * '

- / ' + 4 & ' ". .- 0 2 + "- . ' 5 4 2 ".

The�collected�projects�span�across�all�the�stages�of�the�innovation�process,�but�the�majority�of�them�are�concentrated�in�the�R&D�and�demonstration�phases�(Figure�4).�Only�7%�of�the�projects�are�in�the�deploy-ment�phase.��

When� we�move� our� attention� from� the� number� of�projects�to�the�corresponding�investments,�the�pic-ture�changes�considerably�(Figure�5).�As�expected,�deployment� covers� the� lion’s� share� of� investment�commitments;� 7%� of� the� projects� account� for� al-most�60%�of� the� investments.� An� important� share�of�these�investments�however�is�attributable�to�only�one�project,�the�massive�roll-out�of�smart�meters�in�Italy�(Telegestore�project,�€2,106�million).�R&D�and�demonstration�projects�account�for�a�much�smaller�portion�of�the�total�budget.�Most�of�these�projects�are�small�to�medium�size,�with�an�average�budget�of�€4.4�million�for�R&D�projects�and�about�€12�million�for�demonstration�projects.�In�the�future�there�might�be�the�need�for�larger�scale�demonstration�projects�to� improve� our� knowledge� of� the� functioning� and�impacts�of� some� innovative�solutions�at�a� realistic�scale�and�to�validate�results�to�a�wider�extent.�

Figure 4. Distribution of projects along the stages of the innovation chain

Figure 5. Distribution of investments along the stages of the innovation chain

Page 22: Smart Grid Projects in Europe: Lessons Learned and Current

22

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

R&D�and�demonstration�projects�can�be�found�in�al-most� all� the� countries� in� the� catalogue� (Figure� 6),�while�deployment�projects�are�concentrated�only�in�a� few� countries.�Given� that� almost� all� of� them�are�smart�metering�projects,� the�main� reason� for� their�concentration�might�lie�in�the�favourable�legislative�and�regulatory�environment.�

Denmark�stands�out�in�terms�of�the�number�of�R&D�and�demonstration�projects..�This�is�partly�explained�by� the� fact� that� Denmark� has� already� achieved� a�very�high�penetration�of�renewables�and�distributed�generation�and�therefore�needs�to�update� its�elec-tricity�system.�Moreover,�the�Danish�TSO�is�charged�with� supporting�R&D� and� demonstration� activities�in� the� electricity� sector,� activities� which� are� then�financed�through�a�Public�Service�Obligation�(PSO)�tariff5.� This� system� also� implies� the� traceability� of�the�projects�which�can�then�be�easily�monitored�and�communicated,� favouring� the� assessment� of� their�

Figure 6. Stages of development and participating countries across collected projects

results�and�knowledge�sharing.�This�is�not�the�case�for�many�other�countries,�where�retrieving�informa-tion�about�Smart�Grid�projects�proved�to�be�a�more�difficult�task.

Figure�6�shows�a�very�high�number�of�R&D�projects,�which�might�give� the� impression�of�a�higher�share�than�presented�in�Figure�4.�In�reality,�this�is�explained�by� the� fact� that�about�25%�of�R&D�projects� in�our�catalogue�involve�the�participation�of�several�coun-tries,�and�they�have�therefore�been�counted�towards�each�one�of� them.�All� of� these�projects�have�been�co-funded�by� the� European�Union,�mainly� through�the�FP6�and�FP7�programmes�and�they�represent�an�important�means�of�enhancing�international�cooper-ation,�knowledge�sharing�and�the�dissemination�of�lessons�learned.�

5� Under�the�PSO�Programme�ForskEL,�the�Danish�TSO�admin-isters�PSO�funding�of�130�million�DKK�a�year�which,�through�a�call�process,�is�granted�to�research,�development�and�demonstration�projects�within�selected�and�prioritized�focus�areas.�The�ForskEL�program�has�run�since�1998.

Page 23: Smart Grid Projects in Europe: Lessons Learned and Current

23

JRC Reference Report

Figure 7. Investments in collected Smart Grids (SG) R&D projects per country

As�for�the�investments,�Figure�7�focuses�on�R&D�ac-tivities,�grouping�countries�according�to�their�level�of� investments� in� R&D� projects.� Relevant� differ-ences�can�be�noted�between�countries;�as�stated�in�§�1.1.2�however,�the�investments�we�reported�in�our�catalogue�are�only�those�which�fall�into�the�scope�of�our�analysis.�R&D�projects� in�our�catalogue�range�from� network� assessment� and� planning� tools� to�the�investigation�of�new�market�solutions�and�con-sumers’�behaviour.�

Page 24: Smart Grid Projects in Europe: Lessons Learned and Current

24

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Finally,� Figures�8� and�9� show� the� trend�of� the�dif-ferent� maturity� stages� over� time.� The� number� of�R&D�and�demonstration�projects�grows�constantly�while�the�number�of�deployment�projects�has�not�in-creased�dramatically�since�the�first�project�in�2001.�The� constant� growth� of� demonstration� projects� is�particularly�important�as�it�shows�an�increasing�con-fidence�in�the�viability�of�Smart�Grid�projects.

Figure 8. Share of R&D, demonstration and deployment over time

Figure 9. Project status and stage of development

Page 25: Smart Grid Projects in Europe: Lessons Learned and Current

25

JRC Reference Report

2.3 Insight into some final applications and their level of maturity

As�aptly�stated�by�[17],�Smart�Grids�are�not�an�end�in�itself�but�a�means�to�an�end.�The�project�categories�in� Figure� 2� can� be� seen� as� the� key� technological�areas� addressed� by� the� projects� to� achieve� Smart�Grid�solutions.�Building�on�the�categorisation�effort�carried� out� by� project� respondents� and� through�an� in-depth� analysis� of� the� project� elements,� we�identified� three� main� final� applications� pursued�by� the� projects� in� the� catalogue,� namely� the�safe� integration� of� Distributed� Energy� Resources�(Distributed�Generation,� Storage,� EVs,� see� Box� 2),�the�possibility� for� consumers� to� respond� to�prices�(Demand�Response�and�dynamic�pricing,�see�Box�3),�and� the�safe� integration�of� large-scale� renewables�(see�Box�4).�

In� this� section� we� will� analyse� these� three�applications� and� their� level� of� maturity� in� the�context� of� the� general� results� of� the� survey� to�gain� an� insight� into� the� current� developments� in�the� Smart� Grid� landscape.� Since� smart� meters�are�a�key� technological�enabler� for�many�of� these�developments,� we� have� included� them� in� the�analysis�as�well.�

BOX 2. Integration of Distributed Energy Resources

The� deployment� of� Distributed� Energy� Resources�(DER)� is� useful� to� (1)� offer� alternatives� to� large�centralized� plants� facing� permit� problems� and�construction�uncertainties,�(2)�exploit�the�potential�of� dispersed� Renewable� Energy� Sources� (RES),�and� (3)� include� prosumers� in� the� electricity�market.� Decentralization� supports� scalability� and�robustness,� i.e.� the� capability� to� integrate� new�components�or� cope�with� component� failures.�The�trend� toward� decentralization� is� also� encouraged�by� consumers’� push� for� more� control� over� energy�consumption.�

The� integration� of� large� quantities� of� DER� is�extremely� challenging� both� from� a� physical� and�market� point� of� view.� The� goal� of� projects� in� this�area� is�the�online�coordination�of�electric�vehicles,�distributed� generators� and/or� storage� devices� to�adjust�to�grid�and�market�conditions,�guaranteeing�grid� stability,� optimization� of� energy� resources,�easier� access� to� the� electricity� market� for� small�players.�Different�methods�are�implemented�across�projects�to�explore�the�capabilities�of�DER�units�to�provide� ancillary� services� through� an� aggregated�DER�portfolio.

Scanning� through� the� projects,� we� observe� that,�while�some�make�use�of�the�concept�of�diversification�by�combining�a�variety�of�types�of�micro-generation�units,�others�focus�on�just�one�single�type�of�energy�source�by�compensating�for�the�variability�of�power�flows�through�means�of�storage�and/or�modification�of� load� profiles� (instantaneous� modification� of�electricity�consumption�levels).

Page 26: Smart Grid Projects in Europe: Lessons Learned and Current

26

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

BOX 3. Demand Response

Demand�Response�(DR)�is�one�of�the�central�themes�in� the� catalogue.� Its� target� is� to� enable� active�participation� of� commercial/domestic� consumers�in�the�market�through�the�provision�of�consumption�flexibility�services�to�different�players�in�the�power�system.�This�is�achieved�by�aggregating�consumers’�reduced� load� into� larger� amounts� for�participation�in�market�sales�(e.g.�to�sell�to�network�companies,�balancing� responsible� parties,� owners� of� non-controllable� generation,� etc.).� Aggregators� are� the�key�players�to�mediate�between�consumers�and�the�market.

Particularly� challenging� is� the� integration� of�domestic� consumers� who,� as� opposed� to� DG� and�large� industrial� consumers,� are� less� motivated�by� purely� economic� concerns� (minimal� gains).�Furthermore� domestic� consumers� are� generally�unable�to�make�precise�predictions�on�their�available�load�flexibilities;�therefore�it�is�difficult�for�them�to�‘offer’� services� in� the� classical� sense.� Rather,� the�idea�is�for�their�services�to�be�made�available�at�the�market’s�‘request’,�i.e.�through�price�and/or�volume�signal�mechanisms,�and�for�the�provision�of�services�to�be�on�a�voluntary�and�contractual�basis.

BOX 4. Large-scale integration of renewable energy

More� and� more� variable� renewable� energy�generation,� for� the� time� being� mainly� based� on�wind� and� in� future� also� expected� to� include� other�technologies� (e.g.� concentrated� solar� power),� is�grouped� in� large-sized� plants� often� installed� far�from�existing�power�infrastructure�(e.g.�offshore�or�in�remote�areas).�

This� large-scale� renewable� generation� poses�a� number� of� challenges� on� the� power� system�architecture�and�operation:�

It� requires�adequate�connection� to� the�existing�•�infrastructure� and� appropriate� internal� grid�reinforcements� in� order� to� wheel� the� renewable�power� to� the� demand� centres� (often� far� from� the�connection�point);

Due� to� a� more� marked� time-variability� and�•�weather-dependence� of� its� energy� output� (com-pared� to� other� generation� technologies),� the� bal-ancing� task� of� power� system� operators� becomes�harder�to�carry�out;�as�a�matter�of�fact,�since�elec-tricity�is�not�stored�on�a�massive�scale�to�date,�the�power�produced�must�at�all�times�equal�the�power�consumed�(and�lost).

As� the� current� power� grids� do� not� generally�•�appear� adequate� to� reliably� cope� with� large-scale� penetration� of� such� intermittent� renewable�generating� plants,� network� operators� are� getting�together�with�research�centres,�academia�and�other�partners�to�study�and�demonstrate�how�to�overcome�the�barriers�of�grid�access�and�system�integration�for� large-scale� renewables;� as� a� consequence,�large�investments�are�being�committed�to�upgrade�the� existing� grids� and� to� demonstrate/implement�measures� such� as� reserve� capacity� increase,�balancing� area� expansion,� redesigned� market�mechanisms,�load�shifting�and�storage�integration�to�cope�with�renewable�energy�variability.

Page 27: Smart Grid Projects in Europe: Lessons Learned and Current

27

JRC Reference Report

� Figure�10�shows�the�number�and�the�starting�year�of�projects�focusing�on�the�integration�of�Distributed�Energy� Resources� (DER),� on� Demand� Response�(DR)� and� on� the� safe� integration� of� large-scale�RES.� Figure� 11� shows� the� investments� associated�to�these�projects.�For�sake�of�simplicity,�the�entire�project�budget�was�allocated� to� the� starting�year.�Figure�12�reports�the�classification�of�the�projects�in�these�three�areas�according�to�R&D,�demonstration�and�deployment�stages.

Projects�focusing�on�the� integration�of�distributed�energy�resources�are�steadily�growing.�Most�of�the�work�is�still�focusing�on�the�R&D�and�demonstration�stages� to� test� aggregation� concepts� (e.g.� Virtual�Power� Plant,� Vehicle2Grid).� None� of� the� collected�projects� has� moved� these� concepts� to� the�deployment�stage.

Demand� Response� projects� testing� dynamic�pricing�and�consumer�participation,�are�growing�in�number.�They�are�benefiting� from�the�deployment�of� smart� meters,� which� are� key� enablers� for� the�increase� of� Demand� Response� initiatives.� More�and�more� Demand� Response� projects� are�moving�from� R&D� applications� to� demonstrations� to� test�actual� consumer� engagement.� Gaining� consumers�trust� and� participation� is� the� main� challenge� in�this� field.� Potentially,� consumers’� benefits� are�significant.�They�range�from�energy�savings�(up�to�10-15%,�see�e.g.�GAD�project)�to�a�more�favourable�business� case� for� the� purchase� of� home� energy�resources� (heat�pumps,�EVs,�CHPs�etc.)� through�a�direct�participation�in�the�electricity�market�(selling�power�and/or�load�flexibility).�However,�in�order�to�capture�most� of� these� benefits� the�whole� system�(infrastructure�+�market)�needs�to�be�in�place.

There�is�an�increase�in�the�number�of�projects�and�budget�available� for� the� integration�of� large-scale�RES�with�time,�but�at�a�lower�level�compared�to�other�applications.�However,�we�remark�that�the�majority�of�investments�in�this�area�are�concentrated�in�grid�reinforcement�and�they�do�not�appear�in�our�analysis�as�we�have�only�focused�on�Smart�Grid�projects.�

Figure 10. Trend in the number of projects focusing on integration of Distributed Energy Resources, De-mand Response and large-scale Renewable Energy Sources over time

Page 28: Smart Grid Projects in Europe: Lessons Learned and Current

28

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Figure 11. Budget allocated to projects focusing on the integration of Distributed Energy Resources, Demand Response and large-scale Renewable Energy Sources over time

Figure 12. Level of maturity of projects focusing on the integration of Distributed Energy Resources, Demand Response and large-scale Renewable Energy Sources

Page 29: Smart Grid Projects in Europe: Lessons Learned and Current

29

JRC Reference Report

Finally,� Figure� 13� shows� the� maturity� level� of�smart� meters,� a� key� enabler� of� many� Smart� Grid�applications.� Over� 30%� of� smart� meter� projects�are�in�the�deployment�phase,�while�the�R&D�stage�comprises� a� very� limited� number� of� projects� (e.g.�see� projects� OpenNode,� OpenMeter,� SyM2).� The�demonstration� and� deployment� of� smart� meters�has� made� R&D� and� demonstration� activities� in�other�Smart�Grid�areas�possible.�In�particular,�many�demonstration�projects�combine�the� installation�of�smart�meters�with�Demand�Response�programmes�(e.g.� see� projects� MeRegio,� ESB Smart Meter,�E-telligence).

Figures�12�and�13�also�confirm�what�we�have�already�observed� in� the� previous� paragraphs.� R&D� and�demonstration� projects� are� smaller� in� size� and�they� have� a� wider� portfolio� of� technologies� and�applications.�

Figure 13. Level of maturity of projects focusing on smart meters

2.4 Who is investing?

A� wide� variety� of� respondent� organisations� are�investing�in�the�Smart�Grid�projects�of�the�catalogue.�Taking�stock�of�the�work�presented�by�[17],�we�have�grouped� the� leading� organisations� of� the� projects���in�the�following�categories:�

1.� Energy�Companies�(e.g.�EDF)

2.� Distribution�System�Operators�(e.g.�Enel�Distri-bution)

3.� Transmission�System�Operators

4.� Service�Providers�(manufacturers,�aggregators,�retailers,�IT�companies�etc.)

5.� Universities,� Research� Centres,� Public� Organi-sations

Page 30: Smart Grid Projects in Europe: Lessons Learned and Current

30

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Figure�14�shows�the�progression�of�investments�by�leading�organisations�over�time.�The�high�figure�for�2001�is�due�to�the�national�smart�meter�roll-out�run�by�Enel�in�Italy�(Telegestore project).�The�decrease�in�investments�in�2011�is�due�to�the�fact�that�many�projects�planned�to�start�this�year�have�not�answered�to�our�survey�yet.

Figure 14. Starting time across budget (€ million) and leading organisations

The�players�leading�and�participating�in�the�projects�in� the� catalogue� are� diverse,� as� the� increased�complexity� of� the� electricity� system� requires�multidisciplinary� consortia.� Network� operators�are� establishing� fruitful� cooperation� with� diverse�partner� organisations,� ranging� from�academia� and�research� centres� to� manufacturers� and� service�providers,� particularly� IT� companies.� As� a� whole,�the� implementation�of�Smart�Grids� is� a� significant�opportunity� for� the�European� industry� to� research,�market�and�export�new�technologies,�to�create�new�jobs,�to�keep�global�technological�leadership�and�to�contribute� to� achieving� the� environmental� targets�the�EU�has�set�(see�also�[10]).

Page 31: Smart Grid Projects in Europe: Lessons Learned and Current

31

JRC Reference Report

Figure 15. Investment distribution across leading organizations

Figure� 15� shows� the� cumulated� investments�of� different� leading� organisations� across� our�catalogue.� The�data� seems� to� confirm� the� leading�role�DSOs�play�in�promoting�Smart�Grid�development�in�Europe.�Current� total� investment� in�projects� led�by�DSOs�amounts�to�over�€3�billion.

To� leverage� further� investments� for� the� rapid�development� of� Smart� Grids� and� ensure� the�necessary� involvement� of� risk-averse� network�operators,� it� is�necessary� to� find� the� right�balance�in� sharing� costs,� benefits� and� risks.� The� main�responsibility� for� achieving� this� balance� lies� with�regulators.�

The� high� number� of� DSO-led� projects� in� our�catalogue� allowed� us� to� get� an� insight� into� the�source� of� financing� of� these� projects.� Generally�speaking,�investment�costs�of�DSO-led�projects�are�mainly� covered� either� through� tariffs� or� through�funding� made� available� at� European� or� national�level.� In�many�cases�costs�were�covered�through�a�combination�of�both.�

The�majority�of�DSO-led�projects�in�our�catalogue�are�financed�by�DSOs�themselves,�i.e.�through�revenues�received� from� tariffs� charged� to� the� end� user� for�distribution� of� electricity� in� the� Low� Voltage� grid.�

Other�examples�of�tariff-based�funding�are�regulatory�incentives�funded�through�tariffs,�such�as�the�UK’s�Innovation�Funding�Incentive�introduced�in�2005�by�the�regulator�OFGEM,�allowing�up�to�0.5%�of�annual�revenue�to�be�spent�on�innovation.�In�2010,�OFGEM�established� the� Low�Carbon�Network� Fund� (LCNF),�which�allows�up�to�£500�(€577)�million�specifically�in� support� of� DSO-sponsored� projects� testing�operating� and� commercial� arrangements,� and�new�technology.� In� fact,� all� DSO-led� projects� from� the�UK�included�in�our�catalogue�are�supported�by�the�LCNF,� enabling� a� total� investment� of�€118�million.

Another� best-practice� scheme,� though� not� part�of� our� catalogue,� is� implemented� by� the� Italian�energy� regulator� AEEG� who� recently� launched� a�competition-based� procedure� providing� specific�incentives� for� Smart� Grid� demonstration� projects�related� to� the� active� distribution� network.� The�motivation� for� DSOs� to� invest� is� that� they� are�guaranteed� an� extra� 2%� return� on� capital� on�distribution� network� related� investments� for� a�period�of�12�years�[38].�

In� terms� of� public� financing� for� Smart� Grid�investments,� the� European� Commission� funds� a�whole� series� of� projects� dealing� with� different�issues� concerning� the� implementation� of� Smart�

Page 32: Smart Grid Projects in Europe: Lessons Learned and Current

32

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Grid�technologies.�The�EC’s�contribution�toward�the�projects� considered� in� our� catalogue� amounts� to�about�€184�million,�25%�of�which�went�to�DSO-led�projects�(Figure�16).�

Figure 16. Distribution of EC Funding across Leading Organisations

The� majority� of� EC� funded� projects� in� the� cata-logue�are�supported�either�by�the�6th�or�the�7th�EU�Framework� Programme� for� Research� and� Techno-logical�Development�(FP6�or�FP7,�respectively,�see�Box�5).�However,�project�funding�was�also�received�from�the�European�Regional�Development�Fund�as�well�as�the�EU�Recovery�Plan.�In�all,�9%�of�DSO-led�projects�are�supported�with�funding�by�the�EC.�

Box 5. FP6 and FP7 projects in the catalogue

8� projects� financed� by� FP6� framework�•�funding�–�total�financing��€38�million

23� projects� financed� by� FP7� framework�•�funding�–�total�financing�€146�million

About� 10%�of�DSO-led�projects�are� co-financed�by�national� funding� schemes,� such� as� the� Austrian�Climate� and� Energy� Fund� KLIEN,� which� funds�Austrian� projects� included� in� the� catalogue� worth�€33.5� million.� The� fund� was� set� up� in� 2007� by�the� Federal� Ministry� of� Transport,� Innovation� and�Technology�in�support�of�sustainable�energy�supply�and�the�reduction�of�GHG�emissions.�

Other�examples�of�national�co-funding�represented�in� the� catalogue� include� financial� support� from�the� Portuguese� National� Strategic� Reference�Framework�(QREN),�the�Spanish�Ministry�of�Science�and� Innovation’s� Centre� for� Industrial� Technology�Development� (CDTI)� and� the� German� Federal�Ministry� for� Economics� and� Technology’s� funding�program�“E-Energy”.

Figure�17�reports�the�number�of�DSO-led�projects�and�the�corresponding�investments�in�key�technological�applications:� Advanced� Metering� Infrastructure,�Integration� of� DERs� and� Demand� Response.� DSO-led� projects� are� concentrated� on� smart� metering�whose� business� case� is� mainly� based� on� savings�in�areas�like�revenue�protection�(e.g.�energy�theft),�logistics,�field�operations�(e.g.�readings,�activation/deactivation)�and�customer�service�(e.g.�bad-payers,�invoicing),� resulting� in� the� reduction� of� operation�costs�(see�Box�1�for�more�details).�

Page 33: Smart Grid Projects in Europe: Lessons Learned and Current

33

JRC Reference Report

Figure 17. Investments in DSO-led projects by application

Budget�(€million)�������Number�of�Projects

For�other�deployments,�such�as�that�of�the�electric�vehicles� (EV)� charging� infrastructure,� the�business�case�of�DSOs�is�still�unclear�(see�Box�6).�The�main�problem� is� the� uncertainty� regarding� the� demand�side.� Whether� a� “pay-per-use”� model� (consumers�pay� per� kWh� charged)� or� a� subscription� model�(consumers�pay�an�annual�or�monthly�subscription�fee)� is� applied,� expected� utilisation� rates� as� well�as� the� expected� number� of� charging� stations� per�car�are�currently�still�unclear.�In�our�catalogue�11%�of� DSO-led� projects,� about� 50%� of� DER� projects,�study�consumers’�EV�charging�behaviour�indicating�quite�some�interest�towards�the�uptake�of�charging�infrastructure�among�European�network�operators.�

3000 30

2500 25

2000 20

1500 15

1000 10

500 5

0 0AMI DER DR

Page 34: Smart Grid Projects in Europe: Lessons Learned and Current

34

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

BOX 6. EV Charging infrastructure

Whether�or�not�the�charging�infrastructure�is�•�to�be�a�regulated�asset�is�still�a�much�debated�issue,� which�makes� the� business� case� for�DSOs� ambiguous.� It� can� be� considered�as� an� extension� of� the� distribution� grid,�much� like� a� telephone� booth� in� the�phone� infrastructure.� In� this� case� direct�governmental� intervention� would� allow�DSOs� to� socialize� the� costs.� Rather� than�operating� them,� DSOs� could� generate�revenue� by� selling� charging� equipment� as�well�as�related�consulting�services�to�public�or� private� entities.� Alternatively,� charging�infrastructure� can� be� regarded� as� a� post-sale� service� comparable� to� a� fuelling� gas�station,� in� which� case� private� companies�are�entirely�responsible�for�its�provision�as�well�as�operation�

The� MiniE-Berlin� project� (50� customers�•�and� 100� recharging� stations� 50� public�stations� and� 50� home� stations)� pursues�an� open� access� approach.� Customers� can�buy� specific� electricity� product� of� their�dedicated� electricity� provider.� Contrary� to�a�roaming�approach,�a�customer�could�only�buy�the�electricity�product� from�the�owner�of�the�charging�spot.

In� the� e-Mobility� project� (100� customers�•�and� 400� recharging� stations� -� 300� public�stations� and� 100� home� stations)� the�charging� infrastructure� is� built� by� a� DSO�(Enel� Distribuzione)� and� is� likely� to� be�considered� a� regulated� asset.� The� same�open� access� approach� of� the�MiniE-Berlin�project�is�pursued.

Caution� in� performing� charging� spots� roll-•�outs�is�an�indication�of�the�lack�of�a�strong�business� case,� which� is� largely� due� to�uncertainties�regarding�future�demand.

At� the� transmission� level,� projects� are� exploring�new�technologies�(e.g.�High�Voltage�Direct�Current�-�HVDC,�Flexible�AC�Transmission�Systems�-�FACTS)�and�new�tools�to�increase�transfer�capacity,�enhance�cooperative� and� flexible� operation� and� cope� with�permit� limitations� and� high� costs� of� new� grid�infrastructures.� The� amount� of� investment� already�committed/mobilised� for� transmission� projects� in�our� catalogue� is� around� €45� million� for� research�and�€95�million� for� demonstrations.� According� to�[12],� required� R&D� investments� for� transmission�projects� amount� to�€270�million� for� research� and�€290�million� for�demonstrations�over� the�next� ten�years.�

The�gap�between�the�investments�already�mobilised�and�those�required�can�be�partly�explained�by�the�fact�that�transmission�operators�are�mainly�and�heavily�investing� in�what� can�be�defined�as� strengthening�rather�than�smartening�the�transmission�grid,�as�one�can� claim� that� the� transmission� system� is� already�partly� a� smart� system� capable� of� managing� and�balancing�the�resources�(currently)�connected�to�it.�These�investments�do�not�appear�in�the�catalogue,�which�only�focuses�on�Smart�Grid�projects.

Furthermore,� considering� that� the� demonstration�projects� at� the� transmission� level� are� particularly�capital� intensive,�TSOs�need� to�carefully�plan�R&D�projects�and�move�to�the�demonstration�phase�with�vey�well�tested�solutions.�In�this�perspective,�TSOs�are� increasingly� teaming�up�with�research�centres,�universities� and� industrial� partners.� Also,� another�step� in� the� right� direction� is� the� set-up� of� joint�projects� by� different� TSOs� (e.g.� projects�Twenties,�Optimate).�The�coordination�of�R&D�efforts�reduces�R&D� and� demonstration� costs� and� facilitates� a�common�European�network�operation.�

Page 35: Smart Grid Projects in Europe: Lessons Learned and Current

35

JRC Reference Report

3 BuildinG tHe Smart Grid SYStem

Successful� Smart� Grid� deployment� requires� a�systemic� perspective,� as� most� of� Smart� Grid�benefits� are� systemic� in� nature.� As� aptly� stated� in�[32]� “In a major infrastructural shift, technologies do not replace technologies, rather systems replace systems”.� Individual� technologies� should� not� be�considered� “just an add-on feature to be fit in established existing electricity systems, otherwise their disruptive impact cannot be captured and their business case is negatively biased”�[59].�In�the�current�playing�field,�each�individual�new�technology�faces�significant�barriers�for�its�widespread�market�adoption� against� established� business� practices,�consumers’� habits� and� regulation.� Market� forces�alone� can� take� many� years� to� fit� new� Smart� Grid�applications�into�the�existing�electricity�system.

The�majority�of�benefits�arising�from�Smart�Grids�are�revealed�in�the�long-term�and�can�only�be�captured�when� the� whole� system� is� in� place.� However,� the�Smart� Grid� needs� to� be� built� brick� by� brick.� The�challenge� is� to� ensure� that� at� every� step� of� the�way� intermediate� benefits� or� the� clear� prospects�of� final�benefits�can�support� the�business�case� for�investments.

Key�elements�to�build�the�Smart�Grid�are:

System�integration�to�enhance�the�business�case�•�of� individual� Smart� Grid� technologies� and� to�fairly�share�costs�and�benefits�among�players.

Full� engagement� of� consumers� through� clear�•�tangible�benefits,�understanding�and�trust.

In� this� perspective,� using� data� from� collected�projects,�the�main�questions�we�want�to�address�in�this�chapter�are:

How� can� system� integration� create� business�•�value?�

What�is�in�it�for�consumers?•�

3.1 System integration – Smart Grid as a market platform�

ICT� integration� is� transforming� the� power� system�from�a�merely�physical�platform�for�one-way�trans-actions�of�electricity�supply� for�passive�consumers�into�a�market�platform�for�the�transactions�of�elec-tricity�supply�and�services�among�several�heteroge-neous�and�distributed�grid�users�(see�e.g.�[58]).�As�stated�in� [35],�“a Smart Grid is a rich transactional environment, a market platform, a network con-necting producers and consumers who contract and negotiate their mutual exchange of value (product, service) for value (payment). A Smart Grid is a trans-active grid”.�

This�concept�is�widely�represented�in�the�catalogue.�Several� projects� focus� on� the� set-up� of� market�platforms� for� the� transactions� of� a� wide� range� of�electricity� services:� ancillary� services,� Demand�Response,�aggregation�of�DERs�and�V2G6�services.�In�the�Web2energy project,�a�large�number�of�small�power�producers� (PV,�CHP,�wind�etc.),� storage�and�controllable�loads�(industry)�are�connected�through�Remote�Terminal�Units�with�a�Control�Center,�which�coordinates� the� exchange� of� power� and� energy�services� among� the� producers� and� consumers�(Virtual� power� plant)7.� The� platform� components�include� 11� MW� of� intermittent� power� (wind,� PV)�and� 300� MW� of� controllable� power� (controllable�loads,�CHP,�storage,�gas�turbine�etc.).�Through�the�installation� of� smart� meters,� domestic� consumers�are� also� connected� with� the� Control� Center� and�have�access�to�variable�tariffs�mainly�to�reduce�their�consumption�during�peak�hours.�Their�controllable�load�is�mainly�thermal�storage�heating.�

In�the�Lastbeg project,�a�platform�is�set�up�for�the�coordination�of�200MW�RES�(wind-based),�a�pumped�storage�power�plant� (PSPP)� facility� and�a�Demand�Response� aggregated� output� of� 5,000� customers�endowed�with�smart�meters.�The�interaction�among�the�platform�participants�enables�predictive�power�balancing� and� a�more� efficient� and� reliable� power�supply.

6� Vehicle-to-grid�(V2G)�describes�a�system�in�which�plug-in�electric�vehicles,�such�as�electric�cars�(BEVs)�and�plug-in�hybrids�(PHEVs),�communicate�with�the�power�grid�to�sell�demand�response�services�by�either�delivering�electricity�into�the�grid�or�by�throttling�their�charging�rate.

7� A�virtual�power�plant�is�a�cluster�of�distributed�generation�installations�(such�as�CHP,�wind�turbines,�small�hydro�etc.)�which�are�collectively�run�by�a�central�control�entity.

Page 36: Smart Grid Projects in Europe: Lessons Learned and Current

36

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

These�examples�suggest�how�the�set-up�of�market�platforms� for� the� transaction�of�electricity�services�can�create�systemic�benefits�from�the�interactions�of�different�grid�users.

The�set-up�of�such�platforms�requires�the�integration�into�a�coherent�system�of:

1.� a� physical� layer� (i.e.� optimal� and� secure�infrastructure� for� power/data� flows� among�producers�and�consumers);

2.� a� market� layer� (i.e.� efficient� mechanisms�for� coordinated� transactions� among� system�operators,�prosumers,�aggregators�etc.).

Most�of�the�scanned�projects,�in�one�way�or�another,�are� contributing� to� either� the� physical� or� market�layer�or�both.�

From�an�engineering�perspective,�scanned�projects�focus� on� digital� communication� and� control�capabilities� to� enable� a� two� way� power� and�information� flows� across� the�whole� grid.� The� goal�is� to�accommodate�a�whole�new�set�of�distributed�technological� applications,� optimize� overall� grid�management,� increase� reliability� and� self-healing�capabilities.

From� a� functional� perspective,� projects� focus� on�coordination�mechanisms�to�set�transactions�among�a�network�of�distributed�grid�users.�

Physical� layer� � System� operators� are� the� main�investors� in� the� set-up� of� the� physical� layer� of�the� Smart� Grid.� At� the� transmission� level,� since�building�or�upgrading�conventional�overhead�lines�to� increase� the� transmission� capacity� is� becoming�progressively�more�difficult,�alternative�technologies�are�either�being�deployed�or�are�under�development.�High�Voltage�Direct�Current�(HVDC)�systems,�already�mature�for�long�distance�and�undersea�transmission�(also� suitable� for� connecting� offshore�wind� farms)�may�contribute�to�regulate�the�current�flow�through�the� network.� Flexible� AC� Transmission� Systems�(FACTS),� gradually� more� deployed,� are� power�electronics-based� devices� aiming� to� increase� the�control� over� voltages� and� power� flows� in� the� grid�(see�e.g.�projects TWENTIES, ICOEUR, 220 kV SSSC device for power flow control).�

Advanced�network�sensing�and�control�capabilities�(e.g.�wide�area�monitoring�systems)�are�employed�to� improve� the� observability� of� the� transmission�grid,� increase� safety� margins� and� facilitates� the�safe� integration� of� renewables� (e.g.� projects� Cell Controller, PEGASE).�A� lot�of�work� is� also�devoted�to� improve� tools� to� analyze� expansion� options�and� to� assess� system� vulnerability� (e.g.� projects�ALMACENA, REALISEGRID).�At�the�distribution�level,�as�partly�shown�in�Chapter�2,�investments�presently�concentrate�on�smart�meters,�network�automation,�and� physical� integration� of� DERs� (including� EV�charging�infrastructure).

A� key� component� of� the� physical� layer� is� an� ICT�infrastructure�to�share�information,�price�and�control�signals� among� distributed� users� and� producers�(see� e.g.� projects� E-telligence, Web2Energy, Cell Controller, Virtual Power Plant).� The� set-up� of�an� ICT� infrastructure� is� a� precondition� to� create�a� distributed� collaborative� market,� and� allow� the�integration�of� new� technological� applications� (e.g.�EVs,� DER)� and� the� participation� of� new� energy�players� (aggregators,� prosumers,� RES� producers�etc.).� Energy�management� devices� (see� Box� 7)� for�consumers� (e.g.� Energy� boxes� -�ADDRESS� project,�Energiebutler�-�Model City Manheim project)�or�DER�management� systems� (Fenix� Box� –� Fenix� project,�DEMS� –� Virtual Power Plant� project)� and� smart�meters� represent� grid� users’� gateways� to� the� ICT�infrastructure.�

Market� layer� � With� the� physical� layer� in� place,�consumers,� producers� and� prosumers� are�interconnected�with�two�way�power�and�information�flows.� Transactions� of� a� wide� range� of� electricity�services�among�them�then�become�possible.

Electric� vehicles� are� used� as� storage� devices� to�provide� ancillary� services� in� presence� of� a� high�level� of� renewables� (Mini E Berlin project).� The�outputs� of� distributed� generators� are� monitored�and�coordinated�to�control�voltage�levels�in�specific��portions�of�the�grid�(ISOLVES, DG Demonet�projects)�or� aggregated� to� provide� the� required� amount� of�reactive�power�(Cell Controller�project).�

Page 37: Smart Grid Projects in Europe: Lessons Learned and Current

37

JRC Reference Report

The� concept� of� aggregation� is� central� in� this�context� (see�Box�8� for�more�details).� For�example,�on� behalf� of� consumers,� aggregators� can� buy� and�sell�load�flexibilities�on�the�electricity�markets�(see�e.g.� ADDRESS� project)� or� provide� V2G� services� to�optimize� EV� use� (see� e.g.� Charging infrastructure project).� Aggregated� demand� can� be� controlled� to�reduce�peaks,�to�help�DSOs�to�dispatch�the�system�or� to� reduce� risk� exposure� of� retailers� (ADDRESS�project).

Through� aggregation,� Distributed� Generators�can� provide� ancillary� services� and� contribute� to�dispatching�tasks�of�DSOs.�For�instance,�the�goal�of�the�E-telligence�project�is�to�use�the�reactive�power�of�CHP�to�actively�control�the�voltage�gradients�on�the�medium�voltage�lines.�The�EDISON�project�is�testing�an�EV�charging�system� that�optimizes�EV�charging�based�on�EV�and�grid�conditions.�The From wind to heat pumps�project�links�aggregation�of�DER�on�the�supply�and�on�the�demand�side�by�investigating�the�use�of�heat�pumps�as�heat�storage�devices�of�wind�power.�

Finally,� as� advanced� ICT� capabilities� make� it�possible� to� measure� electricity� attributes� (power�quality,� generation� source,� real-time� price� etc.)�and� consumers’� profiles,� energy� players� are� able�to� bundle� value-added� services� to� the� electricity�commodity�and�offer�tailored�products�to�consumers�according� to� specific� preferences� and� to� real-time�grid� conditions.� For� example,� the� Smart Watts�project� aims� at� implementing� solutions� to� inform�customers�about�where�and�how�the�electricity�was�produced,� how� it� was� transported� and� how�much�the� power� currently� costs.� The� Smart Charging�project� is� setting� up� a� charging� infrastructure� for�electric� vehicles� that� explicitly� introduces� the�concept� of� mobility� service� for� EVs.� The� charging�costs�of�EVs�can�be�measured�in�terms�of�Kilometres�rather�than�kWhs.�The�association�of�business�value�to� electricity� services� rather� than� kWhs� makes� it�possible� to� include�efficiency�and�sustainability�as�part�of�the�electricity�service�(see�e.g.�[29]).

BOX 7. Energy Management Devices

An� energy� management� device� is� the� ‘consumer’s�interface� with� the� external� world.� It� can� be� the�hub� for� smart� home� energy� services� and� can� be�used� to� automatically� reshape� the� energy� profile�of� the� house� by� reacting� to� aggregators’� signals.�It� connects� consumers� with� aggregators� and�automatically� controls� electric� appliances� (loads)�in� response� to� price� signals,� requests� from� the�aggregator� and� consumers’� energy� preferences.�(e.g.�the�“Energy�Butler”�in�the�Model city Mannheim�project).� It� facilitates� customers’� individual� energy�management� as� well� as� the� implementation� of�dynamic� pricing� and� active� demand� mechanisms.�For� example,� customers� will� have� the� option� of�switching� electric� power� consumption� to� off-peak� times� or� switching� appliances� off� when� the�electricity�does�not�come�from�a�renewable�source.��The� MeRegio� project� provides� another� example�where� household� appliances� are� interlinked� via�communication�devices�and�connected�to�an�energy�management� system.� The� electric� vehicle� battery�is� automatically� charged� whenever� the� mini-CHP�installed� in� households� generates� more� electric�power�than�the�grid�requires.�Vice�versa,�electricity�from�the�battery�can�be�fed�into�the�grid�whenever�the�need�arises.

Page 38: Smart Grid Projects in Europe: Lessons Learned and Current

38

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

3.1.1 Business models for a transactive grid

With�the�physical�and�market�layers�in�place,�systemic�benefits�arise� from�the�collective�participation�and�interaction�of�the�different�grid�users.�In�a�Demand�Response� application,� for� example,� aggregators�mediate� interactions� among� different� grid� users,�like�collecting�demand�flexibilities�from�consumers�and� selling� them� to� retailers� and�DSOs.� The�more�members� of� one� party� join� the� platform� (e.g.�consumers),�the�more�members�of�the�other�parties�have�an�incentive�to�join�(e.g.�retailers,�DSOs,�Smart�Appliance�manufacturers).�

In� related� literature,� these� market� structures� are�called� multi-sided� platforms� (MSP).� According� to�[26],� “A Multi-Sided platform provides goods or services to two or more distinct groups of customers who need each other in some way and who rely on the platform to intermediate transactions between them”.�Business�models�based�on�MSPs�have�gained�prominent�economic�importance�with�the�advent�of�Internet� because� they� represent� an� efficient� way�of� creating� business� value� out� of� the� interactions�among�different�consumer�groups�([58]).

The� costs� of� establishing� market� platforms� for�transaction�of�electricity�services�(by�setting�up�its�physical� and�market� layers)� require� facing�upfront�costs� and� investment� risks� before� the� platform�can�pay�back.�However,�once�in�place,�the�platform�can� provide� systemic� benefits� to� its� participants�and� provide� a� business� case� for� investments� to�players� that�may�not�enter� the�market� individually�(aggregators,� prosumers,� EV� producers� etc.).� In�the� context� of� Smart� Grids,� the� costs� of� building�the� physical� layer� of� the� platform� are� typically�incurred� by� DSOs,� whereas� a� key� role� in� the� set-up�of�the�market�layer�of�the�platform�is�played�by�aggregators.�

Under�current�regulation,�DSOs�might�not�have�the�business� case� to� sustain� the� investments� to� build�the� physical� layer,� as� potential� indirect� systemic�benefits� (e.g.� peak� load� shaving� and� deferred�investments� due� to� Demand� Response)� cannot�be� factored� in� to� receive� regulatory� support.� Also,�as� several� players� share� the� final� benefits� of� the�complete�market�platform,� it� is� necessary� to� fairly�share� costs� and� benefits� and� avoid� free-rider�effects.

Presently�the�electricity�system�is�mainly�based�on�the�exchange�of�electricity� commodity�and�current�regulation� recognizes� rates�of� return�based�on� the�quantity�of�electricity�delivered.�Regulation�should�encourage� DSOs� to� contribute� to� the� set-up� of�market�platforms� for� the� transactions�of�electricity�services�by� stimulating� innovation�and� specifically�rewarding�the�provision�of�services.�

3.1.2 Case studies

In� this� section� we� present� two� case� studies� from�our�catalogue�to�illustrate�the�process�of�setting�up�platforms� for� the� transaction�of�electricity�services�and� to� discuss� concretely� the� integration� of� the�physical�and�market�layers.�Each�case�study�results�from� linking� together� different� projects� from� the�catalogue.�We�will�use�these�case�studies�to�discuss�three�key�points�highlighted�in�this�chapter:�the�set-up�of�a�market�platform�for�Demand�Response�(case�study�1)�and�for�DER�aggregation�(case�study�2).

Case study 1 - From smart metering to Demand Response

In�case�study�1,�we�analyze�through�a�set�of�projects�(see�table�II),�the�path�envisioned�by�Enel�(leading�Italian� DSO)� to� move� from� the� roll-out� of� smart�meters�to�the�set-up�of�a�Demand�Response�market�platform�(see�Box�9).�

1.� With�the Telegestore�project�(2001-2006),�Enel�has�performed�the�roll-out�of�32�million�smart�meters� in� Italy.�With� the StAMI project� (2010-2011)� Enel� has� developed� a� dedicated� web�interface� to� collect,�on�demand�and� real-time,�accurate� data� stored� in� smart�meters� for� grid�optimisation.

2.� The�smart�meter�deployment�(total�budget�€2.1�billion)� has� been� financed� through� tariffs� and�resulted� in� reduced� operational� expenditures�of� €500�million� a� year.� The� business� case� for�investments� focused� on� concrete� benefits� on�the�utility�side,�which�should�then�trickle�down�to� consumers� through� reduced� tariffs.� The�new�applications�a�smart�meter�would�enable�(e.g.� Demand� Response)� and� the� consequent�benefits�for�consumers�have�not�been�factored�in�to�justify�the�investment.

Page 39: Smart Grid Projects in Europe: Lessons Learned and Current

39

JRC Reference Report

3.� With� smart� meters� in� place,� in� 2008� Enel�launched� a� 1,000� households� trial� of� an� in-home� display� (Smart� Info)� connected� to� the�smart�meter,�to�show�consumption�and�prices.�In-home� displays� encouraged� 57%� of� the�involved�consumers�to�change�their�behaviour.�At� this�stage,� the�physical� layer� is� completed,�but�the�inclusion�of�consumers�is�rather�limited.�Promising�initial�benefits�for�consumers�refer�to�the� growing� number� of� consumers� switching�energy�retailer�every�year�and�the�possibility�for�consumers�to�opt�for�dynamic�tariffs�(in�2008,�6�million�customers�were�in�the�free�market;�2�million�consumers�switch�energy�retailer�every�year)

4.� With� the� Energy@Home� project� (2009-2011),�Enel�aims�at�testing�the�link�between�the�physical�and�the�market�layer.�The�goal�of�the�Energy@Home�project�is�to�demonstrate�the�integration�of�the�Smart�Meter/Smart�Info�with�the�Energy�Management� device� (e.g.� Energy� Box,� Energy�Butler� etc.)� which� performs� automatic� energy�management� in�the�household�and�represents�the�consumer’s�gateway� toward� the�electricity�market.�

5.� The�ADDRESS�project�(2008-2012)�goes�a�step�further�and� focuses�on�the�establishment�of�a�market�layer�for�Demand�Response.�It�assumes�the� presence� of� a� smart� meter� (for� billing�purposes)�and�of�an�Energy�Management�Device�(Energy� Box)� to� act� as� a� consumer� interface�for� the� aggregator.� The� Demand� Response�platform� analyzed� in� the ADDRESS� project� is�a�MSP� (led� by� an� aggregator)�where� platform�participants�can�interact�with�each�other�to�buy�and�sell� load�flexibility.�The�profitability�of�the�platform�is�linked�to�the�number�of�participating�consumers.�One�of�the�project’s�focus�is�in�fact�the�engagement�of�consumers.

6.�When�the�platform�(composed�of�a�physical�and�of�a�market�layer)�is�in�place,�new�benefits�can�be� shared� among� participants.� The� DSO� can�benefit�from�demand-side�management�(even�if�these�benefits� could�not�be� considered� in� the�smart�metering�business�case).�It�can�possibly�shave�peaks,�postpone�network�reinforcements,�and� have� more� options� for� ancillary� services.�Aggregators� can� make� profits� by� offering�electricity� services.� By� participating� in� the�electricity� market,� consumers� can� sell� load�flexibilities,�optimize�consumption�and�have�a�better�business�case�for�purchasing�DERs�(e.g.�EVs,�heat�pumps,�smart�appliances).

Project Name

Leading Organisation

Budget (€ million)

Stage

DeploymentTelegestore

StAMI

Energy@Home

ADDRESS

Deployment

R&D

R&D

Location Dates Description

Roll-out�of�32�million�smart�meters.�Focus�on�the�physical�layer

2001-2006

2100Enel IT

Use�of�smart�metering�data�for�grid�optimisation.�Focus�on�the�

physical�layer

2010-2011

2,1Enel IT

Interface�between�smart�meter�and�home�energy�management�device�for�the�provision�of�value�added�services.�Focus�on�the�link�between�the�physical�and�

market�layers

2009-2011

n/aEnel IT

Market�structure�to�aggregate�and�integrate�Demand�Response.�

Focus�on�the�market�layer

2008-2012

4.27Enel IT

Table II Selected Projects Case Study 1

Page 40: Smart Grid Projects in Europe: Lessons Learned and Current

40

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

BOX 8. AGGREGATION

An� aggregator� can� be� defined� as� an� entity,� which�groups� individual� load� or� generation� profiles� of�consumers,� producer� and/or� those� that� do� both�(prosumers)� and� introduces� them� to� the� electric�system�a�single,�large(r)�power�unit.�The�single,�large�power�unit�does�not�really�exist;�rather�its�existence�is�virtual,�enabled�by�a�software�used�to�manage�the�various�flows.

Aggregators� act� as� mediators� between� small�producers�and/or�consumers�and�the�markets�(refer�e.g.� to ADDRESS� project).� The� primary� role� of� an�aggregator� is� to� provide� energy-related� support�services� to� key� participants� of� the� power� system�(consumers,�producers,�system�operators,�electricity�traders,� etc)� by� managing� a� diversified� portfolio�of� (dispersed)� power� flows,� thereby� fostering� the�implementation�of�concepts�of�the�smart�electricity�system.��

The� goal� of� the� ADDRESS� project,� for� example,�is� to� enable� active� participation� of� small� and�commercial�consumers�in�market-related�activities,�i.e.�provision�of�services�to�the�different�players�of�the�power�system.�This�is�achieved�by�aggregating�consumers’� reduced� load� into� larger� amounts� for�participation�in�market�sales�(e.g.�to�sell�to�network�companies,� balancing� responsible� parties,� owners�of�non-controllable�generation,�etc.).�The�aggregator�uses� consumers’� ‘demand� modifications’,� i.e.� the�deviation�from�the�anticipated�load�size�rather�than�a�specific�level�of�demand�to�form�the�active�demand�it�sells.

Page 41: Smart Grid Projects in Europe: Lessons Learned and Current

41

JRC Reference Report

BOX 9. CASE STUDy 1 - LESSONS LEARNED

Systemic� benefits� -� The� business� case� of� a� single�technology� plugged� in� the� existing� system� is�conservative;� it� does� not� include� the� future�applications� and� functionalities� that� the� new�technology�enables.�Smart�Metering�might�represent�a�positive�exception,�but�it�is�true�that�the�business�case�for�Smart�Grid�investments�can�be�difficult�and�unclear� because� potential� long-term� benefits� are�systemic,� i.e.� can� be� obtained� only� if� a� system� is�built�around�the�single�new�component.�

Fair� sharing� between� short� term� investment� and�long�term�benefits�

Network�owners/operators�are�supposed�to�sustain�the� main� investments� for� a� demand� response�platform� (establishment� of� the� physical� layer�through� an� Advanced� Metering� Infrastructure� to�make� billing� data� available� to� all� participants),�whereas� all� players� can� get� benefits� out� of� it.�Smart� metering� projects� are� at� the� deployment�stage� as� Enel� managed� to� recover� investments�independently� from� the� setup� of� a� demand�response�platform.� Instead,� the�business�case� to�move�the�other�projects�(still�at�the�demonstration�or�R&D�stage)� to� the�deployment�phase�depends�on� the�systemic�benefits�deriving� from�the�setup�of�the�Demand�Response�platform.�

To� unlock� further� investments� there� is� a� need� to�balance� short-term� investment� costs� and� long-term� benefits.� Unless� a� fair� cost� sharing�model� is�developed,� the� willingness� of� grid� operators� to�undertake� any� substantial� investment� might� be�limited.�

Multidisciplinary�consortia� �Diverse�companies�are�brought� together� in� multi-disciplinary� consortia�to� undertake� Smart� Grid� projects� (R&D� and�demonstrations� mainly).� In� the� Energy@Home project,� Enel� has� teamed� up� with� an� appliance�manufacturer� and� a� Telecom� company.� In� the�ADDRESS project,�Enel�has�teamed�up�with�several�other� DSOs,� energy� retailers,� manufacturers� and�research�centres.

Consumers� -� Consumers� can� get� most� of� tangible�benefits� when� the� whole� system� is� in� place,� i.e.�when� both� the� physical� and� market� layers� are�established.�

The� profitability� of� Demand� Response� platforms�depends�on�the�number�of�participating�consumers.�A� lack� of� transparency� on� privacy� issues� or�excessive�use�complexity�might�severely�hinder�the�participation� of� consumers� and� consequently� the�profitability�of�the�Demand�Response�platform.�

Topology� constraints� The� topological� relations�between�the�physical�and�service� layer�need�to�be�taken�into�account�to�ensure�its�proper�functioning.�Clear� coordination� mechanisms� and� protocols�among�the�owner�of�the�physical�and�of�the�service�platforms�(typically�DSOs�and�aggregators)�need�to�be� in�place� to�map�geographical� areas� to�network�users�and�to�ensure�the�compatibility�of�transacted�services� with� physical� constraints.� Any� necessary�information� about� geographical� characteristics� of�platforms� should� also� be� readily� available� to� all�relevant�platform�participants.�(ADDRESS�project).

Page 42: Smart Grid Projects in Europe: Lessons Learned and Current

42

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Case study 2 - Setting up a platform for aggregation of Distributed Energy Resources

In�case�study�2,�we�analyze�through�another�set�of�projects� (see� table� III),� the�different� steps�needed�to�set-up�a�market�platform� for� the�aggregation�of�DERs.� On� the� basis� of� project� data,� we� will� then�derive�some�lessons�learned�on�the�concrete�steps�and�the�key�challenges�to�achieve�this�objective�(see�Box�10).�

Table III Selected Projects Case Study 2

1.� Setting� up� the� physical� layer� -� The� set-up� of�the� physical� layer� for� a� market� platform� for�DER� starts� with� the� deployment� of� advanced�grid�monitoring�and�control�capabilities.�In�this�area,�the�primary�goal�is�to�grant�safe�access�to�DERs�especially�on�the�supply�side�(distributed�generators).�The�benefits�for�utilities�range�from�operational� improvements� to� reduced� number�of�outages�and�voltage�oscillations.�

� An�essential�component�of�the�physical�layer�is�then�the�ICT� infrastructure�to�aggregate�DERs.�By� interlinking�DERs� via� ICT,� the�market� layer�can�be�set�up�and�new�benefits�achieved.�Once�the�physical�layer�is�completed,�the�market�layer�can�be�established�through�market�mechanisms�for�the�aggregation�of�DERs.�

2.� Setting�up�the�market�layer�-�First�of�all,�DERs�can� be� coordinated� by� a� DSO� for� system�management� services� (voltage� control,�balancing).�The�aggregation�of�DERs�for�system�management� purposes� is� called� technical�virtual� power� plant� (FENIX project).� Technical�virtual�power�plant�aggregates�resources�from�the�same�geographical�area.

� Secondly� DERs� can� be� coordinated� by� an�aggregator�and�reach�a�size�that�is�sufficient�to�enter�energy�power�markets�and�have�positive�economic� margins.� Commercial� virtual� power�plants�aggregate�DERs�that�are�not�necessarily�from�the�same�geographical�area.�

Project Name

Leading Organisation

Budget (€ million)

Stage

Demo

Demo

Demo

Cell�Controller

Virtual�Power�Plant

EcoGrid�EU

Dates Description

Control�architecture�for�the�central�coordination�of�DERs

Demonstration�of�the�technical�and�economical�feasibility�of�the�VPP�concept�(aggregation�of�CHP,�

Biomass�or�Windturbines).

Set-up�of�a�complete�platform�for�the�transactions�of�electricity�

services�through�DERs

2004-2011

2008-2010

2011-2014

13.4

0.8

8.3

Energinet

RWE

Energinet

Location

DK

DE

DK

Page 43: Smart Grid Projects in Europe: Lessons Learned and Current

43

JRC Reference Report

� Technical� Virtual� power� plant� In� the� Cell Controller�Project�an� ICT� infrastructure�and�an�innovative� control� scheme� demonstrates� the�coordination� of� a� high� number� of� distributed�energy� resources,� particularly� CHPs� and� wind�turbines.�Each�unit�is�endowed�with�an�industry�central� processing� unit� (CPU),� a� remote�terminal�unit�(RTU)�or�a�smart�meter.�Important�applications�are�achieved�through�coordination�of� individual�units:� islanding�operation,�black-starting,�voltage�control,�reactive�power�control.�DSOs� are� in� charge� of� technical� virtual� power�plants�and�assume�a�dispatching�role�similar�to�the�role�of�TSOs�at�the�transmission�level.�The�rationale�for�investments�include�the�following�benefits:� solving� voltage� band� violations,�reduced�grid�expansion�costs,�reduced�outage�times� through� self-healing� capabilities,� asset�optimisation�and�improved�efficiency,�improved�planning.�Typically,� the�benefits�are�mainly�on�the�utility�side.

� Commercial� Virtual� power� plant� In� the�Virtual Power Plant� project� led� by� RWE� (DE),�distributed�generators�(CHP,�biomass�and�wind)�are�interlinked�via�ICT�to�form�a�VPP.�All�the�DGs�are�endowed�with�a�DER� controller� connected�with�a�distributed�energy�management�system�(DEMS).� The� DEMS� collects� information� from�DERs�and�enables�a�demand-driven�production�planning�of� individual�DGs.�RWE�has�currently�about� 10MW� integrated� into� its� first� Virtual�Power� Plant� (VPP).� Through� VPP,� small�producers� can� offset� the� communication� and�the� transaction� costs� for� their� participation� in�the�market�(according�to�the�EU-DEEP�project,�participation� to�VPPs� is� economically� efficient�for�generation�units�with�a�minimum�capacity�of�500�kW).Using�DEMS,�DERs�are�able�to�predict�more�precisely�energy�availability�and�demand�and� reduce� stand-by-costs� and� penalties� for�incorrect�forecasts.

3.� Integration� of� DER� on� the� demand� side� –� By�building� on� the� physical� architecture� of� the�Cell�Controller�project,�the ECO-Grid EU�project�(Bornholm,�Denmark)�goes�a� step� further�and�includes� market� mechanisms� for� aggregation�not�only�on�the�supply�but�also�on�the�demand�side.�The�project�is�testing�a�complete�integrated�market�platform�for�the�exchange�of�electricity�services�through�aggregation�of�DERs,�with�no�restriction�on�power�size.�The�project�develops�a�real-time�distributed�market�(5�minutes�update�of� price� signals)� which� includes� distributed�generators,� heat� pumps� and� EVs,�with� a� total�penetration�of�more�than�50%�of�the�electricity�consumption.�2,000�residential�consumers�are�able�to�benefit�from�the�participation�in�Demand�Response�market.�The�diffusion�of�demand�side�management�strengthens�the�business�case�for�the� purchase� of� EVs� and� heat� pumps.� On� the�same�distribution�network,�multiple�aggregated�portfolios�of�DERs�participate�in�the�market.�By�setting�up�a�complete�market�platform,�the�ECO-Grid�EU�project�aims�at�complementing�several�other� projects� in� Bornholm� (roll-out� of� PVs,�heat�pumps,�EV�charging�infrastructures,�smart�appliances)�and�enhancing�the�benefits�of�each�of� these� projects.� Systemic� benefits� include:�small� consumers� able� to� access� balancing�market,� improvement� of� production� forecasts,�minimisation�of� balancing� costs,� and� targeted�roll-out�of�Smart�Grid�solutions.�

Page 44: Smart Grid Projects in Europe: Lessons Learned and Current

44

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

BOX 10. CASE STUDy 2 - LESSONS LEARNED

Steps�for�the�set-up�of�a�market�platform�for�the�•�aggregation�of�DERs:���1.���Physical�layer:��

a)�Advanced�grid�monitoring�and�control�capabilities�

b)�ICT�infrastructure�to�interlink�DERs�

2.���Market�Layer

a)�Aggregation�of�DERs�on�the�supply�side�(distributed�generators):��technical/commercial�VPP�

b)�Aggregation�of�DERs�on�the�demand�side�also�(e.g.�heat�pumps�and�EVs)

A� new� real-time� market� for� electricity� services�•�through� aggregation� of� DERs� is� based� on�a� open,� reliable� and� secure� ICT� platform� to�transmit�information�and�price�signals�to�market�participants�and�operational�units.�

Once� the� physical� layer� is� completed� and� the�•�technical� integration� of� DERs� in� the� grid� is� in�place,� the� market� layer� can� be� established�through�market�mechanisms�for�the�aggregation�of� DERs.� Projects� look� into� the� range� of� new�services� that� can� be� provided� through� the�physical�infrastructure.�New�business�models�are�needed� to� maximize� the� business� value� of� the�market�platform�for�several�players.

In�some�areas,�integration�of�DER�on�the�supply�•�side� (especially� distributed� generators)� has�already�reached�commercial�maturity�(according�to� the�EU-DEEP�project,�participation� to�VPPs� is�economically� efficient� for� generation� units� with�a�minimum�capacity�of�500�kW).�The�integration�of� DER� on� the� demand� side� (e.g.� heat� pumps,�EVs)� is� the� natural� complement,� but� more�demonstrations�are�needed.

An�emerging�trend�is�that�DSOs�will�increasingly�•�perform� dispatching� of� distributed� resources,�will� rely� on� voltage� control� through� distributed�generators� and� will� coordinate� more� tightly�with� TSOs.� IT� infrastructure� of� the� distribution�operators�will�need�to�be�tightly�connected�with�that�of�the�transmission�operator.

3.2 What is in it for consumers?

For� Smart� Grids� to� be� economically� and� socially�sustainable,� consumers� need� to� be� engaged�through� understanding,� trust� and� clear� tangible�benefits.� Customers� will� need� to� recognize� the�value�that�these�technologies�can�provide�and�be�willing� to�make�behavioural� changes�and�pay� for�the�products�and�services�on�offer�[62].�

Benefits for Consumers

A� scan� of� collected�projects� highlights� that,�with�the� Smart� Grid� in� place,� potential� benefits� for�consumers� are� numerous:� reduction� of� outages,�more�transparent�and�frequent�billing�information,�participation� in� the� electricity� market� via�aggregators,� energy� savings� (see�more�details� in�Box�11).�

On�the�consumption�side,�consumers�could�reduce�their�energy�use�or� shift� it�over� time� in� response�to� electricity� prices.� They� could� choose� among�a� wider� range� of� providers� (energy� retailers,�aggregators� etc.)� and� power� options� (e.g.� green�electricity� and� power� quality� premiums).� On� the�production� side,� the� Smart� Grid� can� increase�consumers’� opportunities� in� the� electricity�market� by� supporting� the� connection� and� use� of�distributed�generation�(e.g.�PV)�and�energy�storage�(e.g.�EV).�New�players�(e.g.�aggregators)�and�new�devices�(e.g.�home�energy�controllers)�can�provide�consumers�with�opportunities�and�means�to�take�advantage�of�these�options.�However,�as�stressed�before,�most�of� these�benefits� for�consumers�are�systemic� in� nature;� to� be� captured,� the� whole�system�(consisting�of�physical�and�market�layers)�needs�to�be�in�place.

Also,�it�is�worth�remarking�that�not�all�consumers�will� benefit� to� the� same� extent� from� Smart� Grid�applications.�For�example,�not�all� consumers�will�be� able� to� shift� consumption� according� to� price�signals�and�benefit�from�Demand�Response.�In�this�context,� transparency� over� the� different� options�and� benefits� available� to� different� consumers� is�necessary.

Page 45: Smart Grid Projects in Europe: Lessons Learned and Current

45

JRC Reference Report

BOX 11. Benefits for consumers – Some examples from collected projects

The�deployment�of�32�million�smart�meters�in�•�Italy�provides�a�first�example�of�the�potential�outcomes� of� a� national� roll-out.� The� large�market�test�carried�out�at�the�beginning�of�2008�shows� that� the�deployment�of�smart�meters� and� home� displays� encouraged�57%� of� the� involved� customers� to� change�their�behaviours�(29.3%�delayed�the�use�of�domestic�appliances�to�the�evening;�11.9%�avoided� the� simultaneous� use� of� different�appliances;� 7.5%� switched� off� appliances�instead� of� leaving� them� in� standby;� 6.6%�used�less�the�white-goods)�(Telegestore);

In� the�•� Storstad Smart Metering� project� in�Sweden,�the�deployment�of�about�370,000�smart� meters� contributed� to� a� significant�change� in� customer� interest� in� their�electricity�consumption.�Customer�contacts�regarding� meter� readings� or� estimated�reads� has� decreased� significantly� (approx�60%)� and� was� replaced� by� contacts� more�related� to� energy� consumption� or� energy�usage;

The� introduction� of� hourly� energy� price�•�can� encourage� consumers� to� react� by�modifying� their� loads� in� order� to� reduce�their� bills� (deferring� or� decreasing� their�consumption).� The� forecasts� developed�by� the� GAD� project� show� that� a� usual�consumer�could�save�15%�of�his�total�energy�consumption;

The� introduction� of� time-based� rates� is�•�expected�to�reduce�energy�consumption�by�5-10%�and�shift�1%�of�the�energy�demand�to�low�peak� load� times� (Telegestore�project).�Other� projects� under� preparation� expect�higher�benefits�for�consumers;

The�development�of�enabling�structures�and�•�technologies,� such� as� smart� meters,� can�foster� the� emergence�of� new�partnerships�where�the�customer�may�at�times�turn�into�a�supplier.�The�business�models�tested�in�the�framework�of� the�EU Deep�project�showed�that� it� is� possible,� under� specific� market�conditions,� to� run� aggregation� businesses�that�can�spare�up� to�3%�of� today’s�annual�electricity�bill�(EU Deep project);

With�the�roll-out�of�smart�meters,�the�time�•�to� correct� the� billing� and� settlement� was�shortened� from� 13� months� to� 2� months.�Lead� time� for� exporting�meter� readings� to�suppliers�was�shortened�from�30�days�to�5�days�(Project AMR).

Consumers�and�electricity�market�platforms

The� emergence� of� two� classes� of� small�•�consumers—active� and� non-active—� and�the� increasing� importance� of� aggregators,�may�lead�to�unexpected�cross-subsidies;�as�aggregators� potentially� hurt� the� business�of� retailers,� retailers� might� try� to� recoup�losses� through�higher� rates� for� non-active�consumers�(ADDRESS�project).

Profitability� of� market� platforms� depends�•�on� consumer� engagement.� The� more�consumers� join,� the� higher� the� business�value� of� the� platform.� It� is� imperative� to�ensure� tangible�benefits,�privacy�and�easy�access� for� consumers;� and� to� grant� open�access�and�fair�competition�among�energy�players.

Project� results� confirm� that� energy�•�management�devices�and�aggregators� can�provide�consumers�with�more�effective�and�compelling�incentives�to�take�advantage�of�efficiency,� conservation� and� sustainability�opportunities� offered� by� new� Smart� Grid�technologies.

Page 46: Smart Grid Projects in Europe: Lessons Learned and Current

46

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Consumers’ Behaviour and Needs

It� is� necessary� to� offer� clear� tangible� benefits� to�engage� consumers.� However,� the� whole� system�needs�to�be�in�place�to�deliver�most�of�the�benefits,�and� to� this� end,� full� consumer� participation� is�necessary.

To�solve�this�deadlock,�the�starting�point�is�to�make�sure�that�consumers�have�trust�and�understanding�in� the� whole� Smart� Grid� development.� It� is�necessary� to� involve� consumers� early� on� in� trials�and� demonstrations,� to� target� early� adopters�before�moving�to�full-scale�deployment,�and�to�give�consumers� the� freedom� to� choose� their� level� of�involvement.�Special�attention�needs�to�be�devoted�to�the�needs�of�vulnerable�consumers.�An�effective�set�of�marketing�and�outreach�activities�is�integral�to� the� success� of� consumer-centric� projects� to�counter�negative�consumer�perceptions�and�to�build�trust�and�understanding�between�the�consumer,�the�utility/consortia�and�smart�technologies�[36,�63].

Some� projects� in� the� catalogue� are� going� in� this�direction.� The� participation� in� Demand� Response�actions� in� Model City Manheim’s� field� test,� for�instance,� is� on� a� completely� voluntary� basis.�Participants� have� the� freedom� to� choose�whether�or�not�to�react�to�the�information�displayed�by�the�energy�box�installed�in�their�homes,�e.g.�displaying�varying� electricity� prices.� Furthermore,� if� they�choose� to� respond� to�dynamic�pricing,� there� is�no�financial�risk�for�customers�as�they�are�guaranteed�not� to� pay�more� than� they� would� have� under� the�old�pricing�scheme.�This�help�to�mitigate�consumer�fears�and�encourages�participation.

According� to� a� questionnaire� distributed� to� about�2,000� customers� within� the GAD� project,� 62%� of�consumers� would� modify� their� behaviour� if� they�were�notified�when�the�current�energy�production�came�from�renewable�energies.�More�than�55%�of�the�consumers�would�also�modify�their�habits�if�the�energy� price� varied� during� different� hours� of� the�day.� Another� survey� conducted� at� the� end� of� the�GAD� project� among� 300� advanced� users� revealed�that�65%�would�use�the�system�in�the�short�term�if�the�cost�did�not�exceed�€500.�

In� the� Inovgrid� project� the� installation� of� energy�boxes� led� to� an� increase� of� efficiency� levels� in�customers’� energy� consumption� by� about� 20%�as� a� result� of� increased� awareness� of� power�consumption.�

Consumer Segmentation

Up� to� now,� energy� players� have� made� little�distinction� among� small� consumers.� With� few�exceptions,� prices,� services� and� communication�have�been�the�same.�

Through� energy� management� devices� and� smart�meters,�with�consumer’s� consent,� it� is�possible� to�segment�consumers�and�target�different�consumers�in�different�ways.�The�Inovgrid�project,�for�example,�segments�consumers�according�to�consumption�of�electricity� in� view� of� offering� tailored� tariffs� and/or� conservation� advice� to� increase� customers’�efficiency.� Consumer� segmentation� is� useful� to�contribute�to�an�open�and�competitive�retail�market,�as�it�implies�(1)�more�tailored�electricity�services�to�meet�consumers’�needs�with�possibly�a�higher�rate�of�acceptance�of�new�products�and�services�and�(2)�the�possibility�to�target�energy-savvy�and�wealthy�consumers�as�early�adopters�of�new�technologies.�At� this� stage,� in� several� projects� consumers� are�recruited� based� on� their� technical� interest� and�are� therefore� not� representative� of� the� entire�population.�They�can�be�targeted�as�early�adopters�rather� than� a� reliable� test� group� before� full-scale�deployment.�

Segmentation� of� consumers� is� also� necessary� to�understand� the� consumer� interactions� and� age�dependent� behaviours.� In� some� projects,� the� use�of�social�media�has�proven�successful�in�increasing�interaction� between� the� utility� and� consumers.� In�the� pilot� project� Märkisches Viertel,� customers�can� access� historical� and� real-time� consumption�data� on� their� electricity� consumption� via� meter�display,�TV,� smart�phone/tab�devices�or�an�online�portal.�About�14%�of�customers�in�the�project�chose�the� in-house� (TV� or� smart� phone/tab� devices)� or�online�visualisation�of�data.�Similarly,� the BeWare�project�enables�its�customers�to�access�information�on� the� energy� consumption� of� their� appliances� in�an� engaging� user� interface� as� a� web� application�running�on�smart�phone.�This�allows�users�to�track�their� consumption� habits� and� how� much� energy�they�are�saving�for�individual�appliances�as�well�as�the�entire�household.�

However,� the� effectiveness� of� these� tools� can�significantly� depend� on� the� age� of� consumers.�According�to�[57],�over�55�year-old�people�consider�their�governments�a�trusted�information�source�on�energy�matters,�while� 18-24� year-old� see� internet�collaborative� platforms� and� social� networking� as�important�sources.�

Page 47: Smart Grid Projects in Europe: Lessons Learned and Current

47

JRC Reference Report

This� generational� gap� should� also� be� taken� into�account� to� protect� vulnerable� consumers.� For�instance,�using�prices�to�control�demand�might�be�especially� hard� on� less� technically� savvy� people,�like�the�elderly.�The�impact�of�higher�energy�prices�is�often�overlooked�in�relation�to�the�most�vulnerable�members�of�society.

Free Rider Effects

Finally,� possible� free� rider� effects� should� be� dealt�with,� in� order� to� guarantee� a� sense� of� fairness�in� consumers.� For� example,� dynamic� pricing� and�Demand�Response� can� lead� to�peak� load� shaving.�The�consequent� reduction�of�peak�electricity�costs�are� spread� across� all� consumers,� including� those�who� did� not� shift� their� consumptions.� Also,� the�emergence� of� two� classes� of� small� consumers—active� and� non-active—� and� the� increasing�importance�of�aggregators,�may�lead�to�unexpected�cross-subsidies;� as� aggregators� potentially� hurt�the� business� of� retailers,� retailers� might� try� to�recoup� losses� through� higher� rates� for� non-active�consumers�(ADDRESS�project);

Social impact

A� scan� of� collected� projects� seems� to� suggest� a�lack�of�specific�attention�to�the�social�implications�of� Smart� Grids.� Only� one� project� (Distribution Automation project)� clearly� mentions� among� its�goals� the� need� to� “anticipate� the� shortages� of�technical� workforce� due� to� the� ‘field� workforce�ageing”.�

However,� a� literature� review� of� available� public�reports� and� scientific� publications� on� the� future�Smart�Grids�have�highlighted�other�social�aspects�of�Smart�Grids�that�should�be�taken�into�consideration�for�the�future�Smart�Grids�to�be�successful.�These�are�detailed�in�Box�12.�

BOX 12. Social impact of Smart Grid implementation

Jobs.�•� In�USA�280,000�new�direct�jobs�(2009-2012)�and�more�than�140,000�new�indirect�jobs�will�per-sist�beyond�Smart�Grid�deployment�[34];�job�cre-ation�will�provide�an�annual�benefit�of�$215�mil-lion�[41];� in�the�US�electricity�sector�a�major�job�market�for�early-career�engineers�is�shaping�up:�the� power� industry� needs� to� hire� thousands� of�new�engineers�by�2030”�[54].�At�the�same�time,�in� EU15� almost� 250,000� jobs� were� lost� in� the�electricity�sector�since�1995�[25].�Mergers�and�ac-quisitions�will�also�play�a�part�in�employment�de-cline�with�large�scale�operations�rendering�many�employees�redundant�[25].

�•� Ageing�work�force�–�gap�in�skills�and�personnel.�“Greying�workforce”:�in�the�next�five�to�10�years�many�utilities�will�lose�their�current�workforce�to�retirement�[63];�nearly�25�to�35%�of�utility�techni-cal�workforce�will�retire�within�5�years�[4];�in�the�USA�the�average�utility�worker�is�48�year�old,�five�years�older�than�the�median�age�for�US�workers;�the� power� industry� needs� to� hire� thousands� of�new�engineers�by�2030�[54];� ‘field�force�ageing,�i.e.� shortages� of� qualified� technical� personnel�(refer�to�e.g.�Distribution Automation�project).�

New�skill�requirements�–�training.•� ��New�job�pro-files:� high� level� of� flexibility,� adaptability,� cus-tomer-focused�approach,�sales�skills,�regulatory�expertise.� Need� for� investment� in� the� develop-ment� of� relevant� undergraduate,� postgraduate�and� vocational� training� to� ensure� the� building�of�a�sufficient�pipeline�of�next�generation,�Smart�Grid� savvy� electrical� engineers� [62].� Adequate�training,� re-skilling,�up-skilling�of� the�workforce�is�essential.�

New�pools�of�skills�and�knowledge.�•� China�is�the�largest�producer�of�engineering�graduates�in�the�world:� 600,000� engineering� graduates� in� 2009.�India:� 500,000� engineering� graduates� a� year.��United� States:� 70,000� engineering� graduates�every� year.� All� of� Europe:� 100,000� engineering�graduates�[63].�There�is�the�need�for�Smart�Grid�investors�to�look�beyond�national�borders.

Page 48: Smart Grid Projects in Europe: Lessons Learned and Current

48

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

O•� rganizational� and� management� issues.� Shift�from� SMEs� (small� and� medium� enterprises)� to�big�corporation�due�to�mergers�and�acquisitions�[9,�25];�changing�views�on�personnel�and�human�resources� that� start� to� be� considered� as� highly�strategic�[25].

Safety.•� �Reduction�of�hazard�exposure�with�annual�benefit�$1�million�[41,�63];�fewer�field�workers�due�to�remote�reading�through�smart�meters�[4].

Privacy.•� � Detailed� information� about� electricity�use�could�be�used�by�insurers,�market�analysts,�or�even�criminals�to�track�the�daily�routine�of�con-sumers�[52];�35%�customers�would�not�allow�the�utility� to� control� thermostats� in� their� homes� at�any�price�[53].

�Gender�issues.�•� In�EU�women�represent�only�15%�of� the� workforce� in� the� energy� sector� and� the�share� has� not� been� rising;� gender� issues� have�been�put�in�focus�only�recently�and�up�to�now�lit-tle�has�been�done�to�make�jobs�in�energy�sector�more�appealing� to�women;� initiative� in� the� are-as�of� flexible�working� time,�equal�pay� for�equal�work,� monitoring� schemes� and� gender� focused�recruitment� could�be� carried� out� in� order� to� at-tract�more� female�workers�and�managers� in� the�electricity�sector�[25].

4 Smart Grid contriBution to

policY GoalS

In�the�following�sections,�we�will�perform�an�analysis�of�specific�project�results�in�terms�of�their�relevance�to�the�European�energy�policy�goals:�sustainability,�competitiveness�and�security�of�supply.�

4.1. Sustainability

4.1.1 Reduction of CO2 emissions

The� reduction� of� CO2� emissions� is� one� of� the�drivers� of� the� scanned� projects,� even� though� only�few� of� them� have� tried� to� quantify� the� impacts� of�the�deployed�solutions�over� the�business�as�usual�scenario�(see�Box�13).

Demand� response� Demand� Response� has� an�important� potential� for� energy� saving� and�peak� load� shaving� and� can� therefore� produce�measurable� reductions� in� customers’� total�energy�use�and�associated�emissions.�Demand�Response�contributes� to� reduce� consumption� during� peak�times,� but� the� shifted� usage� does� not� always�“rebound”� at� other� times� of� day,� entailing� a� net�reduction� of� kWh.� Many� scanned� projects� have�explored�the�effectiveness�of�such�mechanisms�in�reducing�and�shifting�energy�consumption.

For� the� success� of� Demand�Response� and� energy�conservation� projects,� end-user� awareness� and�participation� is�a�crucial�point.�The�deployment�of�smart�meters�and�in-home�displays�is�a�main�enabler�of� Demand� Response� and� energy� conservation�projects.�When�smart�meters�are�coupled�with�the�appropriate� in-home� interfaces,� customers� can�receive�time-based�easy-to-read�price�signals�that�encourage�them�to�reduce�their�consumption�or�to�postpone� it� to� times� when� the� electricity� price� is�lower.�Many�demonstration�projects�have�coupled�the� installation� of� smart� meters� with� in-home�interfaces� and� dynamic� pricing� (i.e.� Model city Manheim, Etelligence, ESB Smart Meter Project, MeRegio).�

Page 49: Smart Grid Projects in Europe: Lessons Learned and Current

49

JRC Reference Report

In� order� to� deliver� energy� savings� and� to� reduce�CO

2�emissions�from�the�generation�sector,�Demand�

Response� will� need� to� be� complemented� by�the� deployment� of� smart� appliances� and� by� the�emergence� of� a� service-based� market� platform�where�energy�players�(aggregators)�can�trade�load�flexibility�on�consumers’�behalf.��The�regulatory�framework�will�play�an�important�role�in�supporting�these�changes.�Regulatory�incentives�should�encourage�network�operators�to�move�from�a�‘volume-based’�business�model�to�a�service-based�model�focused�on�quality�and�efficiency.

System losses� -� Smart� Grid� solutions� can�contribute� to� the� reduction� of� transmission� and�distribution� losses�and�therefore� to� the�reduction�of�the�amount�of�generation�(and�related�emissions)�needed�to�serve�a�given�load�(Smart Green Circuit; Optimal Power network Design and Operation).�The� deployment� of� smart� meters� can� contribute�to�the�reduction�of�grid�losses�in�several�ways.� In�particular,�the�reduction�can�derive�from�decreased�technical� losses� (faulty� meters� which� were� not�detected�before);�decreased�administrative�losses�(consumption� that� was� not� measured� before)�and� the� fact� that� the� internal� consumption� of�electronic� meters� is� lower� that� the� consumption�of� electromechanical� meters� (Storstad Smart Metering).�

Transportation sector� Important� CO2� reductions�can�derive�from�the�Smart�Grids’�ability�to�support�a�deeper�penetration�of�electric�vehicles,�particularly�in�the�case�of�renewable�electricity�use�and�off-peak�charging�(i.e.�Charge stand; EV Network integration; Large-scale demonstration of charging of electric vehicles; Fieldtrail Mobile Smart Grid)

4.1.2 Integration of DER

Another�major�driver�of�the�scanned�projects�is�the�integration� of� large� amounts� of� DERs,� including�renewables�and�storage,�into�the�grid�(see�Box�14).�The� large-scale� deployment� of� these� technologies�entails� a� high� potential� for� emissions� reductions�and,�at�the�same�time,�it�can�have�a�positive�impact�on�the�diversification�of�the�energy�mix�and�therefore�on�energy�security.�

BOX 13. Energy savings and CO2 reduction –

Some project highlights

Telegestore:�According�to�a�large�market�test�carried�out�at�the�beginning�of�2008�in�Italy,�the�deployment�of�smart�meters�coupled�with�the�supply�of�in-home�displays�encouraged�57%�of�the�customers�involved�to�change�their�behaviours.�The�following�changes�were� observed:� 29.3%� moved� the� usage� of� white�goods�to�the�evening�hours;�11.9%�alternated�usage�of�white�goods;�7.5%�switched�off�electronic�appli-ances� instead� of� leaving� them� in� standby�modus;�6.6%� reduced� the� usage� of� white� goods.� Enel� es-timates� that� at� national� level,� the� introduction� of�time-based� rates,�made�possible�by� the� roll-out�of�smart� meters,� could� reduce� energy� consumption�by�5-10%�and�shift�1%�of�the�energy�demand�to�low�peak�load�times.

Inovgrid� (PT):� The� deployment� in� the� Portuguese�city�of�Evora�of�an�integrated�system�including�sev-eral� components� (among�which�an�energy�box),� is�expected�to�deliver�a�reduction�of�378�tons�of�CO2�(considering� an� average� annual� household� con-sumption�of�3,5MWh,�an�emission� factor�of�360g/kWh�and�an�annual�reduction�in�consumption�of�1%).�According�to�the�project�developers,�the�nationwide�replication� of� the� entire� project� could� account� for�8%�of�the�national�CO2�reduction�target�by�2020.�

Energy� forecast:� The� introduction� of� tailored� and�simple� power� supply� agreements� at� national� level�(Denmark),�coupled�with�customer�information�and�awareness,�has�a�potential�impact�of�about�50�MW�of�reduced�peak�capacity.

GAD:� The� developed� forecasts� show� that,� follow-ing�the�introduction�of�hourly�energy�prices,�a�usual�consumer� could� save� 15%� of� his/her� total� energy�consumption� (12%� due� to� a� decrease� of� the� con-sumption;�3%�due�to�a�deferral�of� the�energy�con-sumption�from�the�appliances).�

Fenix:� Large-scale� use� of� flexible� operational�aggregation� of� distributed� energy� resources� by�a� virtual� power� plant� can� result� in� reduction� of�system� gas� consumption� and� therefore� in� CO2�emission� reductions.� According� to� the� economy-wide�scenarios�developed�within�the�Fenix�project,�by� 2020,� CO2� emissions� in� the� electricity� sector�could� be� reduced� by� 7.5� kg� CO2/kWflexibleDG/year�in�a�northern�European�scenario�and�by�13�kg�CO2/kWflexibleDG/year� in� a� southern� European�scenario,�compared�to�the�reference�case.

Page 50: Smart Grid Projects in Europe: Lessons Learned and Current

50

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Demand� response� Through� smart� metering,�consumers� will� also� be� able� to� select� how� their�electricity�is�generated.�Green�conscious�consumers�might�be�willing�to�opt�for�green�electricity�at�home�and� accept� the� extra� costs� (e.g.� Dynamic tariffs, Energy @ home, Smart Watts).�

Electric�vehicles�as�storage�capacity� for� renewable�energy� resources� � Finally,� projects� investigate� and�test� the� viability�of�using�electric� vehicle�batteries�as�storage�capacity�to�help�balancing�the�grid�during�periods� of� high� energy� feed-ins� by� fluctuating�renewable� energy� sources� (e.g.:� Mini E Berlin, Charge stands, EV network integration, Harz.EEMobility, Eflex).� This� solution� has� mainly� been�tested�with�excess�wind�energy�but�clearly�it�can�be�applied�to�other�flexible�energy�sources.�

4.2 Competitiveness - Open and efficient market

From�the�scanned�projects,�we�have� identified�two�contributions�to�a�more�open�and�efficient�electricity�market:

1.� Increased� market� participation� (lower� market�barriers)�through�

the� aggregation� of� distributed� energy�•resources�

the� establishment� of� multi-sided� open�•market�platforms�(MSP)

2.� Increased� efficiency� of� interregional� markets:�coordination� mechanisms� among� TSOs,� new�interconnectors�for�large-scale�renewables

4.2.1 Increased market participation through aggregation

Smart� Grids� are� considered� key� enablers� for� an�open� and� efficient� energy� market� in� Europe.� The�current� electrical� system� has� been� designed� to�accommodate�a�limited�number�of�large,�centralized�power�plants.�For�this�reason�distributed�generation�and/or� responsive� loads,�which�are� limited� in�size�and�boundless�in�number,�are�neither�fully�integrated�into�power�system�operation�activities�nor�into�the�power�market.� The� aggregation� of� these� sources,�allowing�small�producers�as�well�as�consumers� to�access�the�electricity�market,�enables�market�entry�to�otherwise�restricted�participants�and�allows�for�

Box 14. Integration of DER – Some project highlights

Inovgrid:� The� implementation� of� a� fully� active�distribution� network� is� an� important� step� towards�the�integration�of�greater�amounts�of�RES�and�DER�into� the� electrical� grids.� The� Inovgrid� project� is�testing�a�new�grid�architecture�in�an�urban�area�with�about�32,000�customers�in�Portugal.�The�project�is�expected� to:� � increase� the� capability� to� integrate�RES� into� the� grid� by� 10-50%� through� enhanced�planning;� increase� the� integration� of� RES� into� the�grid�by�50-100%�through�active�asset�management;�increase�the�integration�of�EVs�into�the�grid�by�50%�through�active�network�and�charging�management.�The�project�developers�believe�that�the�nationwide�replication�of�the�project�could�account�for�3.5%�of�the�national�RES�target�by�2020.

However,� the� accommodation� of� a� large� number�of� disparate� generation� and� storage� resources�into� the� grid� poses� the� challenge� of� anticipating�intermittency�and�unavailability,�while�guaranteeing�system� reliability� and� economic� efficiency.� To�meet� these� challenges,� Smart� Grid� projects� are�researching�and�testing�different�solutions.

DER� aggregation� As� already� discussed,� across�the� collected� projects,� particular� attention� has�been� devoted� to� the� viability� of� VPP� and� Demand�Response� (i.e.� Fenix, Cell controller, Heat Pumps as an active tool in the energy supply system, Regenerative Modellregion Harz, Virtual Power Plant Germany, Integral – PowerMatchingCity, Smart Power System).�

Large-scale�use�of�flexible�operational�aggregation�of�distributed�energy� resources�by�a� virtual�power�plant�allows�more�penetration�of�renewables/DER�in�distribution.�This�is�possible�thanks�to�direct�control�of� DER� from� the� network� control� programs,� which�avoids� overloads/voltage� violations,� and� releases�the�hard�regulatory�limits�to�DER�(Fenix).�Preliminary�results� show� that� both� VPPs� and� active� demand�can� help� absorb� fluctuating� renewables� at� lower�costs,� reduce� CO2� emissions� and� improve� market�functioning.��Aggregation�business�models�can�play�a�key�role�for�the�success�of�DER�but�there�is�a�strong�need�for�regulatory�and�contractual�frameworks,�as�results�from�the EU-Deep�and�Fenix projects.

Page 51: Smart Grid Projects in Europe: Lessons Learned and Current

51

JRC Reference Report

a�more�efficient�market�through�the�optimisation�of�operations.�In�this�sense�the�concept�of�aggregation�has�a�potentially�huge�contribution�to�make�to�the�openness�and�efficiency�of�the�power�market.�

Aggregation�of�Distributed�Generation�FENIX�project�is�one�demonstration�of�the�aggregation�of�different�DG�units�to�a�single�Virtual�Power�Plant.� It�aims�at�maximizing� voltage� control� capacity� of� VPPs� with�the�use�of� a�distribution�management�application,�which�helps�determine�what�measures�need� to�be�taken� in� order� to�maintain� voltage� levels.� The� ap-plication�can�determine�the�reactive�power�needed�from�each�DG�unit,�prompting� the�VPP� to�alter� the�reactive�power�output�of�appropriate�units.�This�ap-proach�increases�the�participation�of�a�multitude�of�small�DG�that�could�not�otherwise�take�part�in�mar-ket-related�activities.��

Aggregation�of�Storage�The�main� idea�behind� the�aggregation�of�storage�is�to�accumulate�electricity�when�demand� is� low�relative� to�power�supply�and�inject� stored� electricity� into� the� system� at� peak�loads� or� to� compensate� fluctuating� output� of� RE�generation.��

The�aggregation�of�heat�pumps� is�one�example�of�how� the� integration� of� DG� can� be� facilitated.� The�Danish�project�From wind power to heat pumps,�for�instance,�proposes�to�store�electricity,�derived�from�wind�power,�in�the�form�of�heat�by�aggregating�300�smart� heat� pumps� into� one� huge� energy� storage�facility.� Estimates� show� that� 32,000� heat� pumps�generate�an�approximate�output�of�200�MW,�which�corresponds� to� a� large� amount� of� flexible� load�adjustable�according�to�wind�speed.�

The�integration�of�storage�facilities�not�only�assists�in� counterbalancing� stochastic� generation� profiles�often� encountered� in� distributed� generation� but�it� also� allows� house� owners� to� make� an� active�contribution� to� the� electric� power� system� in�unprecedented� ways.� Considering� the� outcome� of�the�Danish�project�and�given�that�there�are�currently�about� 80,000� heat� pumps� installed� in� Denmark,�the�potential� of�widespread�active�participation�of�consumers�through�the�integration�of�the�concept�of�storage�is�huge.�

Other� examples� include� the� aggregation� of� water�heating� storage.� The� EUDEEP� project� tested� this�concept� in� a� residential� area� (10� customers)� in�Berlin,� Germany,� allowing� heat� generated� from�

Micro-CHP�installed�in�the�households�to�be�stored�whenever�there�was�no�instantaneous�heat�demand.�Alternatively,�the�battery�of�electric�vehicles�(EVs)�can�be�used�as�a�storage�facility.�The�MeRegio�project,�among�others,�applied�this�concept�by�automatically�charging�batteries�whenever�the�mini-CHP�installed�in�model�households�generated�more�electric�power�than� the�grid� required.�Aggregated�electricity� from�customers’�vehicles�batteries�could�then�be�fed�into�the�grid�whenever�needed.

Aggregation�of�Demand�Response.�Projects� in� this�category� suggest� that� the� aggregation� of� a� large�number� of� reduced� loads� potentially� translates�into�a�rather�significant�total�load�cut,�which�can�be�used�to�balance�varying�output�of�renewable�energy�sources�(RES).��

Aggregation� of� Demand� Response� enables� active�participation�of�small�and�commercial�consumers�in�market-related� activities,� i.e.� provision� of� services�to� the� different� players� of� the� power� system� (e.g.�network�companies,�balancing�responsible�parties,�owners�of�non-controllable�generation,�etc.).�

A�primary�focus�is�on�integrating�domestic�consumers�who,� as� opposed� to� DG� and� large� industrial�consumers,�are� less�motivated�by�purely�economic�concerns� (minimal� gains).� Furthermore� they� are�generally�unable�to�make�precise�predictions�on�their�available�load�flexibilities;�therefore�it�is�difficult�for�them�to�‘offer’�services�in�the�classical�sense.�Rather,�the� idea� is� for� their� services� to�be�made�available�at� the�market’s� ‘request’,� i.e.� through�price�and/or�volume�signal�mechanisms,�and�for�the�provision�of�services�to�be�on�a�voluntary�and�contractual�basis.

Other� projects� focus� on� the� application� of� active�demand�for� large�consumers.�For� instance�the�EU-DEEP� project� explores� the� aggregation� of� small-scale� (10� kW� to� 1.5�MW)� load�management� in� UK�industrial� and� commercial� market� segments� with�a� customer� portfolio� made� up� of� industrial� and�commercial�sites�with�different� flexible� loads�(e.g.�supermarket,� shops,� hotel,� factory,� cold� store,�offices).� One� notable� result� that� emerged� is� that�the� current� minimum� requirement� in� the� UK� of�3� MW� or� more� of� steady� demand� reduction� (or�more� generation)� in� order� to� provide� Short� Term�Operating�Reserve�(STOR)�can�be�reduced�and�sites�as� small� as� 500�kW�could�partake� in� the� scheme.�This� increases� electricity� market� participation�potential�significantly.�

Page 52: Smart Grid Projects in Europe: Lessons Learned and Current

52

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Improved market transparency through multisided platforms

As�discussed� in�Chapter�3,� in� light�of� the�growing�trend�toward�distributed�generation�and�increased�electricity�market�participation,�the�set-up�of�open�market� platforms� is� a� common� theme� of� many�collected�projects.� In�general,�a�platform�provides�the�possibility�for�buyers�and/or�sellers�of�products�and�services�to�interact,�thereby�lowering�the�costs�of� providing� services� (see� e.g.� [58])� Such� a�multi-sided� platform� (MSP)� is� instrumental� for� granting�access� to� retailers,� energy� service� companies,�aggregators� and� for� the� increased� market�transparency�and�contributes�to�the�functioning�of�a� liberalized�electricity�market� (see�e.g.�ADDRESS�project).�

As�shown�before,�the�profitability�of�a�MSP�based�service� (e.g.� for� Demand� Response� services)�depends�on�the�number�of�participating�consumers.�To� ensure� platform� value,� consumers� need� to� be�willing�to�actively�access�to�the�services�provided�by�the�platform�(e.g.�Demand�Response,�V2G�services�etc.).�In�this�context,�interoperability,�user�friendly�interfaces�and�data�protection�are�key�elements�to�foster�market�participation.

Concerns�over�privacy�issues�and�transparent�access�to� the�market� (e.g.� use� of� complicated� hardware/software,� need� to� do� energy� calculations)� might�severely�hinder�the�participation�of�consumers�and�therefore� the� profitability� of� MSPs� and� of� Smart�Grid� investments.� Also,� MSPs� should� be� open�to� guarantee� fair� access� to� all� players� on� board,�prevent� dominant� positions� and� give� consumers�a� wider� choice� of� service� providers.� Consumers�should� have� the� possibility� to� easily� switch� from�one�service�MSP�to�another�without�being�locked�in�specific�hardware/software�choices.�

4.2.2 Interregional markets

The�lack�of�harmonized�market�rules�in�the�different�Member� States� can� lead� to� market� segmentation�and�higher�transaction�costs,�even�in�regions�where�interconnection�exists.�TSOs�are�aware�of�the�need�for�greater� cooperation�on�planning�and�operation�of� transmission� networks� and� are� undertaking�multinational� projects� on� this� topic.� Project� goals�include� (1)� the� development� of� common� European�models� to� simulate� power� flows� and� power� and�energy�exchanges�and�(2)�the�definition�of�a�set�of�common�grid�planning�principles.�

For�instance,�in�the�Optimate�project�five�TSOs�from�Belgium,�France,�Germany�and�Spain�are�developing�an�open�simulation�platform�with�TSOs�and�market�participants�as�key�players.�The� idea� is� to�analyze�and� validate� new� market� designs� aiming� at� the�integration�of�flexible�energy�sources�across�several�regional�power�markets.�

A�consistent�number�of�FP7�projects�(e.g. Realisegrid, Pegase, Icoeur, Susplan)� investigate�new�planning�tools�to�analyze�options�for�a�pan�European�network�integration�and�expansion.�

Page 53: Smart Grid Projects in Europe: Lessons Learned and Current

53

JRC Reference Report

4.3 Security and quality of supply

Integration�of�DER�Much�attention�has�been�given�to�synergies�between�DER�and�storage�technologies�to� increase� the� reliability� of� supply.� Intelligent,�coordinated� control� of� distributed� generation,�including� storage� can� provide� immediate� backup�when�the�primary�source�is�lost.�

Several�projects�have�investigated�intentional�island�operations8� as� a� deliberate� emergency� measure�or� as� the� result� of� automatic� protection�or� control�action�(e.g.�see�projects�Cell Controller; Control and regulation of modern distribution system; Agent based control of power systems; MoreMicrogrids; Smart Region).� Islanding� is� a� situation� in�which� a�power� system� becomes� electrically� isolated� from�the�remainder�of�the�system�and�yet�continues�to�be�supplied� by� the� Distributed� Generation� connected�to� it.� Integrated� distributed� generation� sources�can� therefore� support� the� island� operation� during�contingencies� and� contribute� to� maintaining� the�security�of�power�supply.�

Several�projects� focusing�on� this� topic�are� located�in�Denmark,�as� the�high�penetration�of�distributed�generation� reached� in� the� Country� makes� it�ideally� suited� for� such� an� investigation.� The� Cell Controller� project� is� particularly� interesting� as�it� demonstrates� the� possibility� of� leveraging�increasingly� distributed� resources� so� as� to� ensure�secure�supply� to� the�majority�of�end-users� in�case�of�an�outage�of�central�generation�or�transmission.�Under� emergency� conditions,� the� cell� controller�can�disconnect�a�portion�of�a�distribution�network�from� the� transmission�grid,�manage� it� as�a� stable,�islanded� network,� and,� on� receiving� a� signal� from�the�transmission�system�operator,� resynchronize� it�with�the�grid.�

Many�other�projects�have�investigated�the�potential�of� electric� vehicles� to� contribute� to� securing� the�stability� of� the� grid,� otherwise� endangered� by�fluctuating� renewables� in� excess� situations� (e.g.�see�projects�Mini EBerlin; NetElan; Harz.EEMobility; Edison; Large-scale demonstration of charging of electric vehicles).�

Safe� integration�of� large-scale�RES�The� integration�of� large-scale� fluctuating� energy� resources� poses�several�challenges�to�the�operation�and�management�of�the�power�system.�Many�projects�in�the�catalogue�focus� on� their� safe� integration� in� the� electricity�network.� The� most� explored� solutions� are� the�development� of� balancing,� grid� integration� of� off-shore�wind�parks,� the�maximisation�of� the� current�operation�limits�of�the�network�(e.g.�Twenties�project)�and� the� improvement� of� production� predictability�(e.g.� Safewind� project).� Wind� is� by� far� the� most�investigated�energy�resource.�

Cyber�security�and�data�protection�Cyber�security�is�of�great�importance�in�order�to�avoid�potential�risks�arising� from� external� “attacks”.� Data� protection�with� encrypted� and� authenticated� algorithms�should� be� always� considered.� (e.g.� see� projects�NES, Telegestore, Stami, MoreMicrogrids).�A�more�in-depth�analysis�of�the�challenges�related�to�data�protection�and�security�can�be�found�in�Chapter�5.

Operational�improvements�The�installation�of�smart�metering� infrastructures,� SCADA9� systems� and�supervising� equipments� open� new� possibilities�to� prevent� and� solve� problems� in� the� low� voltage�distribution�network�and� to�obtain� further� savings�in� the� operational� costs.� Smart� metering� offers�many� advanced� functions� such� as� remote� control,�output�control�and�various�forms�of�quality�control�(see�e.g.�projects�Telegestore, Stami, Project AMR, Storstad Smart Metering).�Smart�meters�allow�the�collection�of�outage�information,�which�can�be�used�for�statistical�purposes�and�for�the�investigation�of�customer� claims� regarding� quality� of� supply,� and�allows�for�the�identification�of�the�specific�point�of�delivery�affected�by�the�problem�(see�e.g.�Storstad Smart Metering�project).�More�accurate�settlement�enables� aggregators� to�make�better� forecasts� and�simplifies� production� planning� for� producers� and�system�operators�(e.g.�KEL project).

8� According�to�the�definition�adopted�by�ENTSOE,�an�island�represents�a�portion�of�a�power�system�or�of�several�power�systems�that�is�electrically�separated�from�the�main�interconnected�system.

9� Supervisory�Control�and�Data�Acquisition.�It�generally�refers�to�industrial�control�systems:�computer�systems�that�monitor�and�control�industrial,�infrastructure,�or�facility-based�processes.

Page 54: Smart Grid Projects in Europe: Lessons Learned and Current

54

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

As� field� data� are� transmitted� to� central� control�rooms,� technical� problems� can� be� traced� and�solved� more� rapidly,� reducing� the� duration� of�outages.� As� a� consequence,� the� prevention� of�disturbances� assures� the� uninterruptable� power�supply� in� feeders,� the� voltage� quality� and� the�voltage�interruptions.�Remote�work�and�restoration�of�grid�operation�is�also�possible.�Data�acquisition�is�used�for�analysis�and�reporting,�which�can�be�very�useful� in� statistics,� maintenance� and� operation,�troubleshooting�activities.�

Furthermore,� continuous� supervision� of� the� grid�leads�to�rapid�detection�of�system�stress�and�thus�rapid�actions� in� relief� the�network� from�conditions�of� peak� loading,� congestions� and� bottleneck.�Equipment�is�not�subject�to�stressful�conditions�and�can�work�more�efficiently�and�up�to�its�operational�life�duration.�

BOX 15. Security and quality of supply – Some project highlights

Telegestore:�Thanks�to�the�Telegestore�project,�Enel�reports� that� the� indicator� “minutes�of� interruption�per� year”� decreased� from� 128� to� 49� over� the�period�2001�–�2009.� In� the�same�period,� thanks�to�the� energy� balance� data� from� the� smart� metering�system,�the�success�rate�of�the�verification�activity�has�increased�from�5%�to�50%.�

Storstad:� The� deployment� of� smart� meters� has�allowed�a�significant�reduction�in�customer�service�calls.�Over� a� two� year� period,� the� number� of� calls�for� both� meter-reading� and� invoice-related� issues�dropped�by�56%.�

Inovgrid:� The� Inovgrid� project� involves� the�deployment� of� advanced� control� and� automation�functionalities� distributed� over� different� levels� of�a� hierarchical� control� structure� that� matches� the�physical� structure� of� the� electrical� distribution�grid.� This� system� allows� the� active� management�of�the�distribution�network�by�the�DSO�and�entails�the� following� envisaged� results:� 3-10%� reduction�of� SAIDI� (System� Average� Interruption� Duration�Index);� 1-5%� reduction� of� SAIFI� (System� Average�Interruption�Frequency�Index).

4.4 Activated Smart Grid services and benefits

In� this� section� we� characterise� the� contributions�of� the� projects� in� our� catalogue� according� to� the�definitions� of� Smart� Grid� services� and� benefits�elaborated� by� the� EC� Smart� Grid� Task� Force� (see�Annexes� II� and� III).� Services� and�benefits� are� very�much�linked�to�the�EU�policy�goals�that�are�driving�the� Smart� Grid� deployment.� They� can� therefore�be� considered�as�useful� indicators� to�evaluate� the�contribution�of�projects�toward�the�achievement�of�these�energy�policy�goals.

The�Smart�Grid�services�represent�the�characteristics�of� the� “ideal”� Smart� Grid� (see� [18]).� Progresses�along� these� characteristics� are� directly� linked� to�progresses� toward� the� energy� policy� goals� and�the� expected�outcomes� the� ideal� Smart�Grid� is� an�enabler�for.�

The� Smart� Grid� benefits� represent� the� outcomes�deriving�from�the�implementation�of�the�ideal�Smart�Grid� (see� [18]).� A� characterisation� of� projects� in�terms�of�associated�services�and�benefits�is�a�useful�tool�to�map�the�contribution�of�projects�to�different�areas�of�the�Smart�Grid�landscape.�

In�our�questionnaire,�we�asked�project�coordinators�to�indicate�the�benefits�and�the�services�associated�with�their�project�and�to�fill�in�the�merit�deployment�matrix�proposed�by�[20].�

Figures� 18� and� 19� show� the� cumulative� benefits�and�services�across�the�different�projects�split�into�different� project� typologies� (R&D,� Demonstration�and�Deployment).�As�not�all� respondents� reported�about� the� services� and� benefits� pertinent� to� their�projects,� the� diagrams� refer� to� a� restricted� set� of�around� 20� projects� for� Figure� 18� and� of� around�80� projects� for� Figure� 19.� Also,� only� few� project�coordinators�actually�filled�in�the�merit�deployment�matrix.� In� the� update� of� this� study,� further� work�will� be� devoted� to� collect� more� data� from� project�coordinators,�in�order�to�refine�this�analysis.

Page 55: Smart Grid Projects in Europe: Lessons Learned and Current

55

JRC Reference Report

Figure 18. Cumulative activated benefits across projects

Figure 19. Cumulative activated services across projects

Page 56: Smart Grid Projects in Europe: Lessons Learned and Current

56

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

5 analYSiS oF data protection and SecuritY iSSueS

BOX 16. Data Protection and Security Issues

A� scan� of� collected� projects� highlights� the�•�convergence� towards� IP� communication� and�other�standards-based�solutions.�The�promises�of� Smart� Grids� will� only� realise� if� low-priced�consumer�devices�are�available.

Proven�standards�and� industry�best�practices�•�used�for�IT�systems�should�be�considered�and�adapted,�and�security�measures�not�reinvented.�Open� standards� at� the� European� and�international�level�are�necessary�for�updating�and� upgrading� the� security� mechanisms� of�these�devices�as�threats�and�risks�evolve.

Most� of� collected�projects� have�not� provided�•�responses�on�data�protection�and� security.� It�seems�that�the�potential�to�tackle�this�issue�is�not� fully�exploited.�New�projects� focusing�on�data�handling�would�be�useful�to�assess�how�data�handling�principles�from�other�industries�(e.g.�banking�industry)�can�be�applied�to�Smart�Grids.

Smart�Grid�projects� require� the� collaboration�•�of�several�players�with�different�competencies�and� background.� Since� security� in� the� ICT�infrastructure� is� a� collective� effort,� it� is�imperative� that� roles� and� responsibilities� are�clearly�defined�and� that�both� the�energy�and�ICT�communities�work�together� to�coordinate�security�measures�to�prevent�blind�spots.�

An�open�and�secure�ICT�infrastructure�is�at�the�•�core�of�a�successful�Smart�Grid�implementation.�Addressing� interoperability,� data� privacy� and�cyber-security�is�a�priority�requirement�to�make�the�ICT�infrastructure�truly�open�and�secure.�

A� privacy-by-design� approach� needs� to� be�•�adopted� to� ensure� customer� security.� A�wide�consensus�among�stakeholders�is�emerging�in�Europe�on�this�[19].

�Given� the� interdependence� of� existing� energy� and�information� infrastructures,� the� electricity� sector�also� feels� the� impact� of� mounting� cyber� security�concerns.� Along� with� big� opportunities� of� Smart�Grids�comes�the�bad�news�that�the�next�generation�of� Europe’s� electricity� grids� will� face� a� greater�variety�of�cyber�vulnerabilities�than�those�of�today.�Therefore� a� special� emphasis� is� put� on� critical�infrastructure� protection,� especially� infrastructure�supporting�energy,� transport,� telecommunications,�and�water�[44].

Either� directly� or� indirectly,� consumers� will� be�affected� by� several� threats� (natural� threats,� smart�thieves,� hackers,� terrorism,� warfare,� accidental�threats,� intentional� attacks,� load� shedding).�Therefore�consumers�will�also�need�to�be�informed�about� these� threats,� the�potential�attack�vectors10,�and�the�protections�needed�to�defend�against�them.�To� this� aim,� a� combined� effort� from� government,�corporate,� and� consumer� advocacy� organisations�will�most�likely�develop�a�combined�effort�[28].�

From�the�data�protection�and�security�point�of�view,�five�important�challenges�arise�[46]:

1)� the� large� amount� of� sensitive� customer�information�the�grid�will�transmit;�

2)� the� greater� number� of� control� devices� in� the�Smart�Grid;�

3)�the�poor�physical�security�of�a�great�proportion�of�these�devices;�

4)� the� use� of� Internet� Protocol� (IP)� as� a�communication�standard;�

5)�the�greater�number�of�stakeholders�the�grid�will�rely�on�for�its�smooth�operation.�

The� responses� we� have� received� from� project�coordinators�have�been�generally�quite�poor�in�data�protection�and�security� (see�Figure�20).�Therefore,�the� analysis� in� this� section� (see�Box� 16)� is�mostly�based�on� the� results�of� the OpenMeter�project,�by�far�the�most�significant�and�detailed�project�across�our�catalogue�in�this�domain.

10�Attack�vector�refers�to�any�method�or�mode�of�attacks�chosen�by�hackers�or�crackers�to�identify�weak�points�or�vulnerabil-ity�on�the�client�or�server-end�of�a�network�for�engineering�defects�in�the�user�system�or�the�server,�mostly�in�order�to�infect�or�gain�control�over�system�resources.

Page 57: Smart Grid Projects in Europe: Lessons Learned and Current

57

JRC Reference Report

Figure 20. Questionnaire responses on data protection and security

5.1 Customer security

It� seems� clear� that� a� paradigm� shift� is� needed� in�energy� industry� from� the� current� hardware-centric�focus� on� system�adequacy� and� reliability,� towards�the� inclusion�of�a�more�directly�consumer-oriented�view� of� security.� Security� services� are� needed� for�each� data,� network� and� component� of� which� the�entire� grid� is� composed.� Customer� privacy� issues�need� to� be� addressed� to� protect� confidential� or�otherwise� sensitive� data,� but� measures� are� also�needed�to�ensure�the�supply�of�energy�to�customers�and� to� make� the� grid� even� more� reliable� than�currently�in�spite�of�cyber�threats.�

In� the� Open Meter� project� [44],� minimum�requirements�are�set�to

authenticate�and�authorise�users,�groups�and�•�devices� on� all� interfaces� (such� as� GUI� and�other�IT�systems)

guarantee� the� integrity� and� confidentiality�of�•�data�exchanged�and�stored

recommend� the� use� of� certificates� to� enable�•�application�level�security

strongly�encrypt�the�data�in�transit.•�

All� of� these� requirements� are� satisfied� by� using�already� existing� proven� technologies� and� it� is�likely� that� further� developments� in� ICT� make� the�implementation�even�more�feasible.

The� legislative� framework� needs� to� support� these�technical� developments.� At� the� European� level,�there� is� a� general� agreement� among� stakeholders�that�Smart�Grid�solutions�have�to�comply�fully�with�the� binding� rules� on� privacy� and� data� protection.�As� recommended� by� [19],� a� privacy-by-design11��approach�needs�to�be�adopted�to�ensure�customer�security.� This� approach� has� been� integrated� in�the� Mandate� M49012� for� European� Smart� Grid’s�standards,� issued� early� in� 2011.� Furthermore,� the�European� Commission� is� also� ready� to� support�the�Member� States� in� ensuring,� when� deciding� of�roles� and� responsibilities� regarding� ownership,�possession�and�access�to�data�[24].

5.2 A greater number of intelligent devices

It�is�inevitable�that�Smart�Grids�will�be�reliant�on�an�exponentially�greater�number�of�digital�devices�than�today’s�grids�ranging�from�smart�meters�at�home�to�centralised�and�well-protected�Supervisory�Control�and� Data� Acquisition� (SCADA)� systems.� The� well-known�concept�of�“defence�in�depth”�13�has�to�be�ap-plied�to�the�global�system:�multiple,�even�redundant�security� techniques�at�each� layer�of� the� infrastruc-ture� to� mitigate� the� risk� of� one� component� being�compromised.�

11� Privacy�by�design�aims�at�building�privacy�and�data�protec-tion�up�front,�into�the�design�specifications�and�architecture�of�information�and�communication�systems�and�technolo-gies,�in�order�to�facilitate�compliance�with�privacy�and�data�protection�principles�http://www.edps.europa.eu/EDPSWEB/edps/EDPS

�12� http://ec.europa.eu/energy/gas_electricity/smartgrids/

doc/2011_03_01_mandate_m490_en.pdf

13� Defense�in�depth�is�an�information�assurance�(IA)�strategy�in�which�multiple�layers�of�defense�are�placed�throughout�an�information�technology�(IT)�system.�It�addresses�secu-rity�vulnerabilities�in�personnel,�technology�and�operations�for�the�duration�of�the�system’s�life�cycle.

Page 58: Smart Grid Projects in Europe: Lessons Learned and Current

58

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

The� much� greater� number� of� different� types� of�intelligent� devices� in� the� power� production/consumption� chain� can� be� seen� as� analogous� to�current� mobile� device� networks� which� also� have�security� concerns� and� are� built� on� international�standards�and�commercial� technologies.�Therefore�the� industry� is� likely� to� already� have� learned�important� lessons� in� managing� such� gigantic�communication�networks�with�billions�of�nodes.�

Even�if�there�were�no�plans�to�connect�Smart�Grids�to�the�Internet,�the�possibility�of�a�deeper�convergence�should�not�be�left�unanticipated�(e.g.�see Internet of Energy�project).

5.3 The problem of physical security

Physical� access� to� sensitive� components� should�be� secured,� which� is� already� the� case� with� e.g.�SCADA� systems.� Most� attention� will� be� needed�at� the� level�of� the�distribution�network�where� the�passive,�radial�architecture�of�the�past�will�give�way�to� a� new� meshed� structural� design� that� requires�the�introduction�of�many�intelligent�control�devices�where�once�there�were�few.�

Systemic� exposure� to� faults� and�malicious� activity�originating�from�smart�meters�at�customers’�homes�will�need�to�be�minimized.�The�physical�security�at�homes�will�be�altogether� impossible� to�guarantee,�making� intelligent� devices� at� homes� much� more�vulnerable�and,�given� the� two-way� communication�capabilities�with� the�Smart�Grid,�also�a� theoretical�point�of�access�for�malicious�intentions.�

The�overarching�principle�of�not�compromising�one�component�to�compromise�the�whole�system�must�apply� also� in� the� planning� for� risk� mitigation� for�shortcomings�in�physical�security.�In�the�“Advanced�Metering� Infrastructure”� specifications� this� has�been�addressed�by�specifying�different�profiles� for�different�interfaces�(Open Meter project�[45]).

5.4 The use of IP and commercial off-the-shelf hardware and

software

Because� interoperability� and� affordability� will� be�key� challenges� in� the� transition� to� Smart� Grids,� it�will�be�difficult,�if�not�impossible,�to�resist�the�broad�use�of� IP�and�COTS14�hardware�and�software�in�the�networks�of�the�future.�A�wealth�of�proven�security�standards�and�implementations�exist�on�all�layers�of�the�TCP/IP�protocol�stack�and�choosing�not�to�utilise�this�common�accumulated�knowledge�seems�hardly�possible.� Security� risks� do� exist� in� any� network�technology� and� architecture.� IP� based� networks,�however,�have�by�far�the�best�proven�track�record�as�large-scale�digital�communication�networks.

OpenMeter� project� recommends� using� proven�standards� and� industry� best� practices� used� for�IT� systems� in� other� domains.� Additionally� they�recommend�not�reinventing�security�measures�[44].The�vast�market�potential�of�Smart�Grid�devices�and�experience�with�other� recent�developments�makes�it�very�likely�that�COTS�hardware�and�software,�from�grid’s�mission� critical� controllers� to� smart�meters,�are� extensively� and� pervasively� deployed.� In� this�perspective,� open� standards� are� necessary� for�updating�and�upgrading�the�security�mechanisms�of�these�devices�as�threats�and�risks�evolve.

5.5 More stakeholders

The� number� of� active� stakeholders� in� Smart�Grids�is�increasing�by�definition�as�small�scale�generation�units�–�and�even�home�customers�–�become�integral�to� supply� in� the�market� in� the� coming� years.�New�value�networks�and�new�types�of�services�are�likely�to�appear�which�must�be�built�on�a�network�capable�of� guaranteeing� high� enough� confidentiality,�integrity�and�availability�of�the�information.�

As�highlighted� in� the�OpenMeter� project,� security�is� everywhere� in� the� metering� process,� from� the�meter� and� the� data� concentrator� to� the� back-office� information�system,� including�each�network�and� media� used� to� communicate.� All� partners,�from� manufacturers� to� suppliers� and� regulation�authorities� have� to� work� together� for� awareness-raising� and� securing� the� future�metering� systems�[44].

�14�Commercial�off�the�shelf

Page 59: Smart Grid Projects in Europe: Lessons Learned and Current

59

JRC Reference Report

6 SummarY and Future StepS

6.1 Summary

A� number� of� lessons� learned� and� interesting�developments�have�emerged�from�the�analysis�of�the�collected�projects.�They�are�summarised�in�Box�17.

BOX 17. SUMMARy AND CONCLUSIONS

The� difficulties� encountered� during� the�•�data� collection� process� suggest� the� need�for� improvements� in� data� collection/exchange.�These� include�a�common�structure�for� data� collection� in� terms� of� definitions,�terminology,� categories,� and� benchmarks,�and�strengthening�project� repositories�at� the�national�and�European�level.

Lack� of� quantitative� data� to� perform� cost-•�benefit�assessments.

SMART GRID LANDSCAPE IN EUROPE

Projects� in� the� catalogue� are� not� evenly�•�distributed�across�Europe.�Most�of�the�projects�and�of�the�investments�are�in�EU15�countries.�Smart�Grids�are�deployed�at�different�pace�and�not�in�a�homogenous�way�across�the�Member�States:�this�could�lead�to�challenges�both�for�trade�and�cross-border�cooperation.

There�is�a�significant�amount�of�investments�in�•�the�project�catalogue�(over�€5�billion),�which,�however,� is� still� lagging� behind� compared� to�several� estimates� of� required� investments�needed� to� realize� smarter� and� stronger�European�grids�(some€500�billion).�We�are�just�at�the�beginning�of�the�Smart�Grid�transition.

In� almost� all� countries,� a� significant� amount�•�of� investments� has� been� devoted� to� projects�which� address� the� integration� of� different�Smart� Grid� technologies� and� applications.�Most� of� technologies� are� known,� but� their�integration�is�the�new�challenge.

The�data�in�the�catalogue�confirms�the�leading�•�role�DSOs�play�in�coordinating�the�Smart�Grid�deployment�across�Europe.�

Deployment� covers� the� lion’s� share� of�•�investment� commitments;� 7%�of� the�projects�account� for� almost� 60%� of� the� investments.�R&D� and� demonstration� projects� account�for�a�much�smaller�share�of�the�total�budget.�Most� of� these� projects� are� small� to� medium�sized,�with�an�average�budget�of�€4.4�million�for� R&D� projects� and� about� €12� million� for�demonstration�projects.

LARGE SCALE MULTIDISCIPLINARy DEMONSTRATORS

A� consistent� number� of� projects� in� the�•�catalogue� present� promising� results� in� small�or� medium� scale� implementations.� As� also�recommended� in� the� EEGI� of� the� SET-Plan,�large-scale� demonstrators,� involving� a� high�number� of� sites� and� real� communities,� are�needed�to�prove�the�up-scaling�and�reliability�of� technical,�market�and� regulatory�solutions�and�to�better�understand�their�social�impact.�

The� increased� complexity� of� the� electricity�•�system�requires�multidisciplinary�consortia�to�share�competencies�and�hedge�risks.�Network�operators�are�establishing�fruitful�cooperation�with� diverse� partner� organizations,� ranging�from� academia� and� research� centres� to�manufacturers�and�IT�companies.�

SETUP OF MARKET PLATFORMS FOR THE PROVISION OF SERVICES

Current� regulation� in� EU� Member� States�•�generally�provides�network�owners/operators�with� the� incentive� to� improve� cost-efficiency�by� reducing� operation� costs� rather� than� by�upgrading� grids� towards� a� smarter� system.�The� regulatory� incentive� model� should� be�revised� in�order� to�accelerate� the� investment�potential� of� network� owners/operators� and�to�encourage�them�to�move�to�a�more�service-based�business�model.�

Page 60: Smart Grid Projects in Europe: Lessons Learned and Current

60

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Service-based� business� models,� differently�•�from� volume-based,� can�make� efficiency� and�sustainability� part� of� the� industry’s� mission,�not�simply�a�constraint�to�deal�with.

Most� of� Smart� Grid� benefits� are� systemic�•�in� nature.� The� set-up� of� service-based�market� platforms� (e.g.� Demand� Response)�is� instrumental� to� offer� a� business� case� to�several� participants� that� may� not� enter� the�market�individually.�

Regulation� should� also� ensure� a� fair� sharing�•�of�costs�and�benefits�in�the�set-up�of�service-based� market� platforms.� Network� owners/operators�are�expected�to�sustain�the�majority�of� up-front� investments� whereas� several�players� might� get� benefits� when� market�platforms�become�operational.�

CONSUMERS

It�is�crucial�to�make�sure�that�consumers�have�•�trust� and� understanding� in� the� whole� Smart�Grid� process� and� can� receive� clear� tangible�benefits.�It�is�necessary�to�involve�consumers�early� on� in� trials� and� demonstrations,� to�target� early� adopters� before� moving� to� full-scale�deployment,�and�to�give�consumers�the�freedom�to�choose�their�level�of�involvement.

Most� projects� require� an� active� role� of�•�consumers.� Grid-centric� application� and�consumer-centric� applications� are� equally�important�in�the�catalogue.�Smart�Grid�players�recognize�that�consumer�engagement�is�crucial�to�have�a�business�case�for�investments�and�to�make�electricity�service�platforms�develop.

Potential�benefits�for�consumers�are�numerous:�•�reduction� of� outages,� more� transparent� and�frequent� billing� information,� participation� in�the�electricity�market�via�aggregators,�energy�savings.�However,�most�of� these�benefits�are�systemic�in�nature;�to�be�captured,�the�whole�system� (consisting� of� physical� and� market�layers)�needs�to�be�in�place.

Segmentation� of� consumers� is� another�•�hallmark� of� the� Smart� Grid.� Consumer�segmentation� implies� (1)� more� tailored�energy� services� to� meet� consumers’� needs�with�possibly�a�higher� rate�of�acceptance�of�new�products�and�services�(2)�possibility� to�target� energy-savvy� and�wealthy� consumers�as� early� adopters� of� new� technologies� (3)�possibility� to� guarantee� different� levels� of�involvement� of� consumers� in� Smart� Grid�applications�and�guarantee� the�protection�of�vulnerable�consumers.

INTEROPERABILITy, DATA PROTECTION AND DATA SECURITy

An�open�and�secure�ICT�infrastructure�is�at�the�•�core�of�a�successful�Smart�Grid�implementation.�Addressing� interoperability,� data� privacy� and�security�is�a�priority�requirement�to�make�the�ICT� infrastructure� truly� open� and� secure� and�reduce�transaction�costs�among�its�users.�

A� scan� of� collected� projects� highlights� the�•�convergence� towards� IP� communication� and�other� standards-based� solutions.� Proven�standards�and�industry�best�practices�used�for�IT�systems�should�be�considered�and�adapted,�and�security�measures�not�reinvented.�

Smart�Grid�projects� require� the� collaboration�•�of�several�players�with�different�competencies�and� background.� Since� security� in� the� ICT�infrastructure� is� a� collective� effort,� it� is�imperative� that� roles� and� responsibilities� are�clearly�defined�and� that�both� the�energy�and�ICT�communities�work�together� to�coordinate�security�measures�to�prevent�blind�spots.�

T•� he� legislative� framework� needs� to� support�these� developments.� As� stated� in� [24],�the� EC� is� ready� to� support� the� Member�States� in� ensuring,� when� deciding� roles�and� responsibilities� regarding� ownership,�possession�and�access�to�data.�

Most� of� collected�projects� have�not� provided�•�responses�on�data�protection�and� security.� It�seems�that�the�potential�to�tackle�this�issue�is�not� fully�exploited.�New�projects� focusing�on�data�handling�would�be�useful�to�assess�how�data�handling�principles�from�other�industries�(e.g.�banking�industry)�can�be�applied�to�Smart�Grids.�A�privacy-by-design�approach�needs�to�be�adopted�[19].�

Page 61: Smart Grid Projects in Europe: Lessons Learned and Current

61

JRC Reference Report

6.2 Future work

As�future�work,�we�aim�at�achieving�an�exhaustive�and� continuous� mapping� of� Smart� Grid� projects�throughout�Europe.�Building�upon� the� results�and�feedbacks�of�this�first�data�collection�exercise,�we�will� continue� to� collect� new� Smart� Grid� projects�and� to� include� new� available� data� on� existing�projects�as�projects�progress.�Also,�acknowledging�that� projects� aimed� at� making� the� grid� stronger�(e.g.� through� new� lines� and� substations)� cover� a�large� share� of� the� investment� for� the� bulk� power�system,�we�aim�at�developing�a�data� collection� in�this�area�as�well.�Accordingly,�we�intend�to�perform�an� exhaustive� and� continuous� mapping� of� power�system� projects� throughout� Europe� that� will� be�presented�in�a�review�of�the�present�study.

Future� work� will� also� be� devoted� to� perform�a� quantitative� analysis� of� the� performance� of�collected� projects,� which� has� not� been� included�in� this� report� for� the� lack� of� quantitative� data�gathered.�We�are�presently�working�on�two�different�quantitative�analyses:�a�performance�assessment�(Key� Performance� Indicator-KPI� analysis)� and� a�cost-benefit� analysis.� In� the� following,� we� briefly�discuss� the� guidelines� we� are� following� for� the�application�of�both�methodological�approaches.

KPI analysis

As�stated�in�section�4.4,�we�can�evaluate�the�merit�of� the� deployment� of� a� Smart� Grid� project� by�measuring� how�much� it� contributes� to� progresses�toward�Smart�Grids�services�and�by�measuring�how�much�it�contributes�to�progresses�toward�expected�benefits�and�outcomes.�

The� performance� assessment� measures� the�contribution� of� a� project� toward� the� achievement�of� the� benefits� that� are� associated� with� the� ideal�functionalities�of�a�Smart�Grid.�The�analysis�is�based�on� the� definitions� of� a� set� of� KPIs� to� evaluate� the�benefits�of�a�Smart�Grid�project.�

The� Smart� Grid� Task� Force� has� elaborated� a�methodology� to� make� the� evaluation� process�structured� and� systematic.� The� merit� deployment�matrix� introduced� in� [20]� is� used� to� identify� the�relationship� between� services/functionalities�with� corresponding�benefits/KPI�and� to�define� the�strength�of�the�link.

The� set� of� KPIs� defined� by� the� EC� Task� Force� [20]�is� mainly� focused� on� consumers’� benefits� and� is�meant�to�be�used�by�regulators�to�assess�the�impact�of�project�deployment�using� the�merit�deployment�matrix.

At�the�European�level,�another�set�of�KPIs�is�under�discussion�for�the�assessment�of�the�contribution�of�EEGI�projects�to�SET-Plan�objectives�[14].

The� set� of� KPIs� defined� in� this� context� is� mainly�focused�on�the�technical�performance�of�Smart�Grid�projects� and� is� mainly� tailored� for� grid� operators�rather�than�regulators.�

Page 62: Smart Grid Projects in Europe: Lessons Learned and Current

62

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

BOX 18. Future Work - Highlights

We� aim� at� an� exhaustive� and� continuous�•�mapping� of� Smart� Grid� projects� throughout�Europe.�We�will�continue�to�collect�new�Smart�Grid� projects� and� to� include� new� available�data�on�existing�projects�as�projects�progress.�Also,� acknowledging� that� projects� aiming� at�making� the� grid� stronger� (e.g.� through� new�lines� and� substations)� cover� a� large� share�of�the�investment�for�the�bulk�power�system,�we�aim�at�developing�a�data�collection�in�this�area�as�well.��Accordingly,�a�periodic�review�of�this�study�will�be�presented.�

Coordination�with�other�European�initiatives�on�•�Smart�Grids�which�the�Commission�expects�to�launch�at�the�end�of�2011.�Further�revisions�of�this�study�aim�at�closer�collaboration�with�the�EEGI.�This� is� important� to�have�clear� in�mind�the�common�ground�between�the�EEGI�and�the�JRC�mapping�and�keep�track�of�and�exchange�data�and�results.�

KPI�analysis� –�Presently,� the�Smart�Grid�Task�•�Force� and� EEGI� have� developed� two� sets� of�KPIs� to� assess� progresses� in� Smart� Grids.�The� KPIs� developed� by� the� Task� Force� are�intended� for� regulators.� They� cover� not� only�technical� aspects� of� Smart� Grids� and� have� a�particular�focus�on�the�impact�of�Smart�Grids�on� consumers.� The� KPIs� developed� by� EEGI�are�particularly�useful�for�utilities.�They�mainly�cover� technical� aspects� of� Smart� Grids.� The�Commission�is�working�to�ensure�consistencies�and�synergies�between�the�two�sets�of�KPIs.

Cost-Benefit� analysis� –In� the� framework� of�•�the� EU-US� Energy� Council,� the� Commission�is� collaborating� with� the� DoE� on� common�assessment� methodologies� for� Smart� Grids.�In� this� context,� we� plan� to� adapt� the� EPRI�methodology� to� the� European� context.� With�this� goal� in� mind,� the� JRC� is� collaborating�with� industrial�partners� to� test�a�cost-benefit�methodology� on� case� studies� from� the�catalogue.

Cost benefit analysis

The� cost-benefit� analysis� weighs� the� investment�costs� against� some� concrete� benefits� that� result�from�the�implementation�of�the�project.�

As�shown�in�section�2.1,�the�great�majority�of�projects�did� not� provide� any� data� on� cost-benefit� analysis.�Presumably,�some�projects�did�not�perform�a�cost-benefit� analysis� as� they� have� not� been� completed�yet;� others� may� have� not� shared� the� data� for�business� confidentiality.� In� many� other� instances,�however,� a� detailed� cost-benefit� analysis� was� not�in�the�scope�of�the�project,�as�most�of�the�collected�projects� focused� on� testing� the� effectiveness� of�technologies,� applications� and� solutions,� rather�than� their� business� case.� Overall,� it� emerged� the�need�for�the�development�of�a�common�cost-benefit�methodology� and� of� a� dedicated� data� collection�template�for�fair�comparisons.�

We�therefore�conducted�a�wide�literature�review�on�this�topic.�It�emerged�that�at�the�international�level,�the� need� to�measure� costs� and� benefits� of� Smart�Grid�projects� is�widespread.�However,�a�structured�approach� to� cost-benefit� analysis� in� this� field� has�not�been�tested�yet�on�a�concrete�case�study.

In�related�literature,�the�most�advanced�work�on�cost-benefit�analysis�for�Smart�Grids�has�been�published�by� the� Electrical� Power� Research� Institute� (EPRI)�in� 2010� [15].� The� US� Department� of� Energy� (DoE)�commissioned�this�study�to�perform�a�cost-benefit�analysis� on� a� set� of� 9� demonstrators� that� were�financed� in� 2007.�DoE� and� EPRI� intend� to� use� the�cost-benefit�methodology�for�ex-post�evaluation.In�the�framework�of�the�EU-US�Energy�Council,�the�Commission� is� collaborating� with� the� DoE.� In� this�context,�the�JRC�is�working�with�industrial�partners�to� adapt� the� EPRI� methodology� to� the� European�context.� Currently,� a� few� case� studies� from� the�JRC� catalogue� are� being� used� to� test� the� EPRI�methodology.

Page 63: Smart Grid Projects in Europe: Lessons Learned and Current

63

JRC Reference Report

reFerenceS

[1]� AEA�(Austrian�Energy�Agency)�(2011),�European Smart Metering Landscape Report,�SmartRegions�Deliverable�2.1,�February�2011,�AEA,�Vienna.�

[2]� AUSTRADE�(Australian�Trade�Commission)�(2010),�Australian�Energy�Efficiency�Market�Industry�Capability�Report,�AUSTRADE,�July�2010,�available�at:�http://di.dk/SiteCollectionDocuments/Markedsudvikling/2%20Australian%20Energy%20Efficiency%20Industry%20Capability%20Report.pdf,�accessed�February�2011.

[3]� Brown�J.,�Hendry�C.�(2009),�Public�demonstration�projects�and�field�trials:�Accelerating��commercialization�of�sustainable�technology�in�solar�photovoltaics”,�Energy Policy,�Vol.��37,�pp.�2560-2573.

[4]� Christensen,�A.,�Green,�J.,�Roberts,�R.�(2010),�Maximizing value from smart grids,�McKinsey�on�Smart�Grid,�Number�1,�McKinsey&Company,�available�at:�www.mckinsey.com/.../McK%20on%20smart%20grids/MoSG_MaxValue_VF.aspx,�accessed�February�2011.

[5]� Chupka�M.W.,�Earle�R.,�Fox-Penner�P.,�Hledik�R.�(2008),�Transforming America’s Power Industry: The Investment Challenge 2010-2030,�The�Edison�Foundation,�Washington,�D.C.,�available�at:�http://www.eei.org/ourissues/finance/Documents/Transforming_Americas_Power_Industry.pdf,�accessed�January�2011.

[6]� DECC�(Department�of�Energy�and�Climate�Change)�(2009),�Smarter Grids: The Opportunity,�available�at:��http://www.decc.gov.uk/assets/decc/what%20we%20do/uk%20energy%20supply/futureelectricitynetworks/1_20091203163757_e_@@_smartergridsopportunity.pdf,�accessed�January�2011.�

[7]� DOE�(U.S.�Department�of�Energy)�(2009),�Guidebook for ARRA Smart Grid Program Metrics and Benefits,�US�DOE:�Washington,�DC.�

[8]� DOE�(U.S.�Department�of�Energy)�(2009),�Smart Grid System Report,�US�DOE:�Washington,�DC.�

[9]� Eichin�R.,�Heng�A.�(2010),�U.S. Smart Grid Vendor Ecosystem - Report on the companies and market dynamics shaping the current U.S. Smart Grid landscape,�Cleantech�Group,�available�at:�http://www.technologyresearch.org/wp-content/uploads/2010/09/SmartGridVendor.pdf,�accessed�January�2011.

[10]� Electra�(2009),�Twenty solutions for growth and investment to 2020 and beyond,�available�at:�http://ec.europa.eu/enterprise/sectors/electrical/files/electrareport_en.pdf,�accessed�December�2010.

[11]� Elzen,�B.,�Moon,�D.�(2000),�Demonstrating Cleaner Vehicles: Guidelines for Success.�Utopia.�European�Commission,�Transport�RTD�Programme.�EC�contract�UR-97-SC-2076,�available�at�:�http://www.transport-research.info/Upload/Documents/200310/utopia.pdf,�accessed�December�2010.

[12]� ENTSOE�(European�Network�of�Transmission�System�Operators�for�Electricity)�(2010),�Research and Development Plan, European Grid Towards 2020 Challenges and Beyond,���available�at:�https://www.entsoe.eu/fileadmin/user_upload/_library/Key_Documents/100331_ENTSOE_R_D_Plan_FINAL.pdf,�accessed�February�2011.

[13]� ENTSOE�(European�Network�of�Transmission�System�Operators�for�Electricity)�(2010),�Ten-Year Network Development Plan 2010-2020,�available�at:�https://www.entsoe.eu/fileadmin/user_upload/_library/SDC/TYNDP/TYNDP-�final_document.pdf,�accessed�January�2011.

[14]� ENTSOE�(European�Network�of�Transmission�System�Operators�for�Electricity)�(2010),�The European Electricity Grid Initiative (EEGI) Roadmap 2010-18 and Detailed Implementation Plan 2010-12,�available�at:�http://ec.europa.eu/energy/technology/initiatives/doc/grid_implementation_plan_final.pdf,�accessed�January�2011.

Page 64: Smart Grid Projects in Europe: Lessons Learned and Current

64

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

[15]� EPRI�(Electric�Power�Research�Institute)�(2010), Methodological Approach for Estimating the Benefits and Costs of Smart Grid Demonstration Projects,�EPRI,�January�2010,�available�at:�http://www.smartgrid.gov/sites/default/files/pdfs/methodological_approach_for_estimating_the_benefits_and_costs_of_sgdp.pdf,�accessed�December�2010.

[16]� EPRI�(Electric�Power�Research�Institute)�(2011),�Estimating the Costs and Benefits of the Smart Grid - A Preliminary Estimate of the Investment Requirements and the Resultant Benefits of a Fully Functioning Smart Grid,�EPRI,�April�2011,�available�at:�http://my.epri.com/portal/server.pt?space=CommunityPage&cached=true&parentname=ObjMgr&parentid=2&control=SetCommunity&CommunityID=404&RaiseDocID=000000000001022519&RaiseDocType=Abstract_id,�accessed�April�2011.

[17]� ERGEG�(European�Regulators�Group�for�Electricity�and�Gas)�(2010),�Position Paper on Smart Grids - an ERGEG Conclusions Paper,�ERGEG,�June�2010,�available�at:�http://www.energy-regulators.eu/portal/page/portal/EER_HOME/EER_PUBLICATIONS/CEER_PAPERS/Electricity/2010/E10-EQS-38-05_SmartGrids_Conclusions_10-Jun-2010_Corrigendum.pdf,�accessed�December�2010.

[18]� EU�Commission�Task�Force�for�Smart�Grids�(2010),�Expert�Group�1:�Functionalities of smart grids and smart meters,�available�at:�http://ec.europa.eu/energy/gas_electricity/smartgrids/doc/expert_group1.pdf,�accessed�February�2011.

[19]� EU�Commission�Task�Force�for�Smart�Grids�(2011),�Expert�Group�2:�Regulatory Recommendations for Data Safety, Data Handling and Data Protection,�available�at:�http://ec.europa.eu/energy/gas_electricity/smartgrids/doc/expert_group2.pdf,�accessed�March�2011.

[20]� EU�Commission�Task�Force�for�Smart�Grids�(2011),�Expert�Group�3:�Roles and Responsibilities of Actors involved in the Smart Grids Deployment,�available�at:�http://ec.europa.eu/energy/gas_electricity/smartgrids/doc/expert_group3.pdf,�accessed�May�2011.

[21]� EUROPEAN�COMMISSION�(2006)�Directorate-General�for�Research,�European Smart Grids Technology Platform: Vision and Strategy for Europe’s Electricity Networks of the Future,�Brussels�2006,�available�at:�http://ec.europa.eu/research/energy/pdf/smartgrids_en.pdf,�accessed�December�2010.�

[22]� EUROPEAN�COMMISSION�(2007)�Communication�from�the�Commission�to�the�European�Council�and�the�European�Parliament,�An Energy Policy for Europe,�Brussels,�10.1.2007�COM(2007)�1�final,�available�at:�http://ec.europa.eu/energy/energy_policy/doc/01_energy_policy_for_europe_en.pdf,�accessed�January�2011.

[23]� EUROPEAN�COMMISSION�(2007)�Directorate-General�for�Research,�Strategic Research Agenda for Europe’s Electricity Networks of the Future,�Brussels�2007,�available�at:�http://bookshop.europa.eu/is-bin/INTERSHOP.enfinity/WFS/EU-Bookshop-Site/en_GB/-/EUR/ViewPublication-Start?PublicationKey=KINA22580,�accessed�December�2010.

[24]� EUROPEAN�COMMISSION�(2011)�Communication�from�the�Commission�to�the�European�Parliament,�the�Council,�the�European�Economic�and�Social�Committee�and�the�Committee�of�the�Regions,�Smart Grids: From Innovation to Deployment,�Brussels,�12.4.2011,�COM(2011)�202�final,�available�at:�http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2011:0202:FIN:EN:PDF,�accessed�April�2011.

[25]� European�Foundation�for�the�Improvement�of�Living�and�Working�Conditions�(EUROFUND)�(2008),�Trends and drivers of change in the European energy sector: Mapping report,�available�at:�http://www.eurofound.europa.eu/pubdocs/2008/12/en/1/ef0812en.pdf,�accessed�January�2011.

[26]� Evans�D.�S.�(2003),�Some�Empirical�Aspects�of�Multi-sided�Platform�Industries,�Review of Network Economics,�Vol.2�Issue�3�–�2003.

Page 65: Smart Grid Projects in Europe: Lessons Learned and Current

65

JRC Reference Report

[27]� Faruqui�A.,�Harris�D.,�Hledik�R.�(2009)�Unlocking�the €53�Billion�Savings�from�Smart�Meters�in�the�EU�-�How�increasing�the�adoption�of�dynamic�tariffs�could�make�or�break�the�EU’s�smart�grid�investment,�The�Brattle�Group,�Discussion�Paper,�October�2009,�available�at:�http://www.brattle.com/_documents/uploadlibrary/upload805.pdf,�accessed�January�2011.

[28]� Flink�T.,�Morehouse�J.�(2010),�Securing the Smart Grids. Next Generation power grids security,�October�2010,�Syngress,�Burlington.

[29]� Fox-Penner�P.�(2010),�Smart Power. Climate Change, the Smart Grid and the Future of Electric Utilities,�April�2010,�Island�Press,�Washington�DC.

[30]� IEA�(International�Energy�Agency)�(2008),�World Energy Outlook�2008,�OECD/IEA,�Paris.

[31]� Innovation�Observatory�(2011),�Smart Grid Technology Investment: Forecast for 2010- 2030,�February�2011.

[32]� Johnson,�M.�W.,�Suskewicz,�J.�(2009),�How�to�jump-start�the�clean-tech�economy,�Harvard Business Review,�Harvard�Business�Publishing,�Boston,�available�at�http://hbr.org/2009/11/how-to-jump-start-the-clean-tech-economy/ar/1,�accessed�February�2011.

[33]� Karlstrom,�M.,�Sanden�B.A.�(2004),�Selecting�and�assessing�demonstration�projects�for�technology�assessment:�The�cases�of�fuel�cells�and�hydrogen�systems�in�Sweden,�Innovation: management and policy practice,�Vol.�6,�pp.�286-293.

[34]� KEMA�(2008),�The U.S. Smart Grid Revolution – KEMA’s Perspectives for Job Creation,�prepared�for�the�GridWise�Alliance,�December�2008,�available�at:�http://www.smartgridnews.com/artman/uploads/1/KEMA_s_Perspectives_for_Job_Creation.pdf,�accessed�December�2010.��

[35]� Kiesling,�L.�(2009),�A smart grid is a transactive grid,�Kellogg�Graduate�School�of�Management,�Northwestern�University.

[36]� Kostyk,�T.�(2010,�February�16),�Smart�Grid�Backlash:�How�to�Put�an�End�to�Consumer�Resistance,�SmartGridNews.com,�available�at:�http://www.smartgridnews.com/artman/publish/�Business_Planning_News/Smart-Grid-Backlash-How-to-Put-an-End-to-Consumer-Resistance-1887.html,�accessed�March�2011.

[37]� Leeds�D.J.�(2009),�The Smart Grid In 2010: Market Segments, Applications and Industry Players,�GTM�research,�July�2009,�available�at:�http://www.greentechmedia.com/research/report/smart-grid-in-2010,�accessed�February�2011.

[38]� Lo�Schiavo,�L.�(2011),�Smart Metering and Smart Grids: The Italian Regulatory Experience,�prepared�for�the�KSA�Smart�Grid�Workshop,�8-9�January�2001,�Riyadh,�available�at:�http://ksasmartgrid.org/Content/Mr_Luca_Lo_Schiavo.pdf,�accessed�March�2011.

[39]� Miyoung,�K.�(2010,�January�25),�South�Korea�targets�$24�billion�smart�grid�spending�by�2030,�Reuters,�available�at�http://www.reuters.com/article/2010/01/25/us-smartgrid-korea-idUSTRE60O0YC20100125,�accessed�March�2011.

[40]� NETL�(National�Energy�Technology�Laboratory)�(2010)�Understanding the Benefits of the Smart Grid,�U.S.�Department�of�Energy�(DOE),�available�at:�http://www.netl.doe.gov/smartgrid/referenceshelf/whitepapers/�06.18.2010_Understanding%20Smart%20Grid%20Benefits.pdf,�accessed�February�2011.

[41]� NETL�(National�Energy�Technology�Laboratory)�(2010),��West Virginia Smart Grid Implementation Plan – Roadmap Framework,�U.S.�Department�of�Energy�(DOE)�,�prepared�for�GridWeek�2010,�October�18�2010,�Washington,�DC,�available�at�http://www.smartgrid.gov/sites/default/files/pdfs/10182010_gw_wv_sgip.pdf,�accessed�February�2011.

Page 66: Smart Grid Projects in Europe: Lessons Learned and Current

66

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

[42]� NIST�(National�Institute�of�Standards�and�Technology)�(2010),�NIST Framework and Roadmap for Smart Grid Interoperability Standards – Release 1.0,�U.S.�Department�of�Commerce,�NIST�Special�Publication�1108,�available�at:�http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf,�accessed�March�2011.

[43]� OECD�(Organisation�for�Economic�Co-operation�and�Development)�(2002),�Frascati Manual 2002: Proposed Standard Practice for Surveys on Research and Experimental Development,�OECD:�Paris.

[44]� OpenMeter�Deliverable�D1.1�(2010), Report on the Identification and Specification of Functional, Technical, Economical and General Requirements of Advanced Multi-Metering Infrastructure, Including Security Requirements,�OPEN�Meter�Energy�Project�No�226369.�Funded�by�EC.�Available�at:�http://www.openmeter.com/files/deliverables/Open%20Meter_D3%201_Architecture_v6_.pdf,�accessed�March�2011.

[45]� OpenMeter�Deliverable�D3.1�(2010),�Design of the Overall System Architecture,�OPEN�meter,�Energy�Project�No�226369.�Funded�by�EC.�Available�at:�http://www.openmeter.com/files/deliverables/Open%20Meter_D3%201_Architecture_v6_.pdf,�accessed�April�2011.

[46]� Pearson�I.L.G.�(2011),�Smart�grid�cyber�security�for�Europe.�Energy Policy�(2011),�doi:10.1016/j.enpol.2011.05.043.

[47]� Pike�Research�(2011),�Smart Grids in Europe,�Pike�Research�Cleantech�Market�Intelligence,�available�at:�http://www.pikeresearch.com/research/smart-grids-in-europe,�accessed�February�2011.

[48]� Sakamaki�S.�(2011),�Japan�to�Consider�Using�Energy-Saving,�Smart�Grid�Technologies,�Bloomberg,�available�at:�http://www.bloomberg.com/news/2011-05-18/japan-to-consider-using-energy-saving-smart-grid-technologies-edano-says.html,�accessed�March�2011.

[49]� SmartGridnews.com�(2010,�January�27),�Smart Grid Snapshot: China Tops Stimulus Funding,�SmartGridNews.com,�available�at:�http://www.smartgridnews.com/artman/publish/�Stimulus_News_Digest_Products/Smart-Grid-Snapshot-China-Tops-Stimulus-Funding-1827.html,�accessed�March�2011.

[50]� Smartmeters.com�(2011,�January�1),�Smart Meters Deployment Looks Strong for 2011,�available�at:�http://www.smartmeters.com/the-news/1476-smart-meters-deployment-looks-strong-for-2011.html,�accessed�January�2011.

[51]� Stromback,�J.,�Dromacque,�C.�(2010),�Evaluation of residential smart meter policies, WEC-ADEME Case studies on Energy Efficiency Measures and Policies,�VaasaETT�Global�Energy�Think�Tank,�available�at:�http://worldenergy.org/documents/�ee_case_study__smart_meters.pdf,�accessed�March�2011.

[52]� The�Economist�(2008,�March�6),�Power plays,�available�at:�http://www.economist.com/�node/10789425,�accessed�January�2011.

[53]� The�Economist�(2010,�February�26),�Home sweet passive home – A lazy man’s guide to cutting energy costs,�available�at:�http://www.economist.com/node/�15585504?�story_id�=15585504,�accessed�February�2011.

[54]� Thornton,�J.�(2010),�Growth�of�Opportunity,�Mechanical Engineering,�Vol.�132(10).

[55]� Union�of�the�Electricity�Industry–EURE-LECTRIC�(2007),�The Role of Electricity A New Path to Secure, Competitive Energy in a Carbon-Constrained World,��EURE-LECTRIC,�June�2007,�available�at:�http://www2.eurelectric.org/DocShareNoFrame/Docs/2/MCDCHIMBLGDIPAEBLJOHILB-KFAY1YD1HYO5CM1OLFLM6/Eurelectric/docs/DLS/FullreportCOMPLETEfinallay-out040607-2007-030-0612-2-.pdf,�accessed�December�2010.

Page 67: Smart Grid Projects in Europe: Lessons Learned and Current

67

JRC Reference Report

[56]� Union�of�the�Electricity�Industry–EURELECTRIC�(2009),�Smart Grids and Networks of the Future - EURELECTRIC Views,�EURELECTRIC,�May�2009,�Brussels,�available�at:�www.eurelectric.org/Download/Download.aspx?DocumentID=26620,�accessed�December�2010.

[57]� Valocchi�M.,�Juliano�J.,�Schurr�A.�(2009),�Lighting the way, Understanding the smart energy consumer,�February�2009,�IBM�Global�Services,�Somers.�

[58]� Valocchi�M.,�Juliano�J.,�Schurr�A.�(2010),�Switching perspectives - Creating new business models for a changing world of energy,�IBM�Institute�for�Business�Value,�Executive�report,�available�at:�http://public.dhe.ibm.com/common/ssi/ecm/en/gbe03289usen/GBE03289USEN.PDF,�accessed�February�2011.�

[59]� Valocchi�M.,�Schurr�A.,�Juliano�J.,�Nelson�E.�(2007), Plugging in the Consumer Innovating Utility Business Models for the Future,�2007,�IBM�Global�Services,�Somers.

[60]� Vasconcelos,�J.�(2009), Smart Metering: An Overview of Regulatory and Technological Challenges,�Florence�School�of�Regulation�Seminar,�February�6�2009,�Florence,�available�at:�http://www.florence-school.eu/portal/page/portal/FSR_HOME/ENERGY/Policy_Events/Workshops/2009/Smart_Metering1/VASCONCELOS.pdf,�accessed�December�2010.

[61]� Watson-Currie,�E.�(2010,�February�9),�Blowback�Attack:�The�Smart�Grid’s�Greatest�Danger?,�SmartGridNews.com,�available�at�http://www.smartgridnews.com/artman/publish/�Business_Strategy/Blowback-Attack-The-Smart-Grid-s-Greatest-Danger-1875.html,�accessed�March�2011.

[62]� WEF�(World�Economic�Forum)�(2009),�Accelerating Successful Smart Grid Investments,�WEF�in�partnership�with�Accenture,�WEF:�Geneva.

[63]� WEF�(World�Economic�Forum)�(2010),�Accelerating Successful Smart Grid Pilots,�WEF�in�partnership�with�Accenture,�WEF:�Geneva.

[64]� Zheng,�A.�Y.�(2007),�A Smarter Grid for India,�SmartGridNews.com,�available�at�http://www.smartgridnews.com/artman/publish/article_303.html,�accessed�February�2011.

[65]� Zypryme�Research�&�Consulting�(2011),�China: Rise of the Smart Grid,�Special�Report�by�Zypryme’s�Smart�Grid�Insights,�available�at:�http://www.zpryme.com/�SmartGridInsights/China_Rise_of_the_Smart_Grid_January_2011_Zpryme_Research.pdf,�accessed�February�2011.

Page 68: Smart Grid Projects in Europe: Lessons Learned and Current

68

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Page 69: Smart Grid Projects in Europe: Lessons Learned and Current

69

JRC Reference Report

aBBreviationS and acronYmS

AEEG� Autorità�per�l’Energia�Elettrica�e�il�Gas�(IT)

AMI� Advanced�Metering�Infrastructure�CHP� Combined�Heat�and�PowerCO2� Carbon�DioxideCOTS� Commercial�off-the-shelfDEMS� Distributed�Energy�Management�

SystemDER� Distributed�Energy�ResourcesDG�ENER� Directorate-General�for�EnergyDG� Distributed�GenerationDMS� Distribution�Management�SystemDR� Demand�ResponseDSO� Distribution�System�OperatorEC� European�CommissionEEGI� European�Electricity�Grid�InitiativeEU� European�UnionEV� Electric�VehicleFP6� Sixth�Framework�ProgramFP7� Seventh�Framework�Program�GHG� Greenhouse�GasICT� Information�and�Communication�

TechnologiesIEA� International�Energy�AgencyIP� Internet�ProtocolIT� Information�Technologies�JRC� Joint�Research�CentreKPI� Key�Performance�IndicatorKWh� Kilowatt-HourMSP� Multi-Sided�PlatformOFGEM� Office�of�the�Gas�and�Electricity�

Markets�(UK)PV� PhotovoltaicsR&D� Research�and�DevelopmentRES� Renewable�Energy�SourcesSAIDI� System�Average�Interruption�

Duration�IndexSAIFI��� System�Average�Interruption�

Frequency�IndexSCADA� Supervisory�Control�and�Data�

AcquisitionSET-Plan� Strategic�Energy�Technology�PlanSMEs� Small�and�Medium�EnterprisesTSO� Transmission�System�OperatorV2G� Vehicle�to�GridVPP� Virtual�Power�Plant

countrY codeS

AT� � AustriaBE� � BelgiumBG� � BulgariaCH� � Switzerland,�HelvetiaCY� � CyprusCZ� � Czech�RepublicDE� � GermanyDK� � DenmarkEE� � EstoniaEL� � GreeceES� � SpainFI� � Finland,�SuomiFR� � FranceHR� � CroatiaHU� � HungaryIE� � IrelandIT� � ItalyLI� � LiechtensteinLT� � LithuaniaLU� � LuxemburgLV� � LatviaMK� � MacedoniaMT� � MaltaNL� � Netherlands,�TheNO� � NorwayPL� � PolandPT� � PortugalRO� � RomaniaSE� � SwedenSI� � SloveniaSK� � SlovakiaUK� � United�KingdomUSA� � United�States�of�America

Page 70: Smart Grid Projects in Europe: Lessons Learned and Current

70

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

anneX i - data collection template

Qualitative assessment:

PILOT PROJECT DESCRIPTION

Project�name

Leading�Organization(Name�and�Country)

Other�Participants(Names�and�Countries)

Contact�Person�(Name,�Phone�Email)�and�Project�Website

Start�date�and�duration�of�the�project

Budget�and�contributing�organizations�(indicating�share�of�contribution)

Location/s

Project�category�(a)(If�more�than�one�category�applies,�please�express�the�relevance�of�the�category�with�a�number�between�0�and�1)

Quantitative�sizing�of�the�project:�number�of�metering�points,�average�and�peak�power�delivered,�number�of�generators�directly�involved

Duration�of�the�data�collection�within�the�operational�pilot

How�are�actors�involved�representative�of�a�full�deployment�(socially,�technically,�geographically,�motivation,�etc.)?

Page 71: Smart Grid Projects in Europe: Lessons Learned and Current

71

JRC Reference Report

Summary�of�Project�goals�and�expected�benefits�(max�50�words):

Project�Summary�(max�200�words):

List�of�deployed�enabling�assets/technologies/applications�(max�50�words):

List�of�pertinent�Smart�Grid�functionalities�(as�per�Task�Force�EG1)�(max�100�words):

Specific�data�protection�and�security�issues�(if�addressed)�(max�100�words):

Key�project�outcomes�and�overview�of�estimated�costs/benefits�(max�200�words):

Page 72: Smart Grid Projects in Europe: Lessons Learned and Current

72

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Quantitative assessment:

1)� If�you�have�performed�a�cost-benefit�assessment�of�the�project,�please�provide�the�study�or�provide�a�summary�which�includes�at�least�the�following�elements:

•� Description�of�the�baseline�(i.e.�the�system�condition�that�would�have�occurred�had�the�project�not�been�taken)

•� Description�of�the�assumptions�made•� Description�of�the�conditions�(e.g.�hourly�consumption,�CO2�emissions,�congestions�(MW)�

etc.)�that�have�been�monitored�to�assess�the�impact�of�the�pilot�project•� Quantification�(and,�possibly,�monetization)�of�the�benefits�via�suitable�metrics•� Quantification�of�the�costs�for�both�baseline�and�project�conditions•� Main�results�and�figures,�including�assessment�of�beneficiaries

2)� It�might�be�possible�that�you�have�not�performed�a�cost-benefit�assessment�of�the�project�but�you�have�data�that�are�useful�for�the�estimation�of�benefits�and�costs.�In�this�case,�in�order�to�perform�a�cost-benefit�assessment�to�be�included�in�the�report,�please�provide�the�data�by�following�these�steps:

a)� Choose�the�relevant�benefits/criteria�from�the�list�provided�in�Task�Force�EG3.

b)� According�to�the�data�in�your�possession,�please�advise�a�metric�that�might�be�used�to�quantify�the�benefits/criteria.

c)� Please�provide�all�the�data�that�may�be�useful�to�calculate�the�relevant�benefit�metric,�both�with�and�without�the�project�in�place

Here�is�an�example�of�the�breakdown�to�link�data�to�benefits:

Example of map benefit-data

Benefit

Informed�consumers’�decisions

Benefit

Informed�consumers’�decisions

Benefit Criteria

Coherence�between�tariffs�and�behaviors

Benefit Criteria

Coherence�between�tariffs�and�behaviors

Consumers

Lower�electricity�bills

DSO

Peak�load�reduction

Society

Lower�emissions�due�to�demand�side�management

Metric

E.g.�Price�elasticity�

Necessary Data

Hourly�consumption�data�and�prices�

(with�and�without�the�project�in�place)

Beneficiaries

d)� For� each� benefit,� please� provide� a� brief� qualitative� description� of� the� expected� impact� on�beneficiaries,�as�reported�in�the�hypothetical�example�below:

Example of map benefit-beneficiaries

e)� Please�provide�annual�cost�estimate�for�both�baseline�and�project�conditions

Page 73: Smart Grid Projects in Europe: Lessons Learned and Current

73

JRC Reference Report

Benefit

Informed�consumers’�decisions

Benefit Criteria

Coherence�between�tariffs�and�behaviors

Activated functionalities

Consumption/injection�data�and�price�signals�by�

different�means

Installation�of�in-home�display�and�smart�meter�to�stimulate�Demand�

Response�

Contribution:�0.6

Improve�energy�usage�information

Installation�of�in-home�display�and�smart�meter�to�stimulate�Demand�

Response

Contribution:�0.3

3)� Finally,�we�would�like�to�use�the�benefit-functionality�matrix�developed�in�Task�Force�EG�3�to�further�an-alyze�the�impact�of�selected�pilot�projects�on�Smart�Grid�Functionalities.�To�contribute�to�this�exercise,�please�follow�the�following�steps:

a)� Identify�benefits/criteria�and�functionalities�that�are�relevant�to�your�pilot�project.�Select�the�cor-responding�matching�cells.

b)� For�each�cell,�briefly�explain�project�contribution�and�assign�a�weight�to�it�(0�for�no�contribution,�1�for�high�contribution�and�a�value�between�0�and�1�for�some�degree�of�contribution)

The�table�below�reports�an�illustrative�example,�in�which�a�pilot�project�delivers�one�benefit�through�the�activation�of�two�functionalities.�Corresponding�matrix�cells�(highlighted�in�grey)�report�how�the�project�links�the�functionalities�with�the�benefit�and�the�weight�of�the�contribution.

Page 74: Smart Grid Projects in Europe: Lessons Learned and Current

74

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

anneX ii – Smart Grid ServiceS (Smart Grid taSK Force)

A. Enabling the network to integrate users with new requirements Outcome:� Guarantee�the�integration�of�distributed�energy�resources�(both�large�

and�small-scale�stochastic�renewable�generation,�heat�pumps,�electric�vehicles�and�storage)�connected�to�the�distribution�network.

Provider:� DSOsPrimary�beneficiaries:� Generators,�consumers�(including�mobile�consumers),�storage�owners.

B. Enhancing efficiency in day-to-day grid operation Outcome:� Optimise�the�operation�of�distribution�assets�and�improve�the�efficiency�

of�the�network�through�enhanced�automation,�monitoring,�protection�and�real�time�operation.�Faster�fault�identification/resolution�will�help�improve�continuity�of�supply�levels.�

� �Better�understanding�and�management�of�technical�and�nontechnical�losses,�and�optimised�asset�maintenance�activities�based�on�detailed�operational�information.

Provider:�� DSOs,�metering�operatorsPrimary�beneficiaries:� Consumers,�generators,�suppliers,�DSOs.

C. Ensuring network security, system control and quality of supplyOutcome:� Foster�system�security�through�an�intelligent�and�more�effective�control�

of�distributed�energy�resources,�ancillary�backup�reserves�and�other�ancillary�services.�Maximise�the�capability�of�the�network�to�manage�intermittent�generation,�without�adversely�affecting�quality�of�supply�parameters.

Provider:�� DSOs,�aggregators,�suppliers.Primary�beneficiaries:� Generators,�consumers,�aggregators,�DSOs,�TSOs.

D. Enabling better planning of future network investment Outcome:� Collection�and�use�of�data�to�enable�more�accurate�modelling�of�

networks�especially�at�LV�level,�also�taking�into�account�new�grid�users,�in�order�to�optimise�infrastructure�requirements�and�so�reduce�their�environmental�impact.�Introduction�of�new�methodologies�for�more�‘active’�distribution,�exploiting�active�and�reactive�control�capabilities�of�distributed�energy�resources.

Provider:�� DSOs,�metering�operators.Primary�beneficiaries:� Consumers,�generators,�storage�owners.

E. Improving market functioning and customer serviceOutcome:� Increase�the�performance�and�reliability�of�current�market�processes�

through�improved�data�and�data�flows�between�market�participants,�and�so�enhance�customer�experience.�

Provider:�� Suppliers�(with�applications�and�services�providers),�power�exchange�platform�providers,�DSOs,�metering�operators.

Primary�beneficiaries:� Consumers,�suppliers,�applications�and�services�providers.

Page 75: Smart Grid Projects in Europe: Lessons Learned and Current

75

JRC Reference Report

F. Enabling and encouraging stronger and more direct involvement of consumers in their energy usage and managementOutcome:� Foster�greater�consumption�awareness�taking�advantage�of�Smart�

Metering�systems�and�improved�customer�information,�in�order�to�allow�consumers�to�modify�their�behaviour�according�to�price�and�load�signals�and�related�information.

� Promote�the�active�participation�of�all�actors�to�the�electricity�market,�through�Demand�Response�programmes�and�a�more�effective�management�of�the�variable�and�nonprogrammable�generation.�Obtain�the�consequent�system�benefits:�peak�reduction,�reduced�network�investments,�ability�to�integrate�more�intermittent�generation.�

Provider:�� Suppliers�(with�metering�operators�and�DSOs),�ESCOs.Primary�beneficiaries:� Consumers,�generators.� The�only�primary�beneficiary�which�is�present�in�all�services�is�the�

consumer.�Indeed,�consumers�will�benefit:-� either�because�these�services�will�contribute�to�the�20/20/20�

targets-� or�directly�through�improvement�of�quality�of�supply�and�other�

services

The�hypothesis�made�here� is� that�company�efficiency�and� the�benefit�of� the�competitive�market�will�be�passed�to�consumers–�at�least�partly��in�the�form�of�tariff�or�price�optimisation,�and�is�dependent�on�effective�regulation�and�markets.�

Page 76: Smart Grid Projects in Europe: Lessons Learned and Current

76

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

anneX iii Smart Grid BeneFitS and KpiS (Smart Grid taSK Force)

Benefit Potential key performance indicators1

(1) Increased sustainability

Quantified reduction of carbon emissions

Environmental impact of electricity grid infrastructure

Quantified reduction of accidents and risk associated to generation technologies

(during mining, production, installations, etc.)

(2) Adequate capacity of transmission and

distribution grids for “collecting” and bringing

electricity to the consumers

Hosting capacity for distributed energy resources in distribution grids

Allowable maximum injection of power without congestion risks in transmission

networks

Energy not withdrawn from renewable sources due to congestion and/or security

risks

An optimized use of capital and assets

(3) Adequate grid connection and access for all

kind of grid users

Benefit (3) could be partly assessed by:

first connection charges for generators, consumers and those that do both

grid tariffs for generators, consumers and those that do both

methods adopted to calculate charges and tariffs

time to connect a new user

optimisation of new equipment design resulting in best cost/benefit

faster speed of successful innovation against clear standards

(4) Satisfactory levels of security and quality of

supply

Ratio of reliably available generation capacity and peak demand

Share of electrical energy produced by renewable sources

Measured satisfaction of grid users with the “grid” services they receive

Power system stability

Duration and frequency of interruptions per customer

Voltage quality performance of electricity grids (e.g. voltage dips, voltage and

frequency deviations)

(5) Enhanced efficiency and better service in

electricity supply and grid operation

Level of losses in transmission and in distribution networks (absolute or

percentage)2. Storage induces losses too, but also active flow control increases

losses.

Ratio between minimum and maximum electricity demand within a defined time

period (e.g. one day, one week)3

Percentage utilisation (i.e. average loading) of electricity grid elements

Demand side participation in electricity markets and in energy efficiency measures

Availability of network components (related to planned and unplanned maintenance)

and its impact on network performances

Actual availability of network capacity with respect to its standard value (e.g. net

transfer capacity in transmission grids, DER hosting capacity in distribution grids)

Page 77: Smart Grid Projects in Europe: Lessons Learned and Current

77

JRC Reference Report

Benefit Potential key performance indicators1

(6) Effective support of transnational electricity

markets by load-flow control to alleviate loop-

flows and increased interconnection capacities

Ratio between interconnection capacity of one Country/region and its electricity

demand

Exploitation of interconnection capacities (ratio between mono-directional energy

transfers and net transfer capacity), particularly related to maximisation of capacities

according to the Regulation of electricity cross-border exchanges and the congestion

management guidelines

Congestion rents across interconnections

(7) Coordinated grid development through

common European, regional and local grid

planning to optimize transmission grid

infrastructure

Benefit (7) could be partly assessed by:

impact of congestion on outcomes and prices of national/regional markets

societal benefit/cost ratio of a proposed infrastructure investment

overall welfare increase, i.e. running always the cheapest generators to supply the

actual demand → this is also an indicator for the benefit (6) above

Time for licensing/authorisation of a new electricity transmission infrastructure.

Time for construction (i.e. after authorisation) of a new electricity transmission

infrastructure.

(8) Enhanced consumer awareness and

participation in the market by new players

Demand side participation in electricity markets and in energy efficiency measures

Percentage of consumers on (opt-in) time-of-use / critical peak / real time dynamic

pricing

Measured modifications of electricity consumption patterns after new (op-tin) pricing

schemes.

Percentage of users available to behave as interruptible load.

Percentage of load demand participating in market-like schemes for demand

flexibility.

Percentage participation of users connected to lower voltage levels to ancillary

services

(9) Enable consumers to make informed decisions

related to their energy to meet the EU Energy

Efficiency targets

Base to peak load ratio

Relation between power demand and market price for electricity

Consumers can comprehend their actual energy consumption and receive,

understand and act on free information they need / ask for

Consumers are able to access their historic energy consumption information for free

in a format that enables them to make like for like comparisons with deals available

on the market.

Ability to participate in relevant energy market to purchase and/or sell electricity

Coherent link is established between the energy prices and consumer behaviour

(10) Create a market mechanism for new energy

services such as energy efficiency or energy

consulting for customers

‘Simple’ and/or automated changes to consumers’ energy consumption in reply to

demand/response signals, are enabled

Data ownership is clearly defined and data processes in place to allow for service

providers to be active with customer consent

Physical grid related data are available in an accessible form

Transparency of physical connection authorisation, requirements and charges

Effective consumer complaint handling and redress. This includes clear lines of

responsibility should things go wrong

Page 78: Smart Grid Projects in Europe: Lessons Learned and Current

78

JRC Reference Report

Smart Grid projects in Europe: lessons learned and current developments

Benefit Potential key performance indicators1

(11)Consumer bills are either reduced or upward

pressure on them is mitigated

Transparent, robust processes to assess whether the benefits of implementation

exceed the costs in each area where roll-out is considered are in place, and a

commitment to act on the findings is ensured by all involved parties

Regulatory mechanisms exist, that ensure that these benefits are appropriately

reflected in consumer bills and do not simply result in windfall profits for the industry

New smart tariffs (energy prices) deliver tangible benefits to consumers or society in

a progressive way

Market design is compatible with the way the consumers use the grid

1� Some�of�these�indicators�are�already�used�today�in�different�EU�Member�States.2� In�case�of�comparison,�the�level�of�losses�should�be�corrected�by�structural�parameters�(e.g.�by�the�presence�of�distributed�generation�in�distribution�grids�and�its�production�pattern).�Moreover�a�possibly�conflicting�character�of�e.g.�aiming�at�higher�network�elements’�utilization�(loading)�vs.�higher�losses,�should�be�considered�accordingly.

3� In�case�of�comparison,�a�structural�difference�in�the�indicator�should�be�taken�into�account�due�e.g.�to�electrical�heating�and�weather�conditions,�shares�of�industrial�and�domestic�loads.

Page 79: Smart Grid Projects in Europe: Lessons Learned and Current

79

JRC Reference Report

Page 80: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

10.4�kV

�remote�co

ntrol

Not�ava

ilable

Opp

ortunities

�to�estab

lish�remote�co

ntrol/DNM�of�the

�0.4�kV�grids

�ha

ve�bee

n�an

alyz

ed.�T

he�opp

ortunities

�for�integ

ration

s�from

�the�ca

ble�

registration

�to�th

e�remote�co

ntrol�h

ave�be

en�in

vestigated

�and

�pilo

t�projec

ts�hav

e�be

en�perform

ed�w

ith�integrations

�of�s

ection

s�of�th

e�low-

voltag

e�grid.

Not�

available

DK

Smart�M

eter�and

�AMI

222

0�kV

�SSSC

�dev

ice�for�p

ower�

flow�con

trol

Red�Eléc

trica�de

�Es

paña

�(ES)

Des

ign,�con

struct,�s

et�up�in�ope

ration

�and

�test�a�FAC

TS�(S

SSC

)�to�prev

ent�

overload

�situa

tion

s�in�th

e�22

0�kV

�tran

smission

�grid�an

d�redu

ce�th

e�mea

sures�that�th

e�Sy

stem

�Ope

rator�h

as�to

�mak

e�for�s

olving

�ove

rloa

ds,�

like�redu

ce�th

e�mes

hing

�of�the

�network�or�cur

tail�wind�prod

uction

.

Jul�2

009-Jul�

2014

ES�

Grid�Au

tomation�Tran

smission

3A�co

mplete�an

d�no

rmalized

�61

850�su

bstation

Red�Eléc

trica�de

�Es

paña

�S.A.�(ES

)

Use

�the�stan

dard�IE

C618

50�as�a�mea

ns�to

�improv

e�the�de

sign

,�mainten

ance

�and

�ope

ration

�of�the

�sub

station�au

tomation�sy

stem

s.�

Des

ign�a�stan

dard�sub

station�co

nsidering�the�ex

isting

�and

�new

�solutions

�de

velope

d�by

�the�ve

ndors�co

llabo

rating

�in�th

e�projec

t.�Build�and

�set-up�

in�ope

ration

�a�IE

C618

50�HV�sub

station.�

Oct�200

9-�

Dec

�201

5ES

�Grid�Au

tomation�Tran

smission

4Ac

tiva

tion

�of�2

00�M

W�re

fuse

-ge

nerated�CH

P�up

ward�

regu

lation

�effec

t

EMD�In

ternationa

l�A/

S,�(D

K)

Was

te�CHP�plan

ts�can

�be�us

ed�in

�the�elec

tricity�marke

t�for�upw

ard�

regu

lation

�by�by

pass

ing�the�stea

m�tu

rbine.�The

�tech

nica

l�des

ign�for�t

his�

purpos

e�mus

t�ens

ure�that�fa

ctors�su

ch�as�resp

onse

�and

�activation�time�

do�not�re

sult�in

�more�ex

pens

ive�turbine�mainten

ance

.�

Jul�2

009�-�

Dec

�201

0DK

Integrated

�Sys

tem

5Ac

tive

�Network�Man

agem

ent�

Smart�G

rid�So

lution

s�(U

K)

Delivering�a�fully

�autom

ated

,�rem

otely�co

nfigu

rable�an

d�se

lf�he

aling�

power�distribution�Network�that�w

ill�allo

w�grid�wide�de

man

d�/�load

�man

agem

ent�in�real�time.

Apr�2

010-

Apr�2

011

UK

Grid�Au

tomation�Distribution

6Almac

ena

Red�Eléc

trica�de

�Es

paña

�(ES)

Installation

�and

�testing�of�1�M

W�electroch

emical�battery�in

�a�sub

station�

of�th

e�tran

smission

�grid.

Sept�200

9�-�

Dec

�201

3ES

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

Grid�Au

tomation�Distribution

7Ad

dres

sEn

el�Distribuz

ione

�(IT)

The�projec

t�aim

s�at�delivering�a�co

mpreh

ensive

�com

mercial�and

�tech

nica

l�fram

ework�for�t

he�dev

elop

men

t�of�“

Active

�Dem

and”

�in�th

e�sm

art�

grids�of�th

e�future.��AD

DRES

S�inve

stigates

�how

�to�effec

tive

ly�activate�

participation�of�dom

estic�an

d�sm

all�c

ommercial�cus

tomers�in�pow

er�

system

�marke

ts�and

�in�th

e�prov

ision�of�service

s�to�th

e�differen

t�pow

er�

system

�participa

nts.

Jun�20

08�-�

Jun�20

12

ES�

Integrated

�Sys

tem

FR ITHom

e�ap

plication�-�C

ustomer�

Beh

avior�

CH� �

SE

8AD

ELE�Projec

t�AA-CAE

SRW

E�Po

wer�AG,�(DE)�

Compres

ses-air�e

nergy�storag

e�(cas

e)�as�bu

ffer�fo

r�electricity�from

�wind�

and�su

n.�

Dec

�200

9�-�

Dec

�201

3DE

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

an

neX

iv - p

ro

jec

t c

ata

lo

Gu

e

Page 81: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

9Ad

vanc

ed�Sys

tems�of�

Effic

ient�Use

�of�E

lectrica

l�En

ergy

�-�SURE

Tece

s�(S

L)

The�main�pu

rpos

e�of�th

e�projec

t�is�to�build�active�ne

twork�co

ncep

ts�

base

d�on

�new

�tech

nologica

l�solutions

�and

�to�te

st�th

ese�so

lution

s�in�actua

l�pow

er�networks

.�In�the�fram

e�of�th

e�projec

t�a�num

ber�o

f�de

mon

stration

�projects�in�th

e�fie

ld�of�a

ctive�ne

tworks

�will�be�ca

rried�ou

t.�

Jan�20

11�-�

Jan�20

14SI

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

10

AFTE

R�-�A�Fram

ework�for�

elec

trical�pow

er�sys

Tems�

vulnerab

ility�id

entific

ation,�

dEfens

e�an

d�Re

storation

RSE�–�Ricerca

�sul�

Sistem

a�En

erge

tico

�(IT)

AFTE

R�add

ress

es�vulne

rability�ev

alua

tion

�and

�con

ting

ency

�plann

ing�of�

the�en

ergy

�grids

�and

�ene

rgy�plan

ts�con

side

ring

�also�the�ICT�sy

stem

s�us

ed�in

�protection�an

d�co

ntrol.�Main�ad

dres

sed�prob

lems�co

ncern�high

�im

pact,�w

ide�sp

read

,�multiple�co

ntinge

ncies�an

d�ca

scad

ing.�

2011�-�20

14

IT

Grid�Au

tomation�Tran

smission

NO IE UK FR DE

BE

CZ

11Ag

ent�b

ased

�con

trol�of�p

ower�

system

s,�Forsk

EL�

CET-DTU

,�(DK)

The�pu

rpos

e�is�to

�exp

lore�th

e�po

ssibilities

�of�u

sing

�age

nt�te

chno

logy

�to�dyn

amic�break

down�of�electrica

l�pow

er�sup

ply�sy

stem

�for�e

xample.�

“Islan

ding

”�of�sub

system

s�an

d�to�study

�how

�age

nts�ca

n�be

�use

d�for�

implem

entation

�of�fl

exible�con

trol�strateg

ies.�

Apr�2

006�-�

Mar�201

0DK

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

12AMI

Elek

tro�Goren

jska

�d.d.�

(SL)

The�pu

rpos

e�of�th

e�projec

t�“AMI�s

ystem�fo

r�the

�Elektro�Goren

jska

”�is�th

e�introd

uction

�of�rem

ote�meter�re

ading,�con

trol�and

�dem

and�man

agem

ent�

of�th

e�elec

tricity�an

d�also

�water,�g

as�and

�hea

t�con

sumption�in�th

e�area

�of�

Goren

jska

.

� �SI

Smart�M

eter�and

�AMI

Integrated

�Sys

tem

13AMI

ENER

GA-OPE

RAT

OR�

SA����(P

L)

The�projec

t�is�focu

sed�on

��Inc

reas

ing�the�effectiven

ess�of�ope

ration

al�

activity�and

�facilitating�man

agem

ent�o

f�the

�network�an

d�its�de

velopm

ent;�

Remote�man

agem

ent�o

f�meter�sys

tems�an

d�ob

taining�meter�data;�

Activa

tion

�of�c

lients�in�ene

rgy�effectiven

ess�an

d�disp

erse

d�ge

neration

;�Co

mpletion�of�re

gulatory�re

quirem

ents�in

�the�sc

ope�of�m

eter�re

adings

;�Fa

cilitating�un

restricted

�acces

s�to�th

e�ne

twork.

2010

-201

7PL

Smart�M

eter�and

�AMI

14AMIS�

Energie�AG

�OÖ�Netz�

GmbH

�(AT)

Automation�of�m

etering-�and

�cus

tomer�proce

sses

,�fur

ther�autom

ation�

of�grid�co

mpo

nents,�creation�of�a�te

chno

logy

�platform�fo

r�smart�g

rid�

applications

,�tec

hnolog

y�platform

�for�c

ustomer�app

lications

.

Jan�20

05�–�

Jun�20

12AT

Integrated

�Sys

tem

Page 82: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

15Ap

plication�of�smart�g

rid�in�

photov

oltaic�pow

er�sys

-tem

s,�

ForskE

L

Dan

foss

�Solar�

Inve

rters,�(D

K)

The�target�of�the

�propo

sed�projec

t�is�to�study

�how

�to�in

tegrate�large�

amou

nt�of�R

enew

able�Ene

rgy�So

urce

s�(R

ES)�into�the�ne

twork,�w

itho

ut�

having

�to�re

inforce�the�ne

twork.�This�is�don

e�by

�exa

mining�differen

t�type

s�of�grid�vo

ltag

e�co

ntrol,�ap

plying

�Smart�G

rid�func

tion

alities�an

d�introd

ucing�othe

r�anc

illary�se

rvices

�integrated

�into�th

e�RES

.

Oct�201

0�-�

Dec

�201

3DK

Smart�M

eter�and

�AMI

Integrated

�Sys

tem

Grid�Au

tomation�Distribution

16Au

tomation�an

d�se

curity�of�

Supp

lyNot�ava

ilable

The�co

mpa

ny�in

�focu

s�ha

s�es

tablishe

d�DSO

�–�Distribution�–�Co

ntrol�–

�Su

rveilla

nce�at�in

dividu

al�station

s.�O

n�thes

e�10

/0.4�kV�station

s�there�is�

full�remote�co

ntrol,�with�co

mman

ds,�rep

orts,�m

etering�an

d�alarms,�w

hich

�in�a�fa

ult�s

itua

tion

�mak

es�it�pos

sible�to�quick

ly�gain�an

�ove

rview�of�the

�grid�status�for�t

he�m

edium-voltage

�grid.

Not�

available

DK

Grid�Au

tomation�Distribution

17Au

tomation�sy

stem

s�for�

Dem

and�Re

spon

se,�F

orsk

EL

Dan

ish�En

ergy

�Indu

stries

�Fed

eration�

(DK)

More�than

�500

�hou

seho

lds�with�elec

tric�hea

ting

�participa

ted�in�a�

demon

stration

�project�abo

ut�dem

and�resp

onse

.�Participa

nts�pa

id�fo

r�elec

tricity�ba

sed�on

�spo

t�price

s.�The

�group

s�no

tifie

d�of�th

e�ne

xt�day

’s�

prices

�by�E-mail�a

nd/o

r�SMS�did�no

t�cha

nge�their�d

eman

d�pa

ttern.

Mar�200

6�-�

Jul�2

009

DK

Smart�M

eter�and

�AMI

Integrated

�Sys

tem

18BeA

ware

Tekn

illinen

�Ko

rkea

koulu�(FI)

BeA

ware�stud

ies�ho

w�ubiqu

itou

s�inform

ation�ca

n�turn�ene

rgy�co

nsum

ers�

into�active�play

ers�by

�dev

elop

ing:�-A

n�op

en�and

�cap

illary�infras

truc

ture�

sens

ing�wireles

sly�en

ergy

�con

sumption�at�app

lianc

e�leve

l�in�the�ho

me;�

-Ambien

t�and

�mob

ile�in

teraction�to�in

tegrate�en

ergy

�use

�profiles

�into�

users’�eve

ryda

y�life;�-V

alue

�add

ed�service

�platforms�an

d�mod

els�whe

re�

cons

umers�ca

n�ac

t�on�ub

iquitous

�ene

rgy�inform

ation�an

d�en

ergy

�prod

ucers�an

d�othe

r�stake

holders�ga

in�new

�bus

ines

s�op

portun

ities.�

May

�201

0�-M

ay�201

3

FI

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

IT SE

19Bey

Watch

Telefonica

�Inve

stigac

ion�y�

Des

arrollo

�SA,��(ES

)

Bey

Watch

�will�dev

elop

�an�en

ergy

-aware�an

d�us

er-cen

tric�solution,�able�

to�provide

�intellige

nt�ene

rgy�mon

itoring/

control�a

nd�pow

er�dem

and�

balanc

ing�at�hom

e/bu

ilding�&�neigh

borhoo

d�leve

l.

Dec

�200

8-May

�201

1

FR

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

UK SI

EL IT ES�

Page 83: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

20Belgium

�eas

t�loo

p�ac

tive

�network�man

agem

ent

�Ores�(B

E)Th

e�projec

t�aim

s�at�des

igning

�an�ac

tive

�network�so

lution

�bas

ed�on�the�

power�sys

tems�an

alys

is.�It�w

ill�defi

ne�princ

iples�of�acces

s�for�g

enerators�

to�perform

�a�cur

tailm

ent�a

sses

smen

t�tha

t�will�help�to�estim

ate�ho

w�

often�lim

its�are�ch

alleng

ed.�T

his�will�le

ad�to

�the�ge

nerators�m

odulation�

nece

ssary�to�kee

p�po

wer�flow

s�within�lim

its.�The

�project�w

ill�provide

�gu

idelines

�for�t

he�active�ne

twork�so

lution

�dep

loym

ent�a

s�well�a

s�a�co

st�

estimation.

Sept�201

0�-�

Jun�20

11BE

Grid�Au

tomation�Distribution

Elia�(B

E)Grid�Au

tomation�Tran

smission

21Building�to�Grid�(B

2G)

Salzbu

rg�AG�(A

T)

In�th

e�co

ntex

t�of�s

o-ca

lled�sm

art�g

rids

,�buildings

�are�exp

ected�to�

integrate�in�a�coo

perative

�man

ner�a

nd�to

�exp

ose�their�c

urrently�

unus

ed�flex

ibility�of�o

peration

s,�sup

ported

�by�bu

ilding�au

tomation�an

d�inform

ation�tech

nology

.�

Jul�2

010�-�

Dec

�201

3AT

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

22

Central�N

etworks

�Low

�Ca

rbon

�Hub

�-�Optim

izing�

rene

wab

le�ene

rgy�reso

urce

s�in�Linco

lnsh

ire

Central�N

etworks

�UK)

The�low�Carbo

n�Hub

�will�dem

onstrate�how

�sub

stan

tial�le

vels�of�

rene

wab

le�gen

eration�ca

n�be

�con

nected

�to�a�primary�distribu

tion

�ne

twork.

Jan�20

11-D

ec�

2014

UK

Grid�Au

tomation�Distribution

Other

23CE

T200

1�Cu

stom

er�Led

�Network�Re

volution

CE�Electric�(U

K)

This�project�w

ill�exp

lore�how

�new

�tariffs�ca

n�alter�c

ustomer�beh

avior,�

enab

le�networks

�to�re

spon

d�more�fle

xibly�to�cus

tomers�by

�using

�ad

vanc

ed�voltage

�con

trol�dev

ices

,�exp

lore�w

ays�for�n

etworks

�and

�smart�

meters�to�com

mun

icate,�m

onitor�600

�intellige

nt�w

hite�goo

ds�and

�14,00

0�sm

art�m

eters.

Jan�20

11-D

ec�

2013

UK

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

24Ch

arge

�stand

sSy

dEne

rgi,��(D

SO),�

(DK)

Gain�kn

owledg

e�of�w

hether�it�is

�tech

nica

lly�pos

sible�an

d�fin

ancially/

environm

entally

�adv

antage

ous�for�t

he�cus

tomer�and

�the�elec

tricity�

system

�to�offer�owne

rs�of�e

lectrica

l�veh

icles�an

�intellige

nt�cha

rging�

facility�co

mprising�po

ssible�use

�of�s

pot�e

lectricity�agree

men

ts,�a

nd�th

e�ch

oice

�of�c

harging�mos

t�che

aply�or�m

ost�g

reen

ly.

Jan�20

10�

-�Not�

available

DK

Smart�M

eter�and

�AMI

Integrated

�Sys

tem

25Ch

arging

�Infras

truc

ture�

for�E

lectric�Ve

hicles

Goteb

org�En

ergy

�AB�

(SE)

The�projec

t�built�and

�tested

�app

roximately�50

�cha

rging�po

ints,�a

ll�of�

them

�equ

ippe

d�with�sm

art�m

eters�en

ablin

g�su

b-metering�at�use

r�spe

cific

�leve

l�and

�remote�on

-off�fu

nction

ality.�

A�on

e-stop

-sho

p�ch

arging

�offer�w

as�te

sted

�on�the�marke

t�and

�furthe

r�de

velope

d�within�the�projec

t.�An�internal�dev

elop

men

t�plan�for�c

harging�

of�electrica

l�veh

icles�was

�produ

ced.

Jan�20

08�-�

Dec

�201

0SE

Integrated

�Sys

tem

26Clyd

e�Gatew

aySc

ottish

�Pow

er�(U

K)

To�dem

onstrate�th

e�latest�smart�g

rid�tech

nology

�and

�use

�the�learning

�to�dev

elop

�propo

sals�fo

r�wider�and

�larger�sca

le�smart�g

rid�ap

plications

�ac

ross

�Glasg

ow�and

�UK�ope

ration

s.

Apr�2

010-

Apr�2

011

UK

Grid�Au

tomation�Distribution

Page 84: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

27Co

ncep

t�for�M

anag

emen

t�of�

the�Fu

ture�Electricity�Sys

tem

Energine

t.dk

,��(TSO

),�

(DK)

To�dev

elop

�and

�des

cribe�a�co

ncep

t�for�th

e�ne

cess

ary�an

d�su

fficien

t�man

agem

ent�o

f�the

�future�pow

er�sys

tem�in

�202

5.�The

�con

cept�

desc

ription�sh

ould�be�at�a�le

vel�tha

t�allo

ws�a�su

bseq

uent�break

down�in�

spec

ific�projec

ts�to

�an�ea

rly-stag

e�ph

ased

�rollo

ut.�

Jan�20

09�-�

Dec

�201

1DK

Other

28Co

nsum

er�to

�Grid�(C2G

)Sa

lzbu

rg�AG�(A

T)Th

is�study

�inve

stigates

�the�way

�in�w

hich

�inform

ation�ab

out�p

oten

tial�

energy

�sav

ings

�is�bes

t�prese

nted

�to�th

e�co

nsum

er�in

�order�to

�redu

ce�

energy

�con

sumption�in�th

e�sm

art-grid.

Jul�2

010-�

Jun2

012

ATHom

e�ap

plication�-�C

ustomer�

Beh

avior�

29Co

nsum

er�w

eb�

Vestforsyn

ing�A/

S�(D

SO),�(D

K)

Mak

e�co

nsum

ption�da

ta�ava

ilable�to�con

sumers�in�a�w

ay�th

at:�h

elps

�them

�to�und

erstan

d�their�o

wn�co

nsum

ption,�th

eir�c

onsu

mption�pa

ttern�

and�en

ergy

�con

sumption�in�gen

eral;�m

otivates

�them

�to�optim

ize�their�

cons

umption;�and

�ena

bles

�them

�to�ach

ieve

�ene

rgy�sa

ving

s.�Gives

�strong

er�com

mun

ication�with�cu

stom

ers�in�order�to

�ach

ieve

�better�a

nd�

faster�cus

tomer�service

�and

�more�se

rvices

.

Jan�20

10�-�

Jan�20

11DK

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Smart�M

eter�and

�AMI

30Co

ntrol�a

nd�re

gulation

�of�

mod

ern�distribu

tion

�sys

tem,�

ForskE

L

Dep

artm

ent�o

f�Ene

rgy�

Tech

nology

-�Aalbo

rg�

Unive

rsity�(D

K)

The�projec

t’s�objec

tive

�is�to

�study

�the�effects�of�lo

ad�m

anag

emen

t�sy

stem

s�an

d�on

line�real�time�elec

tricity�pricing�sy

stem

s�in�m

odern�

distribu

tion

�sys

tems�an

d�to�dev

elop

�the�mod

els,�ope

ration

�and

�con

trol�

strategies

�for�s

uch�distribu

tion

�sys

tems�an

d�fin

ally�to

�estab

lish�the�

control�a

pproac

h�for�t

he�sys

tems�in�con

ting

ency

�situa

tion

s,�i.e.�is

land

�op

eration.

Oct�200

6�-�

Dec

�201

0DK

Grid�Au

tomation�Distribution

Smart�M

eter�and

�AMI

31Co

st�ben

efit�a

nalysis�for�t

he�

implem

entation

�of�s

mart�

metering�with�pilot�p

roject

Ministry�of�eco

nomy�

of�th

e�Slov

ak�re

public�

(SK)

Prim

ary�projec

t�goa

ls�are�to

�find

�releva

nt�fa

cts�an

d�proo

fs�fo

r�which

�se

gmen

ts�of�c

ustomers�the�sm

art�m

etering�co

uld�be

�eco

nomical.

Jan�20

11-D

ec�

2011

SK

Smart�M

eter�and

�AMI

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

32Cr

yoge

nic�Storag

eHigh�view

�Pow

er�

Storag

e�(U

K)

The�projec

t�is�be

ing�run�in�tw

o�ph

ases

:�Pha

se�1:�the

�CryoG

ense

t �pilo

t�de

mon

strator�h

as�bee

n�co

mmission

ed�fo

r�six�m

onths�an

d�runs

�on�a�

regu

lar�b

asis�exp

orting

�electricity�to

�the�Nationa

l�Grid.�Pha

se�2:�the

�fully

�integrated

�CryoE

nergy�Sy

stem

.

Apr�2

010-

Apr�2

011

UK

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

33Cu

stom

er�Value

��Prop

osition�Sm

art�G

rid��

(KEL

)

Goteb

org�En

ergy

�AB�

(SE)

The�co

mpa

ny�is

�und

ergo

ing�an

�exten

sive

�cha

nge�proc

ess�go

ing�from

�pa

rtly�m

anua

l�to�fully

�autom

ated

�proce

sses

�for�e

nergy�co

nsum

ption�

mea

suremen

t�on�ho

urly�bas

is�and

�invo

icing�ba

sed�on

�this.�T

he�project�

conc

erns

�the�laun

ching�of�hou

rly�mea

suring

�and

�new

�hou

rly�ba

sed�

tariffs.

Jan�20

08�-�

Dec

�201

2SE

�Sm

art�M

eter�and

�AMI

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

34Cy

prus

�Smart�m

etering�de

mo

Elec

tricity�Au

thority�of�

Cyprus

�(EAC

),�(C

Y)Installation

�of�3

000�sm

art�m

eters�with�the�requ

ired

�infras

truc

ture�fo

r�full�

func

tion

ality�ev

alua

tion

�of�the

�bes

t�practice�ap

proa

ch�fo

r�full�roll�o

ut.

Jul�2

010�-�Jul�

2012

CYSm

art�M

eter�and

�AMI

35DA�(D

istribution�Au

tomation)

Enex

is�BV�(N

L)Building�an

�integrated

�architecture�(i.c.:�interaction�be

twee

n�bu

sine

ss-

proc

esse

s,�in

form

ation-arch

itec

ture�and

�primary�ne

twork�layo

ut)�to�

max

imize�En

exis’�M

V-grid�perform

ance

�(10-20

�kV).

2007

-201

0NL

Grid�Au

tomation�Distribution

Page 85: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

36Data�Ex

chan

geNationa

l�Grid�(U

K)

The�Data�Ex

chan

ge�w

as�estab

lishe

d�to�id

entify�an�en

during

�solution�to�

the�interaction�be

twee

n�the�ST

C�an

d�Grid�Co

de�re

garding�the�ex

chan

ge�of�

Use

r�data.

Apr�2

010-

Apr�2

011

UK

Grid�Au

tomation�Tran

smission

37DCN

4TSO

Elek

tro-Slov

enija

�(TSO

),�(S

I)

DCN

�sys

tem�w

ill�ena

ble�sm

art�p

rotection,�m

etering,�ene

rgy�man

agem

ent,�

automation�an

d�da

ta�exc

hang

e�with�othe

r�Europ

ean�TS

O�using

�stand

ard�

protoc

ols.�

2004

SI

Grid�Au

tomation�Tran

smission

Integrated

�Sys

tem

38DataH

ub�project

Energine

t.dk

,��(TSO

),�

(DK)

A�more�free

�com

petition

�in�th

e�Dan

ish�elec

tricity�marke

t,�eas

ier�a

cces

s�to�

inform

ation,�and

�more�tran

sparen

cy�fo

r�con

sumers�who

�cho

ose�to�switch

�su

pplie

r,�a�de

sire�fo

r�more�stan

dardized

�com

mun

ication�be

twee

n�play

ers�

on�th

e�Dan

ish�elec

tricity�marke

t.

Apr�2

009�-�

Apr�2

012

DK

Smart�M

eter�and

�AMI

39Dec

entralized

�cus

tomer-lev

el�

unde

r�frequ

ency

�load

�she

d-ding

�in�Switze

rlan

d

Unive

rsity�of�

Applied�Sc

ienc

es,�

Nor

thwes

tern�Switze

r-land

�(CH)�

Swiss�Fe

deral�Ins

titute�

of�Tec

hnolog

y,�Zurich�

(CH)

The�projec

t�foc

uses

�on�a�sm

art�d

eman

d�side

�man

agem

ent�o

f�ho

useh

old�co

nsum

ers.�M

odern�co

mmun

ication�tech

nology

�ena

bles

�the�man

agem

ent�o

f�large

�group

s�of�distributed

�load

s�un

der�a

�single�

inno

vative

�con

trol�sch

emes

�to�use

�the�fle

xibility�of�electrica

l�loa

ds�fo

r�po

wer�sys

tem�purpo

ses.

Sept�201

0-Fe

b�20

12CH

Integrated

�Sys

tem

40Dem

and�resp

onse

�med

ium�

size

d�indu

stry�con

sumers

Dan

ish�Te

chno

logica

l�Institute,�(D

K)

To�in

vestigate�the�po

ssibility�of�introdu

cing

�flex

ible�electricity�dem

and�

and�regu

lation

�pow

er�in

�Dan

ish�Indu

stry�con

sumers�via�a�price-�and

�co

ntrol�s

igna

l�from�th

e�su

pplie

r�of�e

lectricity.�T

he�aim

�is�to

�dev

elop

�a�va

luab

le�solution�for�t

he�in

dustry�con

sumers�giving

�them

�various

�be

nefits�an

d�afterw

ards

�to�te

st�th

e�sy

stem

.

Jan�20

09�-�

Dec

�201

1DK

Integrated

�Sys

tem

41DER

-IREC

�22@

Microgrid

GTD

�Sistemas

�de�

Inform

acion�SA

�(ES)

DER

�-�IR

EC�22�@�M

ICRO

GRID

�is�a�re

search

�project�fo

cuse

d�to�create�

prod

ucts�and

�service

s�arou

nd�Distributed

�Ene

rgy�Re

source

s�(D

ER)�a

nd�

EV.�T

he�m

ain�go

al�is

�to�build�a�platform�w

here�re

search

�cou

ld�be�do

ne�

in�order�to

�integrate�all�tho

se�com

pone

nts�into�a�new

�sys

tem�of�e

nergy�

supp

ly.

Jun�20

09�-�

Nov

�201

1ES

�Integrated

�Sys

tem

42Dev

elop

men

t�of�E

arly�W

arning

�Sy

stem

s�(PMU/W

AMS)

Energine

t.dk

,��(TSO

),�

(DK)

The�pu

rpos

e�is�to

�dev

elop

�sys

tems�that�can

�mon

itor�th

e�ov

erall�p

ower�

system

�state�and

�alert�sys

tem�ope

rators�and

�other�protection�sy

stem

s�for�c

ritica

l�situa

tion

s�in�th

e�po

wer�sys

tem.

�200

6�-�2

012�

DK

Grid�Au

tomation�Tran

smission

43

Dev

elop

men

t�of�a

�Sec

ure,�

Econ

omic�and

�Env

iron

-men

tally

�friend

ly�M

odern�

Power�Sys

tem

Dep

artm

ent�o

f�Ene

rgy�

Tech

nology

-�Aalbo

rg�

Unive

rsity,�(D

K)

The�projec

t�dev

elop

s�a�nu

mbe

r�of�n

ew�con

cepts�an

d�intellige

nt�

approa

ches

�for�a

�mod

ern�po

wer�sys

tem�w

hich

�includ

es�re

newab

le�

energy

,�storage

�units,�d

istributed

�gen

eration,�plug-in�hyb

rid�elec

tric�

vehicles

.

Jan�20

10�-�

Dec

�201

4DK

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

Page 86: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

44DG�Dem

onet�

Smart�L

V�Grid

Austrian

�Institute�of�

Tech

nology

�(AT)

The�projec

t�aim

s�to�ena

ble�an

�efficien

t�and

�cos

t�effec

tive

�use

�of�e

xisting�

grid�in

fras

truc

tures�ba

sed�on

�a�th

ree-step

�con

cept:�intellig

ent�p

lann

ing,�

on-line�mon

itoring�an

d�ac

tive

�grid�man

agem

ent.�Com

mun

ication-ba

sed�

system

s�for�a

utom

atic�con

trol�con

cepts�for�low

�voltage

�networks

�will�be�

deve

lope

d�an

d�ev

alua

ted�by

�putting

�them

�into�practice.

Mar�201

1�-�

Mar�14

AT

Integrated

�Sys

tem

Grid�Au

tomation�Distribution

Smart�M

eter�and

�AMI

45DG��

Dem

onetz�Va

lidierung

AIT�Au

stria�(AT)

The�projec

t�“DG�Dem

oNet�–�Smart�L

V�Grid”

�sea

rche

s�for�s

olutions

�for�a

n�ac

tive

�network�op

eration�at�th

e�low�voltage

�leve

l.�Th

e�projec

t�dev

elop

s�an

d�ev

alua

tes�sm

art�p

lann

ing,�m

onitoring,�m

anag

emen

t�and

�con

trol�

approa

ches

�for�t

he�sys

tem�in

tegration�of�lo

cal�e

nergy�prod

uction

�an

d�fle

xible�load

s�in�lo

w�voltage

�networks

.�The

�project�objec

tive

�is�to

�so

lve�ab

ove�ch

alleng

es�w

ith�ac

ceptab

le�cos

ts�re

garding�inve

stmen

t,�

mainten

ance

�and

�ope

ration

.�

Jan�20

06�-�

Feb�20

13AT

Grid�Au

tomation�Distribution

46Dem

onstration

�project�Smart�

Charging

Enex

is�(N

L)

Test�and

�dem

onstrate�an�en

vironm

ent�in�which

�com

mercial�m

arke

t�pa

rties�are�en

abled�to�

prov

ide�ch

arge

�service

s�to�EV�cus

tomers�in�coo

peration

�with�EV

�infras

truc

ture�parties

�and

�grid�ope

rators.�

Sept�201

0-Dec

�201

1NL

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

47Distributed

�con

nected

�wind�

farm

sES

B�Networks

�(IE)

This�project�com

prises

�three�inde

pend

ent�s

tran

ds,�a

ll�with�the�go

al�of�

enab

ling�max

imum

�wind�ge

neration

�pen

etration

�on �the�distribu

tion

�sy

stem

.

May

�200

9�-�

Apr�2

012

IEOther

48Distribution�Sy

stem

�plann

ing�

for�S

mart�G

rids

,�Forsk

ELRisø�DTU

,�(DK)

The�pu

rpos

e�of�th

e�projec

t�is�to�id

entify�limitations

�of�e

xisting�simulation�

and�plan

ning

�tools�for�d

istribution�grids,�w

ith�a�pa

rticular�fo

cus�on

�the�

challeng

es�im

pose

d�by

�the�introd

uction

�of�S

mart�G

rid�tech

nologies

.

Mar�201

1�-�

Jul�2

012

DK

Other

49DLC

+VIT4IP

Kema�Ned

erland

�BV�

(NL)

DLC

+VIT4IP�will�dev

elop

,�verify

�and

�test�a�high-sp

eed�na

rrow

-ban

d�po

wer�line

�com

mun

ications

�infras

truc

ture�using

�the�Internet�Protoco

l�(IP)�

which

�is�cap

able�of�s

uppo

rting�ex

isting

�and

�exten

ding

�new

�and

�multiple�

commun

ication�ap

plications

.�The

se�sha

ll�includ

e�the�ex

isting

�pow

er�

distribu

tion

�network�for�n

ovel�service

s�in�smart�e

lectricity�distribution�

netw

orks

�suc

h�as

�dem

and�side

�man

agem

ent,�con

trol�of�d

istributed

�ge

neration

�and

�cus

tomer�in

tegration.

Jan�20

10�-�

Jan�20

13

DE

Other

AT UK

NL IT BE IL

Page 87: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

50DSO

-pilo

t�project

SydE

nergi,��(D

SO),�

(DK)

The�test�w

ill�be�the�ba

sis�to�better�u

tiliz

ation�of�in

form

ation�from

�the�

netw

ork,�fo

r�exa

mple.�fo

r�fas

ter�a

ction�by

�mistake

s�an

d�to�re

duce

�the�

outage

.�Fur

thermore�it�allo

ws�for�a

utom

ation�by

�switch

ing�on

�failu

re.

2009

-201

0DK

Smart�M

eter�and

�AMI

51�DSO

-Pilo

t�project�-�Au

tomatic�

rece

ipt�o

f�sho

rt�circu

iting�

indica

tors

Not�ava

ilable

Automatic�re

ceipt�o

f�sho

rt-circu

iting�indica

tors�from

�the�10

�kV�grid�

ensu

res�rapid�inform

ation�to�th

e�du

ty�office

r�in�the�ev

ent�o

f�high-vo

ltag

e�faults.

Jun�20

09�-�

Dec

�201

0DK

Smart�M

eter�and

�AMI

52Dyn

amic�ta

riffs

Not�ava

ilable

To�in

vestigate�the�op

portun

ities�for�a

nd�effec

ts�of�c

hang

ed�ta

riffs�for�

elec

tricity�with�the�sp

ecial�o

bjec

tive

�of�b

etter�integ

ration

�of�ren

ewab

le�

energy

�from

,�amon

g�othe

r�thing

s,�eve

r-increa

sing

�wind�po

wer�produ

ction.

Jan�20

10�-�

Jun�20

10DK

Other

53Ea

sy�Stree

tEn

exis�(N

L)Insigh

t�into�the�working

s�of�te

chno

logy

,�inc

entive

s�an

d�interaction�in�

orde

r�to�mob

ilize

�flex

ibility�from

�cus

tomer’s�electricity�usa

ge.

Jan�20

11-Jun

�20

14NL

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

54Ec

oGrid�Den

mark,�Forsk

ELDan

ish�Te

chno

logica

l�Institute,�(D

K)

To�dev

elop

�new

�long

�term

�tech

nologies

�and

�marke

t�solutions

�for�p

ower�

system

s�with�increa

sed�sh

are�of�distributed

�gen

eration�an

d�rene

wab

le�

energy

�sou

rces

�while�m

aintaining

�the�relia

bility�of�sup

ply.

May

�200

7�-�

Apr�2

009

DK

Integrated

�Sys

tem

Grid�Au

tomation�Distribution

Smart�M

eter�and

�AMI

55Ec

oGrid�EU

Energine

t.dk

,�(DK)

To�build�and

�dem

onstrate�a�com

plete�prototyp

e�of�th

e�future�pow

er�

system

�with�more�than

�50%

�rene

wab

le�ene

rgy.�The

�primary�focu

s�is�on�

marke

t�integ

ration

�and

�inclus

ion�of�electricity�cus

tomers�in�th

e�bu

ilding�

of�to

morrows�Sm

art�G

rid.

Jan�20

11�-�

Dec

�201

4DK

Integrated

�Sys

tem

Grid�Au

tomation�Distribution

Smart�M

eter�and

�AMI

56ED

ISON

Dan

ish�En

ergy

�As

sociation,�(D

K)

The�projec

t�will�ass

ess�the�introd

uction

�of�e

lectrica

l�veh

icles�in�th

e�Dan

ish�elec

tricity�sy

stem

�and

�dev

elop

�fram

eworks

�and

�tech

nica

l�so

lution

s�that�ena

ble�a�more�wide-sc

ale�de

mon

stration

.�The

�solutions

�mus

t�allo

w�th

e�elec

trical�veh

icles�to�be�ch

arge

d�intellige

ntly�in

�term

s�of�

system

�stability�an

d�bo

ttlene

cks�in�th

e�loca

l�electricity�grid.

Feb�20

09�-�

Dec

�201

1DK

Grid�Au

tomation�Distribution

Smart�M

eter�and

�AMI

57E-DeM

aRW

E�RW

N,�(DE)

The�go

al�of�E

-DeM

a�is�to

�reac

h �more�en

ergy

�ben

efits�and

�efficien

cy�fo

r�elec

tricity�ge

nerators,�m

unicipal�utilities,�dev

ice�man

ufac

turers�and

�ab

ove�all�c

ustomers.

2009

-201

4DE

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Page 88: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

58E-En

ergy

�Project�“MeR

egio”

EnBW�Ene

rgie�Bad

en-

Wür

ttem

berg�AG�

(EnB

W)(DE)

The�Projec

t�MeR

egio�aim

s�to�dem

onstrate�th

at�a�shift�from

�the�pres

ent�

day�po

wer�sup

ply�sy

stem

�to�“minim

um�emission

�region

s”�is

�pos

sible�by

�intellige

ntly�com

bining

�tech

nica

l�ene

rgy�man

agem

ent�a

nd�in

nova

tive

�ICT.

2008

-201

2DE

Integrated

�Sys

tem

59eF

lex

DONG�Ene

rgy,�(D

SO),�

(DK)

The�pu

rpos

e�of�eFlex

�project�is

�to�gain�ex

perien

ce�w

ith�mob

iliza

tion

�of�

private�cu

stom

ers’�flex

ible�ene

rgy�co

nsum

ption,�esp

ecially

�from

�electric�

cars,�e

lectric�he

ating�an

d�he

at�pum

ps.

2010

�-�20

11DK

Grid�Au

tomation�Distribution

Smart�M

eter�and

�AMI

60Elec

trical�veh

icles�

impa

cts�on

�the�grids

Ores�(B

E)Mea

suremen

ts�and

�mod

els�of�im

pact�of�e

lectrica

l�veh

icles�slow

�and

�fast�

charging

�on�the�Ores�grid.

Sept�201

0�-�

Dec

�201

1BE

Grid�Au

tomation�Distribution

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

61Elec

tricity�de

man

d�as

�freq

uenc

y�co

ntrolle

d�re-

serves

,�ENS�

CET-DTU

,�(DK)

Throug

h�11�w

ork�pa

ckag

es,�inc

luding

�hardw

are,�des

ign,�dev

elop

men

t,�

labo

ratory�te

st,�p

ractical�im

plem

entation

,�data�an

alys

es,�e

tc.,�a�

tech

nology

�will�be�de

velope

d�in�w

hich

�the�elec

tricity�co

nsum

ption�will�be�

used

�as�a�freq

uenc

y-co

ntrolle

d�rese

rve�(D

FR).

Apr�2

009�-�

Mar�201

2DK

Integrated

�Sys

tem

62Elec

tricity�de

man

d�as

�freq

uenc

y�co

ntrolle

d�re-

serves

,�Forsk

ELCE

T-DTU

,�(DK)

The�projec

t�dev

elop

ed�te

chno

logy

�for�d

eman

d�freq

uenc

y�co

ntrolle

d�rese

rve�(D

FR)�implem

entation

,�a�sys

tem�th

at�autom

atically�stops

�or�starts�elec

tricity�co

nsum

ption�in�re

spon

se�to

�sys

tem�freq

uenc

y�va

riations

.

Apr�2

006�-�

Jun�20

08DK

Integrated

�Sys

tem

63Elec

tricity�storag

e�for�s

hort�

term

�pow

er�sys

tem�service

Materials�Res

earch�

Division�at�Riso�DTU

,�(D

K)

To�eva

luate �an

d�co

mpa

re�–�te

chnica

lly�and

�eco

nomically�–�th

e�av

ailable�

option

s�for�u

sing

�ded

icated

�electricity�storage

�units�to

�provide

�sho

rt�

term

�sys

tem�service

s�at�tran

smission

�sys

tem�le

vel�in�the�Dan

ish�po

wer�

system

.�

Mar�201

0�-�

Dec

�201

0DK

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

64E-mob

ility

Enel�(IT)

E-mob

ility�Italy�en

ables�the�diffus

ion�an

d�the�us

e�of�electric�ve

hicles

,�with�state�of�th

e�art�rec

harging�tech

nologies

,�tha

nks�to�ad-ho

c�de

velopm

ent�o

f�rec

harging�infras

truc

ture,�o

ffering�intellige

nt�and

�sec

ure�

services

�and

�resp

ecting

�the�en

vironm

ent.�

Smart®

�Electric�ve

hicles

�will�be�prov

ided

�to�100

�cus

tomers�an

d�40

0�rech

arging

�station

s�(300

�pub

lic�station

s�an

d�10

0�ho

me�stations

)�will�be�

installed�by

�Ene

l�in�Ro

me,�M

ilan �an

d�Pisa

.�Th

e�ne

w�cha

rging�po

ints�w

ill�le

verage

�Ene

l’s�te

chno

logy

,�inc

luding

�the�En

el�smart�m

eter�as�a�ke

rnel�fo

r�providing

�all�ce

rtified

�metering�

func

tion

alities�an

d�gu

aran

teeing

�uniform

ity�with�rega

rd�to

�data�

acqu

isition�an

d�fin

al�cus

tomer�billing�man

agem

ent.

Dec

�200

8�-�

Dec

�201

3IT

Integrated

�Sys

tem

Daimler�(

DE)

Page 89: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

65Elforsk�Sm

art�g

rid�prog

ramme

Elforsk�AB

�(SE)

Elforsk�Sm

art�G

rid�Prog

ram�is

�drive

n�as

�a�nationa

l�program

mer�fo

r�fou

r�ye

ars�with�fin

ancing

�and

�participa

ting

�from

�Swed

ish�utilities

�and

�other�

compa

nies

.�A�com

mon

�steering�grou

p�take

s�de

cision

�for�e

ach�projec

t/su

b�projec

t�in�the�prog

ram.��Th

e�no

rmal�delivery�from

�a�project�w

ill�be�

an�ope

n�repo

rt�ava

ilable�for�a

ll�pa

rticipan

ts�and

�normally�also�pu

t�on�

internet�as�a�pu

blic�doc

umen

t.�The

�program

�will�also�interact�w

ith�othe

r�large�pilot�p

rojects�as

�Stock

holm

�Roy

al�Sea

port�w

ith�Fo

rtum

�and

�ABB�and

�Gotland

�Smart�G

rid�projec

t�with�Va

tten

fall�an

d�AB

B.

Jan�20

11�-�

Dec

�201

4SE

Smart�M

eter�and

�AMI

Grid�Au

tomation�Tran

smission

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

Other

66Elec

tricity�for�r

oad�tran

spor

t,�

flexible�po

wer�sys

-tem

s�an

d�wind�po

wer

Risø�DTU

,�(DK)

The�projec

t�aim

s�to�ana

lyze

�the�interaction�be

twee

n�the�elec

tricity/

CHP�indu

stry�and

�the�tran

s-po

rt�in

dustry�in

�a�situa

tion

�of�inc

reas

ed�use

�of�electric�ca

rs�and

�plug-in�hyb

rid�ca

rs.�T

he�project�fo

cuse

s�on

�all�the�

tech

nica

l�asp

ects�in

�the�ch

ain:�th

e�status

�of�the

�electric�ca

r,�testing�of�

hybrid�cars�in�a�lo

cal�e

lectricity�grid,�con

nection�po

ints�as�well�a

s�the�

load

�and

�cap

acity�requ

irem

ents�of�the

�electricity�grid.

Jan�20

08�-�

Jan�20

11DK

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

67E-mob

ility

ELM€-ÉM

ÁSZ�Nyrt., �

(HU)

To�get�fe

ed�bac

k�ab

out�c

ustomer’s�exp

ectation

s�for�e

€veh

icles�an

d�ch

arging

�infras

truc

ture.�To�ge

t�information�ab

out�c

harging�be

havior�

and�load

�profiles

.�Ana

lysis�of�re

quirem

ents�of�c

harging�infras

truc

ture.�

Defi

ning

�hom

e�ch

arging

�infras

truc

ture,�a

nd�dev

elop

ing�ne

w�ta

riffs.

Not�

Available�

HU

Integrated

�Sys

tem

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

68EM

PORA�1�+�2�-�E

-Mob

ile�

Power�Aus

tria

VER

BUND�AG�(A

T)

The�em

porA

�projects�bring�toge

ther�autom

obile

�indu

stry,�infrastructure�

tech

nology

,�and

�ene

rgy�su

pply�sec

tors�in

�order�to

�ach

ieve

�a�com

plete�

system

�for�e

lectric�mob

ility�in

�a�use

r-oriented

�and

�internationa

l�co

ordina

ted�way

.

Jan�20

10�–�

Jun�20

14AT

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

69EN

ERGOZ

Institute�of��

Tech

nology

,�Slova

k�Ac

adem

y�of�Scien

ces,�

Bratislav

a,�(S

K)

Applied�rese

arch

�in�th

e�fie

ld�of�e

fficien

t�produ

ction,�use

�and

�storage

�of�

energy

�from

�rene

wab

le�sou

rces

.�Max

imizing�the�so

cio�-�e

cono

mic�effec

t�of�th

e�rese

arch

�in�th

e�fie

ld�of�ren

ewab

le�ene

rgy.

May

�201

0-May

�201

3SK

Integrated

�Sys

tem

Page 90: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

70En

ergy

�@�hom

e

Inde

sit�(IT)

“Ene

rgy@

Hom

e”�project�aim

s�to�dev

elop

�a�sys

tem�in

�which

�“sm

art�

applianc

es”�ca

n�man

age�them

selves

�by�ad

justing�po

wer�con

sumption�

depe

nding�on

�pow

er�sup

ply�an

d�prices

,�or�in�orde

r�to�av

oid�ov

erload

s�within�the�ho

use.�

In�add

ition�En

ergy

@Hom

e�prov

ides

�inform

ation�to�th

e�us

er,�s

uch�as

�po

wer�con

sumption�of�app

lianc

es,�h

ourly�co

st�of�e

nergy,�green

�leve

l�of�

the�en

ergy

�being

�sup

plied;�th

is�in

form

ation�is�m

ade�av

ailable�on

�the�

user’s�PC,�m

obile

�or�o

n�the�disp

lay�of�th

e�ap

plianc

e.

Jan�20

09�-�

Dec

�201

1IT

�Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Enel�Distribuz

ione

�(IT)

Smart�M

eter�and

�AMI

Teleco

m�Italia�(IT)

Integrated

�Sys

tem

Elec

trolux

�(IT)

71En

ergy

�Forec

ast,�Forsk

EL�

Rambø

ll,�(D

K)

The�pu

rpos

e�of�th

is�project�is

�to�add

ress

�the�follo

wing�ba

rriers:�1

.�Lac

k�of�

suitab

le�pow

er�sup

ply�ag

reem

ents,�m

eeting

�both�the�clients’�dem

and�for�

cost�stability�an

d�-�a

t�the

�sam

e�time�-�e

ncou

rage

s�a�de

man

d�resp

onse

.�2.�Lac

k�of�in

form

ation�an

d�aw

aren

ess�ab

out�the

�pos

sibilities�an

d�op

portun

ities�of�dem

and�resp

onse

.

Feb�20

07�-�

Mar�201

0DK

Smart�M

eter�and

�AMI

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

72E-price

Eind

hove

n�Unive

rsity�

of�Tec

hnolog

y�(N

L)

This�project�propo

ses�an

�adv

ance

d�ICT�an

d�co

ntrol�framew

ork�for�

ancilla

ry�service

s�(res

erve

�cap

acity)�w

hich

�allo

ws�a�more�intellige

nt�

solution

�by�giving

�con

sumers�an

d�prod

ucers�clea

r,�real-tim

e�fin

ancial�

ince

ntives

�to�ada

pt�th

eir�c

onsu

mption/

prod

uction

�according

�to�th

e�ac

tual�

need

s�of�th

e�po

wer�sys

tem.�T

his�de

man

d-side

�man

agem

ent�is�be

ing�

mad

e�po

ssible�by�the�large�sc

ale�introd

uction

�of�S

mart�m

eters.�

Feb�20

10�-�

Feb�20

13

NL

Grid�Au

tomation�Tran

smission

IT

Grid�Au

tomation�Distribution

CH

73ES

B�Smart�M

eter�Projects

Elec

tricity�Su

pply�

Boa

rd�-�Networks

�(IE)

The�projec

t�aim

s�at:�-�ass

essing

�the�im

pact�of�T

ime�of�Use

�pricing

�and

�billing

/information�stim

uli�o

n�the�Cu

stom

er�Beh

avior;�-�as

sess

ing�the�

available�tech

nologies

�for�A

MI�roll�o

ut�in

�an�Irish�co

ntex

t.�The

�abo

ve�w

ill�

inpu

t�to�the�co

st�ben

efit�a

nalysis�for�t

he�fu

ll�roll�ou

t�of�A

MI�in�Irelan

d.

Jan�20

09�-�

Apr�2

011

IE

Smart�M

eter�and

�AMI

Hom

e�ap

plication�-�C

ustomer�

Beh

avior �

74ES

TER,�E

nel�integ

rated�

System

�for�T

Ests�on�stoR

age

ENEL

,�(IT)

Not�ava

ilable

Apr�2

009�-�

Apr�2

013

ITSp

ecific�Storag

e�Te

chno

logy

�Dem

onstration

75E-tellige

nce

EWE�AG

�(DE)

The�idea

�beh

ind�eT

ellig

ence

�is�th

e�intellige

nt�sys

tem�in

tegration�of�

elec

tricity�ge

neration

�and

�con

sumption.�To�this�aim

,�the

�project�w

ill�

deve

lop�an

d�fie

ld-tes

ts:�•

�a�re

gion

al�m

arke

t�place

�for�e

lectricity;�•

�feed

back

�sys

tems,�ta

riffs�an

d�ince

ntive�prog

rams;�•�pow

er�gen

eration�

and�de

man

d�side

�con

trol�sys

tems;�•�m

odern�ICT�an

d�internationa

l�stan

dards.

Nov

�200

9�-�

Oct�201

2DE

Integrated

�Sys

tem

Smart�M

eter�and

�AMI

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Page 91: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

76ET

M�(D

istribution�Network�

Automation�on

�10�

kV�cab

le�line

�station

s)

ELM�

Hálóz

ati�K

ft.�

(HU)

Nea

rly�76

0�piec

es�of�1

0�kV

�switch

ing�stations

�(on�ca

ble�ne

tworks

)�will�be�

equipp

ed�by�RT

Us,�to

�provide

�remote�ob

servab

ility�and

�remote�co

ntrol.�

The�co

mmun

ication�(con

nection)�is

�estab

lishe

d�via�GSM

�network.

2009

-201

3HU

Grid�Au

tomation�Distribution

77EU

-DEE

PGDF�Su

ez�(F

R)

The�projec

t�bring

s�toge

ther�eight�Europ

ean�en

ergy

�utilities�an

d�aims�

at�re

mov

ing�mos

t�of�the

�tech

nica

l�and

�non

-tec

hnical�barriers�that�

prev

ent�a

�mas

sive

�dep

loym

ent�o

f�distributed

�ene

rgy�reso

urce

s�(D

ER)�

in�Europ

e.�In

�partnersh

ip�w

ith�man

ufac

turers,�res

earch�orga

niza

tion

s,�

profes

sion

als,�nationa

l�age

ncies�an

d�a�ba

nk,�the

y�im

plem

ented�a�

deman

d-pu

ll�rather�th

an�te

chno

logy

-pus

h�ap

proa

ch.�T

his�ne

w�app

roac

h�prov

ided

�three�tentative�“fas

t-trac

ks�options

”�to�spe

ed�up�the�large-sc

ale�

implem

entation

�of�D

ER�in

�Europ

e,�by�de

fining�three�client�por

tfolios�in�

variou

s�marke

t�seg

men

ts�w

hich

�cou

ld�ben

efit�from�DER

�solutions

,�and

�by�

fostering�the�R&D�re

quired

�to�ada

pt�DER

�tech

nologies

�to�th

e�de

man

ds�of�

thes

e�se

gmen

ts.�

Jan�20

04�-�

Jun�20

09

FR

Integrated

�Sys

tem

EL UK

DE

BE

ES�

SE PL LV AT HU IT FI CY CZ TR

78EV

COM

Energine

t.dk

,��(TSO

),�

(DK)

The�prim

ary�pu

rpos

e�is�to

�estab

lish�a�co

ncep

t�for�electric�ve

hicles

�and

�their�c

ommun

ication�with�the�po

wer�sys

tem.�T

he�con

cept�disse

minated

�to�th

e�stan

dardization�work�an

d�to�re

leva

nt�stake

holders.

Jan�20

08�-��

Dec

�201

0DK

Smart�M

eter�and

�AMI

Integrated

�Sys

tem

Page 92: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

79EV

�Network�integration

ESB�Networks

�(IE)

This�project�w

ill�ta

ke�tw

o�typica

l�LV�(2

20V)�c

ircu

its,�one

�urban

�and

�on

e�rural,�an

d�will�exa

mine�in�detail�throu

gh�m

odeling�an

d�throug

h�de

mon

stration

,�the

�impa

ct�of�E

V’s�on�the�ne

twork.

Dec

�200

9�-�

Dec

�201

2IE

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

Other

80EW

IS�-�Eu

rope

an�w

ind�

integration�stud

y

ELIA�SYS

TEM�

OPE

RAT

OR�SA�(B

E)

The�projec

t�aim

s�to�w

ork�with�all�the

�releva

nt�stake

holders�es

pecially�

repres

entative

s�of�w

ind�ge

neration

�dev

elop

ers.�The

�study

�will�use

�resu

lts�

from

�detailed�ne

twork�an

d�marke

t�mod

els�of�th

e�Eu

rope

an�tran

smission

�sy

stem

�for�s

cena

rios

�repres

enting

�immed

iate�and

�long

er-term�nee

ds.�

The�reco

mmen

dation

s�will�be�aimed

�at �d

evelop

ing,�w

here�pos

sible�an

d�ap

prop

riate,�com

mon

�Europ

ean�so

lution

s�to�w

ind�integration�ch

alleng

es.

Jun�20

07-

Oct�200

9

BE

Other

AT DE

FR PT ES�

PL UK EL IE DK CZ NL

81ew

z-Stud

ie�Smart�M

etering

ewz�-�E

lektrizitätswerk�

der�S

tadt�Zürich�(CH)

Cond

ucting

�a�field�ex

perimen

t�to�prov

ide�ba

sic�da

ta�fo

r�dec

ision�mak

ing,�

whe

ther�or�n

ot�to

�roll�ou

t�hom

e�ap

plications

.Jul�2

010-Dec

�20

12CH

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Page 93: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

82Fe

nix

Iberdrola�Distribuc

ion�

(ES)

The�ob

jective�of�FEN

IX�is

�to�boo

st�DER

�(Distributed

�Ene

rgy�Re

source

s)�

by�m

axim

izing�their�c

ontribution�to�th

e�elec

tric�pow

er�sys

tem,�throu

gh�

aggreg

ation�into�Large

�Sca

le�Virtual�Pow

er�Plants�(LSV

PP)�a

nd�

dece

ntraliz

ed�m

anag

emen

t.�The

�project�is

�organ

ized

�in�th

ree�ph

ases

:�§�Ana

lysis�of�th

e�DER

�con

tribution�to�th

e�elec

trical�sys

tem,�a

sses

sed�

in�tw

o�future�sce

narios

�(Nor

thern�an

d�So

uthe

rn)�w

ith�realistic�DER

�pe

netration;�§�Dev

elop

men

t�of�a

�laye

red�co

mmun

ication�an

d�co

ntrol�

solution

�validated

�for�a

�com

preh

ensive

�set�of�n

etwork�us

e�ca

ses�,�

includ

ing�no

rmal�and

�abn

ormal�ope

ration

,�as�well�a

s�reco

mmen

dation

s�to�ada

pt�in

ternationa

l�pow

er�stand

ards

;�§�Validation�throug

h�2�large�fie

ld�

deploy

men

ts,�o

ne�fo

cuse

d�on

�dom

estic�CH

P�ag

greg

ation,�and

�the�se

cond

�ag

greg

ating�large�DER

�in�LSV

PPs�(w

ind�farm

s,�in

dustrial�cog

eneration),�

integrated

�with�glob

al�network�man

agem

ent�a

nd�m

arke

ts.

Oct�05�-�O

ct�

2009

ES�

Integrated

�Sys

tem

UK SI

AT DE

NL

FR RO

83Fieldtrail�Mob

ile�Smart�G

rid

Enex

is�(N

L)Dem

onstrate�an�ea

rlier�t

ested�proo

f-of-con

cept�(P

oC)�for�dem

and�

resp

onse

�with�on

e�EV

�on�multiple�EV

s�an

d�ch

arge

�spo

ts�in

�one

�loca

tion

�ba

sed�on

�individu

al�drive

r�dem

ands

.

Apr�2

010-

Apr�2

011

NL

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

84Flex

com,�F

orsk

EL�

Risø�DTU

,�(DK)

The�projec

t�aim

s�at�produ

cing

�a�con

ceptua

l�framew

ork�for�t

he�unifie

d�an

d�ex

tens

ible�re

pres

entation

�and

�exc

hang

e�of�pow

er�sys

tem�in

form

ation�

and�da

ta,�it�w

ill�fo

cus�on

�con

cept�des

ign�an

d �proo

f-of-con

cept�te

sting,�to

�prov

ide�inpu

t�to�the�ex

isting

�stand

ardiza

tion

�effor

t.

Jun�20

08�-�

May

�201

0DK

Grid�Au

tomation�Distribution

85Flex

�pow

er�-�pe

rspe

ctives

�of�

indirect�pow

er�sys

tem�con

trol�

throug

h�dy

namic�pow

er�price

EA�ene

rgiana

lyse

,�(DK)

The�aim�of�the

�project�is

�to�dev

elop

,�tes

t,�ana

lyze

�persp

ective

s�of,�

iden

tify�cha

lleng

es�by,�eva

luate�an

d�reco

mmen

d�on

�metho

dologies

�to�

use�dy

namic,�b

road

casted

,�rea

l-time�po

wer�price

’s)�for�in

direct�con

trol�

of�th

e�individu

al�pow

er�flow

�of�m

any,�small,�intellige

nt�and

�con

trollable�

power�units�in

�the�po

wer�sys

tem.

Jun�20

10�-�

Jun�20

13DK

Integrated

�Sys

tem

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

86From

�wind�po

wer�to

�hea

t�pu

mps

Energine

t.dk

,��(TSO

),�

(DK)

Tto�co

ntrol�3

00�in

tellige

nt�hea

t�pum

ps�as�if �they

�were�on

e�big�en

ergy

�storag

e�facility�ca

pable�of�storing

�electricity�as�he

at.

Nov

�200

9�-�

Dec

�201

1DK

Integrated

�Sys

tem

Smart�M

eter�and

�AMI

Page 94: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

87G4V

�-�Grid�for�V

ehicles

RWE�RHEINLA

ND�

WES

TFALE

N�NET

Z�AG

�(D

E)

The�projec

t�of�the

�G4V

�con

sortium�w

ill�gen

erate�fast�and

�ope

nly�av

ailable�

resu

lts:�an�an

alytical�fram

ework�to�eva

luate�the�im

pact�of�a

�large�sc

ale�

introd

uction

�on�the�grid�in

fras

truc

ture�and

�a�visiona

ry�“road

�map

”�for�t

he�

year�202

0�an

d�be

yond

.

Jan�20

10�-�

Jun�20

11

ES�

Other

PT NL

FR DE

SE IT UK

88GAD

Iberdrola�Distribuc

ion�

(ES)

The�fir

st�aim

�of�the

�GAD

�Dem

and�Side

�Man

agem

ent�P

roject�is

�to�optim

ize�

elec

trical�ene

rgy�co

nsum

ption�an

d�its�as

sociated

�cos

ts�at�d

omes

tic�leve

l,�while�m

eeting

�con

sumer�nee

ds�and

�maintaining

�qua

lity�stan

dards.

Jan�20

07�-�

Dec

�201

0ES

Smart�M

eter�and

�AMI

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

89Gen

eric�virtual�pow

er�plant�

for�o

ptim

ized

�micro�CHP�

operation�an

d�integration

CET-DTU

,�(DK)

To�dev

elop

,�tes

t,�validate�an

d�ev

alua

te�a�nov

el�con

trol�architecture�for�

optimized

�ope

ration

�and

�sea

mless

�integration�of�m

icro�CHP�ba

sed�on

�a�

gene

ric�virtua

l�pow

er�plant�(V

PP)�c

once

pt.�T

he�con

cept�sha

ll�prov

ide�a�

foun

dation

�for�future�op

eration�an

d�integration�of�m

icro�CHP.

Sept�200

7�-�

Dec

�201

0DK

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

90Grid4

EUER

DF�(FR)

Grid4

EU�is

�led�by

�a�group

�of�E

urop

ean�DSO

s�an

d�aims�at�te

sting�in�re

al�

size

�som

e�inno

vative

�sys

tem�con

cepts�an

d�tech

nologies

�in�order�to

�high

light�and

�help�to�re

mov

e�so

me�of�th

e�ba

rriers�to

�the�sm

art�g

rids

�de

ploy

men

t �(tech

nica

l,�ec

onom

ic,�s

ocietal,�en

vironm

ental�o

r�reg

ulatory).�

It�fo

cuse

s�on

�how

�DSO

s�ca

n�dy

namically�m

anag

e�elec

tricity�su

pply�and

�de

man

d,�w

hich

�is�crucial�fo

r�integ

ration

�of�large

�amou

nts�of�re

newab

le�

energy

,�and

�empo

wers�co

nsum

ers�to�bec

ome�ac

tive

�participa

nts�in�th

eir�

energy

�cho

ices

.

Apr�2

011�-�

Apr�1

5

DE

Integrated

�Sys

tem

SE

ES�

IT CZ FR

Page 95: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

91Grid-integration�of�Electricity�

Storag

e

Frau

nhofer-

Ges

ellsch

aft�z

ur�

Förderun

g�de

r�an

gewan

dten

�Fo

rsch

ung�e.V.�(F

hG),�

(DE)

Not�ava

ilable�

Apr�2

009�-�

Mar�201

1DE

Integrated

�Sys

tem

92Grid�Integration�of�O

ffsh

ore�

Windp

arks

Frau

nhofer-Ins

titut�

für�W

inde

nergie�und

�En

ergies

ystemtech

nik�

(IWES

),�(D

E)

With�the�WCM

S�the�sc

attered�wind�farm

s�ha

ve�bee

n�co

mbine

d�in�to

�a�clus

ter�a

nd�th

e�co

ntrol�roo

m�of�the

�releva

nt�network�op

erator�is

�co

ntrolle

d�ce

ntrally

.�While�th

e�wind�farm

�cluster�m

anag

emen

t�sys

tem,�

prov

ides

�calcu

lus�for�t

he�fo

reca

sting�so

ftware�wind�po

wer�m

anag

emen

t�sy

stem

�using

�artificial�neu

ral�n

etworks

�bas

ed�on�wea

ther�fo

reca

sts.

Jul�2

008-Jun�

2011

DE

Integrated

�Sys

tem

93GRO

W-D

ERS�Dem

onstration

�of�Grid�Co

nnec

ted�Elec

tricity�

System

sKEM

A�(N

L)Th

e�GRO

W-D

ERS�projec

t�(Grid�Re

liability�an

d�Ope

rability�with�Distributed

�Gen

eration�us

ing�Flex

ible�Storage

)�inv

estiga

tes�the�im

plem

entation

�of�

(trans

portab

le)�d

istributed

�storage

�sys

tems�in�th

e�ne

tworks

.�

Jul�2

009�-�Jul�

2011

FR

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

DE

ES�

NL

94Harz.EE

-Mob

ility

Unive

rsity�Mag

debu

rg�

(DE)

The�Harz.EE

-mob

ility�project�aim

s�to�harne

ss�as�muc

h�of�th

is�re

newab

le�

energy

�as�po

ssible�to

�enh

ance

�pas

seng

er�m

obility.�B

y�do

ing�so

,�the

�projec

t�also�aims�to�ens

ure�the�stab

ility�of�e

nergy�ne

tworks

,�to�bo

ost�

econ

omic�perform

ance

,�and

�to�fo

ster�ene

rgy�se

curity�and

�clim

ate�

protec

tion

.

Aug�20

09-

Jul�2

011

DE

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

95Hea

t�Pum

ps�as�an

�active�tool�

in�th

e�en

ergy

�sup

ply�sy

stem

,�Fo

rskE

L�

Dan

ish�Te

chno

logica

l�Institute,�(D

K)

Hea

t�pum

ps�w

ill�provide

�flex

ibility�due

�to�th

e�po

ssibility�to

�eithe

r�increa

se, �d

ecreas

e�or�in

terrup

t�the

�pow

er�con

sumption.�The

�project�w

ill�

deal�w

ith�the�ab

ility�of�h

eat�p

umps

�to�ope

rate�in

�so-ca

lled�Virtua

l�Pow

er�

Plan

ts,�to�de

liver�re

gulating

�pow

er�and

�to�re

act�o

n�sp

ot-m

arke

t�electricity�

prices

.

Apr�2

010�-�

Jul�2

012

DK

Integrated

�Sys

tem

96HiperDNO

Brune

l�Unive

rsity�UK)

The�aim�of�this�rese

arch

�project�is

�to�dev

elop

�a�new

�gen

eration�of�

distribu

tion

�network�man

agem

ent�s

ystems�that�exp

loits�no

vel�n

ear�

to�re

al-tim

e�HPC

�solutions

�with�inhe

rent�sec

urity�an

d�intellige

nt�

commun

ications

�for�s

mart�d

istribution�ne

twork�op

eration�an

d�man

agem

ent.�Cos

t�effec

tive

�sca

lable�HPC

�solutions

�will�be�de

velope

d�an

d�initially

�dem

onstrated�for�r

ealis

tic�distribu

tion

�network�da

ta�traffic

�an

d�man

agem

ent�s

cena

rios

�via�off-line �fie

ld�tr

ials�in

volving�se

veral�

distribu

tion

�network�ow

ners�and

�ope

rators.

Feb�20

10�-�

Jan�20

13

SI

Grid�Au

tomation�Distribution

ES�

UK FR DE IL

Page 96: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

97HiT

Salzbu

rg�AG�(A

T)

A�de

mon

stration

�building�is�to

�be�plan

ned�an

d�co

nstruc

ted�as

�flag

ship�

projec

t,�in

�order�to

�inve

stigate�the�po

ssibilities

�and

�ben

efits�of�S

mart�

Grids

�in�con

nection�with�bu

ildings

,�which

�sho

uld�then

�be�brou

ght�to�the�

attention�of�th

e�broa

d�pu

blic�to

�mak

e�this�to

pic�visible�an

d�co

ncrete.�

Jan�20

08�-�

Jan�20

11AT

Integrated

�Sys

tem

98Hyd

roge

n�-�S

otav

ento�projects

Gas

�Natural�Fen

osa�

(ES)

The�main�go

al�is

�to�dem

onstrate�a�w

ind�po

wer�m

anag

emen

t�sys

tem�

base

d�on

�H2.�The

�installation

�prese

nted

�here�is�one

�of�the

�larges

t�globa

l�ca

pacities

,�whe

re�hyd

roge

n�is�use

d�in�th

e�en

ergy

�man

agem

ent�o

f�the

�prod

uction

�of�a

�wind�farm

.

2005

-201

1ES

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

Integrated

�Sys

tem

99ICOEU

R�

TECH

NISCH

E�UNIVER

SITAE

T�DORT

MUND�(D

E)

The�de

velopm

ent�a

nd�prototypica

lly�im

plem

entation

�of�n

ew�m

etho

ds�and

�tools�is�th

e�major�goa

l�of�the

�ICOEU

R�project.�N

ew�te

chno

logies

�like

�Wide�

Area

�Mon

itoring,�Con

trol�and

�Protection�as

�well�a

s�ad

vanc

ed�network�

controlle

rs�(F

ACTS

)�and

�HVDC�sy

stem

s�will�be�co

nsidered

.�The

�project�

will�in

vestigate�sm

art�interco

nnec

tion

�betwee

n�co

ntinen

tal�E

urop

e�an

d�Rus

sian

�sys

tems.

Jan�20

09-

Dec

�201

1

IT

Grid�Au

tomation�Tran

smission

BE

EE SI

LV SE

UK

CH RU TR

100

IMPR

OSUME�-�T

he�Im

pact�of�

Pros

umers�in�a�Smart�G

rid�

base

d�En

ergy

�Marke

t�

Inku

bator�H

alde

n,�

Norweg

ian�Ce

nter�of�

Expe

rtise�for�E

nergy�

and�Em

ission

�Trading

�(N

O)

IMPR

OSUME�will�estab

lish�a�be

tter�und

erstan

ding

�of�the

�prosu

mer’s�ro

le�

in�th

e�future�pow

er�m

arke

t�sup

ported

�by�a�Sm

art�G

rid�an

d�as

sociated

�tech

nologies

.�The

�project�w

ill�add

ress

�stimuli�tha

t�are�like

ly�to

�motion�

cons

umers�to�ta

ke�an�ac

tive

�role�in

�the�marke

t�also�as

�sup

pliers.�

Oct�201

0�-�

Oct�201

1

NO

Other

CHIntegrated

�Sys

tem

DK

Other

Page 97: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

101

Increa

sed�en

ergy

�sup

ply�

flexibility�an

d�effic

ienc

y�by

�us

ing�de

centraliz

ed�hea

t�pu

mps

�in�CHP�stations

Dan

ish�Te

chno

logica

l�Institute�(D

TU),�(D

K)

The�projec

t�dem

onstrates�the�ne

wly�dev

elop

ed�hea

t�pum

p�tech

nology

�in�fu

ll�sc

ale�at�tw

o�de

centraliz

ed�CHP�stations

.�Fur

thermore,�a�num

ber�

of�id

eas�co

ncerning

�the�integration�of�com

pres

sion

�hea

t�pum

ps�in

�the�

energy

�sys

tem�w

ill�be�tested

�via�sim

ulation�mod

els�an

d�also

�in�practice.�

Fina

lly,�h

eat�p

umps

�will�be�inve

stigated

�in�con

nection�with�redu

ction�of�

grid�lo

ss�in

�district�h

eating

�(20-40

%)�v

ia�ultra-cold�district�hea

ting

.

Feb�20

07�-�

Dec

�201

0DK

Integrated

�Sys

tem

102

Inform

ation�an

d�ed

ucation�of�

the�future�pow

er�con

sumer,�

ForskE

L

Østkraft�H

olding

�A/S

,�(D

SO),�(D

K)

This�project�fo

cuse

s�on

�cus

tomer�beh

avior�a

nd�w

hat�a

ctions

�are�nee

ded�

to�in

form

�the�cu

stom

er.�T

he�project�w

ill�re

sult�in

�broch

ures

,�a�new

�en

ergy

�con

sultan

cy�service

�and

�edu

cation

�of�tee

nage

rs�fo

llowing�a�yo

uth�

educ

ation�prog

rams.

Jan�20

11�-�

Dec

�201

4DK

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

103

�Inform

ation�from

�the�

elec

tricity�grid�-�remote�

read

ing

Not�ava

ilable

The�remote�read

ing�projec

t�in�ad

dition

�to�con

sumption�da

ta�also�mak

es�it�

poss

ible�to

�retrieve

�inform

ation�on

�con

sumption�pa

tterns

,�loa

ds,�v

oltage

�va

riations

.�The

se�are�all�related�initiative

s�to�ach

ieve

�smart�g

rid�so

lution

s�on

�the�low-voltage

�grid.

Not�

available

DK

Smart�M

eter�and

�AMI

104

INOVG

RID

EDP�Distribuc

ao�SA�

(PT)

INOVG

RID

�aim

s�at�re

plac

ing�the�cu

rren

t�LV�m

eters�with�elec

tron

ic�dev

ices

�ca

lled�En

ergy

�Box

es�(E

B),�using

�AMM�(A

utom

ated

�Meter�M

anag

emen

t)�

stan

dards.�The

se�EB�are�in

tegrated

�in�an�au

tomated

�third�ge

neration

�elec

trical�grid�(smart�g

rid)�in

�which

�network�de

vice

s�are�plac

ed�(D

TC)�

that�w

ill�m

anag

e�the�EB

�throug

h�ne

w�TI/SI�s

olutions

�by�ag

greg

ating�the�

gathered

�inform

ation�an

d�prov

iding�ne

w�service

s�to�con

sumers.

2007

�-�20

11PT

�Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior

105

Installation

�of�rem

otely�read

�elec

tricity�meters

Not�ava

ilable

Supp

ort�for�th

e�bu

sine

ss�fo

unda

tion

�of�the

�com

pany

,�and

�for�m

eeting

�tomorrow’s�re

quirem

ents�fo

r�settlem

ent�a

nd�visua

lization�of�electricity�

cons

umption�to�con

sumers.�The

�objec

tive

s�are:�preco

ndition�for�t

he�

introd

uction

�and

�settlem

ent�o

f�intellig

ent�s

olutions

�in�th

e�elec

tricity�

system

�of�the

�future.

2005

�-�20

10DK

Smart�M

eter�and

�AMI

106

INTE

GRAL

ECN,�E

nergy�rese

arch

�Ce

ntre�of�the

�Nethe

rlan

ds�(N

L)

The�IN

TEGRAL�projec

t�aim

s�to�build�and

�dem

onstrate�an�indu

stry-qua

lity�

referenc

e�so

lution

�for�D

ER�agg

rega

tion

-lev

el�con

trol�and

�coo

rdination,�

base

d�on

�com

mon

ly�ava

ilable�ICT�co

mpo

nents,�stand

ards

,�and

�platforms.

2009

-201

0

NL

Integrated

�Sys

tem

ES�

FR

107

Integrated

�Utilities�Bus

ines

s�Sy

stem

s

Enem

alta�Corpo

ration

�an

d�Water�Service

s�Co

rporation,�(M

T)

Replac

emen

t�of�2

50,000

�meters�with�sm

art�m

eters�an

d�im

plem

entation

�of�re

mote�man

agem

ent.�SCAD

A�for�v

oltage

�leve

ls�132

kV,�a

nd�33k

V.�

Reen

gine

ering�of�th

e�utilities

�proce

sses

.

Sept�200

8�-�

Sept�201

3MT

Smart�M

eter�and

�AMI

Grid�Au

tomation�Tran

smission

Page 98: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

108

Integration�an

d�man

agem

ent�

of�w

ind�po

wer�in

�the�Dan

ish�

elec

tricity�sy

stem

,�Forsk

EL�

Dep

artm

ent�o

f�Ene

rgy�

Tech

nology

–Aalbo

rg�

Unive

rsity�(D

K)

The�projec

t�estab

lishe

s�a�ne

w�m

odel�of�the

�Dan

ish�elec

tricity�sy

stem

�in�

the�form

�of�two�bu

ses,�to

�which

�new

�mod

els�of�lo

ad�and

�produ

ction�un

its�

are�co

nnec

ted�in�th

e�form

�of�c

entralized

�and

�loca

l�pow

er�plants,�ons

hore�

and�offsho

re�w

ind�turbines

�and

�grid�co

nnec

tion

s�to�Norway

,�Swed

en�and

�German

y.

2007

�-�Jun�

2009

DK

Integrated

�Sys

tem

109

Intellige

nt�Ene

rgy�

Man

agem

ent�

Linz

�Strom

�Netz�GmbH

,�(AT)

Prep

aration�of�Linz�Strom�to

�fulfill�future�ene

rgy�po

licy.

2008

-202

0AT

Smart�M

eter�and

�AMI

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

110

Intellige

nt�Rem

ote�Co

ntrol�for�

Hea

t�Pum

ps,�F

orsk

EL�

Nordjys

k�Elha

ndel�A/S

,�(D

K)

The�projec

t�will�dev

elop

�and

�dem

onstrate�an�intellige

nt�re

mote�co

ntrol�

system

�for�ind

ividua

l�hea

ting

�pum

ps,�e

nabling�the�ba

lanc

e�resp

onsible�

party�to�plan�co

nsum

ption�an

d�de

liver�re

gulatory�pow

er,�interna

l�ba

lanc

ing�an

d�po

ssibly�primary�rese

rves

.�

Apr�2

010�-�

Mar�201

1DK

Integrated

�Sys

tem

111

Interactive�meters,�activating�

price�fle

xible�po

wer�

cons

umption,�Forsk

EL

DONG�Ene

rgy�A/

S,�

(DK)

It�is

�tech

nica

lly�pos

sible�to�m

anag

e�an

d�ac

tiva

te�th

e�po

tential�for�flex

ible�

elec

tricity�co

nsum

ption�in�th

e�se

gmen

t�of�large

�office

�block

s�an

d�pu

blic�

build

ings

.�

Jan�20

06�-�

Jun�20

09DK

Smart�M

eter�and

�AMI

Integrated

�Sys

tem

112

Internet�of�E

nergy

SIN

TEF�(N

O)

The�ob

jective�of�In

ternet�of�E

nergy�(IoE

)�is�to�dev

elop

�hardw

are,�softw

are�

and�middlew

are�for�s

eamless

,�sec

ure�co

nnec

tivity�and

�interope

rability�

achiev

ed�by�co

nnec

ting

�the�Internet�w

ith�the�en

ergy

�grids

.�The

�project�

will�eva

luate�an

d�de

velop�the�ne

eded

�ICT�for�t

he�efficien

t�implem

entation

�in�fu

ture�smart�g

rid�structures

.�

Not�

available

NO

Integrated

�Sys

tem

AT DE FI IT NL

ES�

FR CZ BE

UK

Page 99: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

113

Introd

uction

�of�e

merge

ncy�

Dem

and�Side

�Res

pons

e�(D

SR)�

prog

rams

PSE�Ope

rator�S

.A.(PL

)

The�main�go

al�of�the

�pilo

t�project�is

�to�gain�prac

tica

l�exp

erienc

e�of�th

e�func

tion

ing�of�emerge

ncy�DSR

�program

s�in�Smart�G

rid/

smart�M

eters�

environm

ent.�This�ex

perien

ce�w

ill�be�us

ed�to

�dev

elop

�the�target�DSR

�prog

rams.

Jan�20

11-

Mar�201

2PL

Integrated

�Sys

tem

114

iPow

erRisø�DTU

,�(DK)

The�go

al�of�the

�platform�is

�to�con

tribute�to�th

e�de

velopm

ent�o

f�an�

intellige

nt�and

�flex

ible�electricity�sys

tem�cap

able�of�h

andling�a�large�pa

rt�

of�sus

tainab

le�electricity�produ

ction�in�areas

�whe

re�produ

ction�va

ries

�du

e�to�w

eather�con

dition

s�(sun

,�wind�etc).�

Jan�20

11�-�

Dec

�201

6DK

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

115

IRIN

Verein�zur�Förde

rung

�de

r�wisse

nsch

aftliche

n�Fo

rsch

ung�(D

E)

The�rese

arch

�project�aim

s�to�dev

elop

�the�institutiona

l�framew

ork�that�

guides

�efficien

t�and

�effec

tive

�network�de

velopm

ent�tow

ards

�smart�g

rids

.Dec

�200

9-May

�201

1DE

Other

116

Isolve

s�PS

SA-M

Austrian

�Institute�of�

Tech

nology

�(AT)

The�ob

jective�of�th

e�projec

t�is�to�defi

ne�and

�dev

elop

�the�requ

ired

�tech

nica

l�fou

ndations

�to�ena

ble�an

�increa

sing

�num

ber�o

f�distributed

�en

ergy

�feed

-in�opp

ortunities

�in�LV�networks

.�For�th

is�purpo

se�a�m

etho

d�is�

deve

lope

d�to�ta

ke�an�instan

tane

ous�im

age�of�th

e�ne

twork,�th

e�so

-called�

“Pow

er�Sna

p-Sh

ot�Ana

lysis�by

�Meters”

,�and

�is�app

lied�toge

ther�w

ith�

adap

ted�sm

art�m

eters.�

Jul�2

009�-�

Jan�20

12AT

Smart�M

eter�and

�AMI

Integrated

�Sys

tem

117

Kybe

rnet

INEA

�d.o.o.�(SL

)Th

e�projec

t�objec

tive

�is�th

e�de

velopm

ent�o

f�a�sys

tem�prototype

�for�

control�o

f�ind

ustrial�loa

ds�and

�dispe

rsed

�electrica

l�pow

er�plants�on

�a�

distribu

tion

�electrica

l�grid.

Jan�20

09�-�

Jan�20

11SI

Grid�Au

tomation�Distribution

118

Large-sc

ale�de

mon

stration

�of�

charging

�of�e

lectric�ve

hicles

,�Fo

rskE

LCh

oosE

V�A/S

,�(DK)

Dev

elop

ing�of�Cho

osCO

M�fo

r�intellig

ent�c

harging�an

d�co

mmun

ication�

with�elec

tric�cars�an

d�is�te

st�it�by�24

00�fa

milies

�in�300

�EVs

.�Main�

inve

stigation�is�w

hether�it�is

�pos

sible�to�m

ove�the�ch

arge

�of�E

Vs�to

�a�

more�prod

uction

�and

�env

iron

men

tal�frien

dly�time�–�an

d�is�th

e�EV

�owne

r�interested

�in�it.

Jan�20

11�-�

Dec

�201

3DK

Smart�M

eter�and

�AMI

Integrated

�Sys

tem

119

LAST

BEG

�-�La

rge�Sc

ale�To

ol�

for�P

ower�Balan

cing

�in�Electric�

Grid�

NANOTE

CH�SAS�AIX�EN

�PR

OVEN

CE�(F

R)

This�project�w

ill�dem

onstrate�an�op

timization�of�re

newab

le�ene

rgy�

supp

lies�(R

ES),�primarily

�wind�en

ergy

�sou

rced

�ons

hore�and

�offsh

ore,�

with�an

�existing�pu

mpe

d�storag

e�po

wer�plant�(P

SPP

).�It�w

ill�in

tegrate�

smart�m

eters�with�po

wer�dem

and�an

d�su

pply�fo

reca

sting�to�ena

ble�

cons

istenc

y�of�pow

er�sup

ply�in�a�small�E

urop

ean�co

untry�(Lithu

ania).�

The�less

ons�learnt�from

�this�dem

onstration

�project�w

ill�be�diss

eminate�

directly�to

�the�pa

rticipan

ts�in

�this�project�and

�indirectly�th

roug

h�them

�to�m

ajor�globa

l�Trans

mission

�Sys

tem�O

perators�(T

SOs),�e

nsuring�a�

two�way

�exc

hang

e�of�bes

t�practice.�This�work�will�th

erefore�en

able�a�

grea

ter�p

enetration

�of�R

ES�as�pa

rt�of�the

�drive

�to�m

eet�the

�EC’s�20

:20:20

�ob

jectives

.

Jan�20

09-

Oct�200

9

FR

Integrated

�Sys

tem

LT UK

DE

ES�

HU

Page 100: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

120

LINEA

RVITO�(B

E)

LINEA

R�project�is

�a�first�c

rucial�step�in�th

e�tran

sition

�towards

�smart�g

rids

�in�Fland

ers.�The

�project�fo

cuse

s�on

�the�realization�of�a�te

chno

logica

l�and

�im

plem

entation

�break

throug

h�by

�inno

vative

�tech

nologica

l�res

earch�an

d�a�large�sc

ale�pilot�in�a�reside

ntial�a

rea.�This�will�be�ac

hiev

ed�in

�close

�co

llabo

ration

�with�indu

strial�partners�an

d�as

sociated

�Flemish�inno

vation

�platform

s.�Sco

pe�of�the

�project:�ins

talling

�of�d

istributed

�ene

rgy�so

urce

s�an

d�load

�man

agem

ent�a

t�100

0�clients�within�the�sm

art�m

etering�projec

t�in�Hom

beek

�and

�Lee

st.

2011-201

4BE

Integrated

�Sys

tem

121

Low�Carbo

n�Lo

ndon

�–�A�

Learning

�Journe

y

UK�Pow

er�Networks

�(formerly�EDF�En

ergy

�Networks

),�(U

K)

This�project�w

ill�im

plem

ent�n

ew�ta

riffs�for�E

V’s,�s

et�up�a�learning

�labo

ratory�at�Impe

rial�College

�Lon

don�to�te

st�how

�large�sc

ale�low�carbo

n�tech

nologies

�impa

ct�on�ne

tworks

,�Ins

tall�an

d�mon

itor�5,000

�smart�

meters�an

d�mon

itor�EV�cha

rging�pa

tterns

.�An�integrated

,�large

-sca

le�tr

ial�

of�th

e�en

d-to-end

�electricity�sup

ply�ch

ain.�Cum

ulative�CO

2�sa

ving

s�of�

0.6�billion

�tons

�betwee

n�20

11�and

�205

0.�In

�fina

ncial�terms,�th

e�ca

rbon

�be

nefits�from

�a�nationa

l�rollout�w

ould�give�an

�NPV

�of�£

29�billion�to�205

0.�

£12�billion

�NPV

�of�fi

nanc

ial�b

enefi

ts�fo

r�cus

tomers�up

�to�205

0.

Jan�20

11-Jun

�20

14UK

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Other

122

LV�Network�Te

mplates

�for�a

�Lo

w-carbo

n�Fu

ture’

Wes

tern�Pow

er�

Distribution�UK)

Assist�in

�the�de

sign

�and

�plann

ing�of�nationa

l�networks

�in�th

e�future,�in�

orde

r�to�ac

commod

ate�large-sc

ale�rene

wab

le�gen

eration�an

d�ch

ange

s�in�

custom

er�utiliz

ation.

Jan�20

11-D

ec�

2013

UK

Smart�M

eter�and

�AMI

Other

123

Man

age�Sm

art�in�Sm

art�G

rid

Tieto�En

ergy

�AS(

NO)

The�projec

t�aim

s�to�estab

lish�un

derstand

ing�an

d�mod

els�for�e

fficien

t�en

ergy

�man

agem

ent�for�priva

te�and

�pub

lic�end

-use

rs�bas

ed�on�AMI/AMS�

and�a�sm

arter�p

ower�grid.�

Jan�20

10-

Dec

�201

2NO

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Smart�M

eter�and

�AMI

124

Marina�po

wer�dist.�hub

�with�

smart-grid�fu

nction

ality,�

ForskE

L�

Dan

ish�Te

chno

logica

l�Institute,�(D

K)

Pilot�p

roject�w

ill�ana

lyze

�the�ne

ed�fo

r�and

�poten

tial�of�a

�marina�po

wer�

distribu

tion

�hub

�with�sm

art-grid�fu

nction

ality�for�t

he�exp

ected�increa

sing

�sh

are�of�electrica

l�tou

r-�and

�pleas

ure�bo

ats�in�Den

mark.

Feb�20

11�-�

Jan�20

12DK

Smart�M

eter�and

�AMI

Integrated

�Sys

tem

125

Marke

t�Bas

ed�Dem

and�

Resp

onse

SIN

TEF�En

ergy

�Re

search

,�(NO)

The�main�ob

jectives

�of�the

�pilo

t�study

�were�to�ach

ieve

�daily�lo

ad�shifting�

and�to�exp

lore�cus

tomer�accep

tanc

e�an

d�load

�cur

ve�im

pacts�of�hou

rly�

base

d�tariffs�an

d�au

tomatic�lo

ad�con

trol�sch

emes

.20

05-200

8NO

Smart�M

eter�and

�AMI

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

126

Matning

�200

9Goteb

org�En

ergy

�AB�

(SE)

The�sm

art�m

etering�projec

t�at�G

oteb

org�En

ergi�in

clud

es�all�cu

stom

ers�up

�to�63A

�and

�provide

s�for�t

he�dep

loym

ent�o

f�265

�000

�smart�m

eters.

Mar�200

6�-�

Jul�2

010

SE

Smart�M

eter�and

�AMI

Page 101: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

127

MER

GE�-�M

obile

�Ene

rgy�

Reso

urce

s�in�Grids

�of�

Elec

tricity�

PUBLIC�PO

WER

�CO

RPO

RAT

ION�S.A.�

(EL)

Elec

tric�pow

er�sys

tems�are�facing

�a�m

ajor�new

�cha

lleng

e:�fu

ture�m

assive

�integration�in�th

e�elec

tric�grid�of�electric�plug

-in�veh

icles�(EV).�The

�project�

will�add

ress

�com

preh

ensive

ly�th

e�im

pact�of�e

lectric�plug

-in�veh

icles�(EV)�

pres

ence

�rega

rding�stea

dy�state�ope

ration

,�intermittent�RES

�integration,�

system

�stability�an

d�dy

namic�beh

avior,�sy

stem

�restoration,�re

gulatory�

aspe

cts�an

d�marke

t�arran

gemen

ts.

Jan�20

10�-�

Dec

�201

1

ES�

Integrated

�Sys

tem

IE EL DE

BE

NO

UK PT

128

Micro-Req

uest-B

ased

�Ag

greg

ation,��

Foreca

sting�an

d�Sc

hedu

ling�

of�Ene

rgy��

Dem

and,�Sup

ply�an

d�Distribution�(M

IRAC

LE)

SAP�AG

�(DE)

The�projec

t’s�m

ain�go

al�is

�to�dev

elop

�a�con

cept�fo

r�flex

-offers�that�spe

cify�

elec

tricity�de

man

d�an

d �su

pply�w

hich

�is�flex

ible�in

�time�an

d�am

ount�and

�an

�infras

truc

tural�a

pproac

h�to�proce

ss�lo

ts�of�the

se�flex

-offers�issu

ed�by�

small�c

onsu

mers�an

d�prod

ucers�in�nea

r�rea

l-time.�

The�po

ssibility�to

�shift�dem

and�within�the�mas

s�of�hou

seho

lds�de

velope

d�within�the�MIRAC

LE�project�w

ill�allo

w�fo

r�a�highe

r�sha

re�of�fl

uctuating�

rene

wab

le�ene

rgy�so

urce

s�in�th

e�en

ergy

�mix�on�the�grid�and

�redu

ce�th

e�pe

ak�dem

and.�W

e�ex

pect�th

at�th

e�sh

are�of�RES

�can

�be�increa

sed�by

�5%�

and�that�th

e�pe

ak�dem

and�ca

n�be

�redu

ced�by

�8-9%�(b

ut�at�lea

st�by�5%

)�for�t

he�to

tal�g

rid.�

We�will�fu

rthe

rmore�redu

ce�th

e�mea

n �time�be

twee

n�tran

sactions

,�which

�will�re

sult�in

�more�stab

ility�of�the

�ene

rgy�grid�but�also�in�re

duction�of�

costs�of�BRPs

,�by�redu

cing

�the�differen

ce�betwee

n�their�p

lann

ed�and

�ac

tual�electricity�sch

edules

.

Jan�20

10�-�

Jan�20

13

EL

Integrated

�Sys

tem

DE

PT NL

DK

CH IT ES�

FR PL MK

UK

Page 102: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

129

Mini�B

erlin

�pow

ered

��by

�Vattenfall

Vatten

fall�Eu

rope

�Inno

vation

�GmbH

�(DE)

The�func

tion

al�dem

onstration

�MIN

I�E�Berlin

�pow

ered

�by�Va

tten

fall�is�

a�co

-ope

ration

�betwee

n�Va

tten

fall�an

d�BMW.�T

here�are�50�MIN

I�E�(3

5�kW

h,�ra

nge�~�180

-200

�km,�m

ax�spe

ed�152

�km/h

)�mos

tly�us

ed�by�Berlin

�reside

nts�bu

t�also�in�flee

t�app

lications

.�

Dec

�200

8�-�

Nov

�201

0DE

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

130

Mod

el�City�Man

heim

MW�Ene

rgie�(D

E)

The�projec

t�con

centrates�on

�an�urba

n�co

nurbation�in�w

hich

�rene

wab

le�

and�de

centraliz

ed�sou

rces

�of�e

nergy�are�us

ed�to

�a�la

rge�ex

tent.�W

ithin�

the�fram

ework�of�th

e�E-En

ergy

�project,�a

�repres

entative

�large-sc

ale�trial�

is�being

�con

ducted

�both�in�M

anhe

im�and

�in�Dresd

en�to

�dem

onstrate�th

e�projec

t�can

�be�ap

plied�an

d�tran

slated

�to�other�re

gion

s.�

Nov

�200

8�-�

Oct�201

2DE

Integrated

�Sys

tem

131

More�Microgrids

ICCS

/Nationa

l�Te

chnica

l�Unive

rsity�of�

Athe

ns�(E

L)

The�aims�of�th

is�Tes

t�Fac

ility�is

�to:�•

�Tes

t�cen

tralized

�and

�dec

entralized

�co

ntrol�s

trateg

ies�in�grid�intercon

nected

�mod

e;�•�Tes

t�com

mun

ication�

protoc

ols�an

d�co

mpo

nents�includ

ing�as

pects�related�to�ene

rgy�trad

ing;�

•�A�co

ntrol�a

nd�m

onitoring�sy

stem

�built�aroun

d�IEC�61

850�stan

dard�

design

ed�and

�prototype

d;�•�Con

trol�strateg

ies�resu

lting�from

�age

nt�

software�to�m

ake�us

e�of�th

ese�co

ntrol�a

nd�m

onitoring�func

tion

s;�•�

Dev

elop

men

t�of��intellige

nt�m

odules

�embe

dding�the�requ

ired

�func

tion

s�to�allo

w�a�fu

ll�integration�of�eac

h�ge

nerating

/loa

d�un

it�in

to�th

e�sy

stem

.

Jan�20

06�-�

Dec

�200

9

ES�

Integrated

�Sys

tem

EL PT NL

Smart�M

eter�and

�AMI

ITGrid�Au

tomation�Distribution

DK

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

MK

DE

132

More�PV

2Grid

Fron

ius�Internationa

l�GmbH

�(AT)

The�projec

t�aim

s�at�dev

elop

ing�an

d�va

lidating�co

ncep

ts�fo

r�con

trollin

g�the�vo

ltag

e�with�ph

otov

oltaic�in

stallation

s.�The

�con

cepts�allow�num

erou

s�distribu

ted�PV

-sys

tems�to�con

tribute�to�voltage

-kee

ping

�by�au

tono

mou

s�ad

justmen

t�of�p

ower�and

�reac

tive

�pow

er�in

jection�witho

ut�sup

er�ordinate�

system

�and

�com

mun

ication�tech

nology

.�The

se�con

cepts�sh

all�u

ltim

ately�

allow�th

e�co

st-effec

tive

�integration�of�a�la

rge�nu

mbe

r�of�p

hotovo

ltaic�

gene

rators.�

Mar�201

0�-�

Mar�201

3AT

Integrated

�Sys

tem

133

“Mülhe

im�zäh

lt”�Sm

art�M

eter�

Prog

ramm

RWE�DAG

�(DE)

RWE�DAG

�installin

g�up

�to�100

.000

�smart�m

eters�in�th

e�city�of�M

ülhe

im�in

�ho

useh

olds

.20

09-201

1DE

Smart�M

eter�and

�AMI

134

NET

-ELA

NFo

rsch

ungs

zentrum�

Jülic

h�GmbH

�(DE)

This�project�aim

s�to�ans

wer�th

e�qu

estion

�of�w

hether�and

�how

�it�can

�be

�in�te

rms�of�a�m

ulti-sec

tor�s

ystem�solution,�a�num

ber�o

f�veh

icles�

with�elec

trified

�drive

�com

pone

nts�us

ed�both�us

eful�as�a�distribu

ted�

energy

�storage

�in�th

e�elec

tric�network�an

d�the�co

nsum

er�side�de

man

d�man

agem

ent.�

Dec

�200

8-Nov

�201

1DE

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Integrated

�Sys

tem

Page 103: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

135

Network�de

sign

�and

��man

agem

ent�in�a��

smart�c

ity�with�large��

deploy

men

t�of�D

ER

Ores�(B

E)Th

e�projec

t�aim

s�at�in

tegrating�all�s

mart�tec

hnolog

ies�on

�the�distribu

tion

�grid�of�a

�given

�city�an

d�at�defi

ning

�new

�network�de

sign

�rules�an

d�man

agem

ent�p

rinc

iples�de

finition.

Dec

�201

0�-�

not�a

vaila

ble

BE

Smart�M

eter�and

�AMI

Integrated

�Sys

tem

Grid�Au

tomation�Distribution

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

136

Netze

�der�Strom

versorgu

ng�

der�Z

ukun

ftRW

E�DAG

�(DE)

One

�of�the

�mos

t�promising�inve

stigated

�grid�structures

�will�be�

demon

strated�in�a�ty

pica

l�rural�M

V�grid,�w

hich

�has

�to�cop

e�with�a�

mas

sive

�implem

entation

�of�R

ES.�S

everal�te

chno

logies

,�like�elec

tron

ic�

sub-stations

,�autom

atic�ta

p�ch

ange

r,�the�us

age�of�th

e�fle

xibility�of�an�

biog

as�plant�etc.�w

ill�be�tested

�and

�dem

onstrated.

2008

-201

1DE

Grid�Au

tomation�Distribution

137

Nex

tGen

CET-DTU

,�(DK)

To�con

tribute�to�th

e�de

velopm

ent�o

f�nex

t�gen

eration�co

mmun

ication�

system

�for�s

ystem�in

tegration�of�distributed

�gen

eration�(N

extG

en)�b

ased

�on

�the�ne

w�in

ternationa

l�IEC

6185

0-family

�of�o

pen�stan

dards�de

velope

d�in�th

ese�ye

ars.

Apr�2

006�

-Jun

�201

0DK

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

138

NIG

HT�WIN

D�

NED

ERLA

NDSE��

ORGANISAT

IE�VOOR�

TOEG

EPAST

�NAT

UUR-

WET

ENSC

HAP

PELIJK�

ONDER

ZOEK

�(NL)

The�Night�W

ind�projec

t�propo

ses�to�des

ign�grid�architectures

�for�

Wind�Po

wer�Produ

ction�co

mbine

d�with�En

ergy

�Storage

�mea

ns�of�loa

d�man

agem

ent�o

f�Refrige

rated�Wareh

ouse

s�(Cold�Stores

),�Refrige

rated�

Wareh

ouse

s�are�co

nstant�pow

er�use

rs,�d

ay�and

�night.

Jul�2

006-Jun�

2008

DK

Other

BG ES�

NL

139

Ope

n�meter

Iberdrola�(ES)

��

The�main�ob

jective�of�th

e�OPE

N�m

eter�project�is

�to�spe

cify�a�

compreh

ensive

�set�of�o

pen�an

d�pu

blic�stand

ards

�for�A

dvan

ced�Metering�

Infras

truc

ture�(A

MI)�sup

porting�multi�com

mod

ities�(Electricity,�G

as,�

Water�and

�Hea

t),�b

ased

�on�the�ag

reem

ent�o

f�the

�mos

t�relev

ant�

stak

eholde

rs�in

�the�area

.

Jan�20

09�-�

Jun�20

11

ES�

Smart�M

eter�and

�AMI

IT DE

FR NL

CH BE

Page 104: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

140

Ope

n�Nod

eAt

os�O

rigin�Sa

e�(ES)

Ope

nNod

e�projec

t�is�focu

sed�on

�the�elec

trical�distribution�grid�ope

ration

�an

d�ex

plores

�ans

wers�on

�the�three�ch

alleng

es�in

trod

uced

:�•�How

�to�im

prov

e�the�distribu

tion

�grid�mon

itoring�to�cop

e�with�vo

latile�

states

�in�th

e�grid�

•�How

�to�in

tegrate�the�“smart”�sub

station�au

tomation�de

vice

s�to�

increa

se�th

e�effic

ienc

y�of�th

e�distribu

tion

�grid�

•�How

�to�in

terope

rate�w

ith�the�differen

t�roles

�e.g.�o

peration

�of�the

�smart�

meters,�pow

er�and

�grid�op

eration

Jan�20

10�-�

Jun�20

12

ES�

Integrated

�Sys

tem

FR PT NL

DE AT

141

Opp

ortunities

�to�use

�Co

mpres

sed�air�e

nergy�

storag

e�for�s

torage

�of�

elec

tricity�in�th

e�elec

tricity�

system

�of�the

�future

DTU

�Mec

hanica

l�En

gine

ering,�(D

K)

The�projec

t�objec

tive

�is�to

�determine�whe

ther�Com

pres

sed�Air�E

nergy�

Storag

e�(C

AES)

�will�be�a�so

und�alternative�in�fina

ncial�a

nd�ene

rgy�term

s�to�other�ty

pes�of�electricity�storage

�(hyd

roge

n,�battery,�p

umpe

d�storag

e�po

wer�station

s�ab

road

)�and

�regu

lation

�metho

ds�in

�con

nection�with�

elec

tricity�ov

erflo

w�and

�other�re

gulation

�nee

ds�in

�the�elec

tricity�sy

stem

�of�th

e�future.

Dec

�200

5�-�

Dec

�201

0DK

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

142

Optim

al�Pow

er�Network�

design

�and

�Ope

ration

Norweg

ian�Unive

rsity�

of�Scien

ce�and

�Te

chno

logy

�(NO)

Improv

ed�pow

er�sys

tem�stability,�plann

ing�an

d�op

eration,�Training�of�

PhD’s,�Improv

ed�und

erstan

ding

�of�e

lectricity�m

arke

t�des

ign�to�m

inim

ize�

operationa

l�los

ses.

Jul�2

011�-�Jun

�20

14NO

Grid�Au

tomation�Tran

smission

143

OPT

IMAT

ETE

CHNOFI�–�(F

R)

The�projec

t�aim

s�at�dev

elop

ing�a�nu

merical�te

st�platform�to

�ana

lyze

�and

�to�validate�ne

w�m

arke

t�des

igns

�which

�may

�allo

w�in

tegrating�mas

sive

�fle

xible�ge

neration

�dispe

rsed

�in�sev

eral�re

gion

al�pow

er�m

arke

ts.

2009

-201

2

FR

Integrated

�Sys

tem

DE

ES�

BE

DK IT UK

Page 105: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

144

PEGASE�-�P

an�Europ

ean�Grid�

Adva

nced

�Sim

ulation�an

d�state�Es

timation�

TRAC

TEBEL

�EN

GIN

EERIN

G�S.A.�

(BE)

PEGASE�is�a�fo

ur�yea

r�project�dea

ling�with�the�High�an

d�Ex

tra�High�

Voltag

e�tran

smission

�and

�sub

-trans

mission

�networks

�in�Europ

e�(des

igna

ted�as

�ETN

)�and

�implem

ented�by

�a�Con

sortium�com

pose

d�of�20�

Partne

rs�in

clud

ing�TS

Os,�exp

ert�c

ompa

nies

�and

�lead

ing�rese

arch

�cen

tre’s�

in�pow

er�sys

tem�ana

lysis�an

d�ap

plied�mathe

matics.�Its�ov

erall�o

bjec

tive

s�are�to�defi

ne�th

e�mos

t�app

ropriate�state�estim

ation,�optim

ization�an

d�simulation�fram

eworks

,�the

ir�perform

ance

�and

�datafl

ow�re

quirem

ents�to

�ac

hiev

e�an

�integrated

�sec

urity�an

alys

is�and

�con

trol�of�the

�ETN

.

Jul�2

008-Jun�

2012

BE

Other

DE

ES�

LT FR HR

RU

UK

TR PT BA LV RO NL

145

Pilot�L

inky

ERDF�(FR)

Link

y�pilot�is�an

�AMM�pilo

t.�It�con

sists�in�th

e�crea

tion

�of�a

�logic�co

ntrolle

r�(“Link

y�IS”)�and

�in�th

e�ex

perimen

tal�d

eploym

ent�o

f�300

,000

�meters�+�

5,00

0�co

ncen

trators.�The

�creation�of�th

e�en

tire�sys

tem�is

�bas

ed�upo

n�a�

PLC�LA

N�and

�a�GPR

S�WAN.�B

oth�meters�an

d�co

ncen

trators�are�de

sign

ed�

to�be�interope

rable.

2007

�-�20

11FR

Smart�M

eter�and

�AMI

146

Plug

ged�in�Place

sVa

riou

s�UK)

The�Plug

ged-in�Place

s�will�provide

�the�ch

arge

�points�to�sup

port�‘P

lug-in�

Cars’�-�pure�elec

tric�veh

icle�(E

Vs),�plug-in�hyb

rid�elec

tric�veh

icles�(PHEV

s)�

and�hy

drog

en�cars.�The

y�are�intend

ed�to

�dem

onstrate�how

�electric�

vehicle�ch

arging

�works

�in�practice�in�a�ra

nge�of�differen

t�setting

s�–�urba

n,�

subu

rban

�and

�region

al�–�as�well�a

s�testing�inno

vative

�tech

nologies

�suc

h�as

�rapid�ch

arging

,�ind

uctive

�cha

rging�an

d�ba

ttery�sw

ap.

Apr�2

010-

Apr�2

013

UK

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Page 106: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

147

Plug

�n’�p

lay-co

ncep

t�for�

intellige

nt�in

deklim

astyring

,�Fo

rskE

L

Neo

grid�Tec

hnolog

ies,�

(DK)

A�co

ncep

t�for�ene

rgy�effic

ient�con

trol�of�a

ir-air�h

eat�p

umps

�and

�electric�

storag

e�water�hea

ters�w

ith�focu

s�on

�indo

or�clim

ate,�ene

rgy�sa

ving

s�an

d�de

man

d�resp

onse

�is�dev

elop

ed.

Jan�20

11�-�

Jan�20

13DK

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

148

PMU/W

AMS�target�area

Energine

t.dk

,�(TS

O),�

(DK)

The�pu

rpos

e�is�to

�dev

elop

�sys

tems�that�can

�mon

itor�th

e�ov

erall�p

ower�

system

�state�and

�alert�sys

tem�ope

rators�and

�other�protection�sy

stem

s�ab

out�for

thco

ming�critical�situa

tion

s�in�th

e�po

wer�sys

tem.�

2006

�-�20

12DK

Grid�Au

tomation�Tran

smission

149

Pilotprojekt�M

arkisc

hes�

Viertel

Vatten

fall�Eu

rope

�Distribution�Berlin

�GmbH

�(DE)

Vatten

fall�su

ppor

ts�th

e�en

ergy

�efficien

cy�program

�in�Berlin

-�Märkisc

hes�

Viertel�w

ith�installation

�of�1

0.00

0�sm

art�m

eters.�In

�Berlin

�Märkisc

hes�

Viertel�the

re�are�m

ore�than

�10.00

0�ap

artm

ents�w

ith�more�than

�50.00

0�reside

nts.�The

�project�aim

s�at�te

sting�ne

w�m

eter�te

chno

logies

�com

bine

d�with�ne

w�IC

T-sy

stem

s.�

Jan�20

10�-�

Jun�20

11DE

Smart�M

eter�and

�AMI

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

150

Pilot�S

mart�M

etering

Enex

is�(N

L)

Rese

arch

�has

�bee

n�focu

sed�on

�alterna

tive

�data-co

m�in

fras

truc

tures,�

AMI-sy

stem

�perform

ance

s,�stand

ardiza

tion

�of�m

eter�re

quirem

ents,�

poss

ibilities

�of�fi

rmware�up

grad

es,�s

ecurity�&�priva

cy�guide

lines

�and

�mea

sures,�m

ass�roll�ou

t�proce

sses

�and

�cus

tomer�satisfaction.

2007

-201

0NL

Smart�M

eter�and

�AMI

151

Power�pit

DONG�Ene

rgy,��(DSO

),�

(DK)

The�pu

rpos

e�of�th

e�Po

wer�Pit�project�is

�state�estim

ation�in�10�kV

�network�

and�visu

alization�of�re

sults

2007

�-�20

09DK

Grid�Au

tomation�Distribution

152

Price�elas

tic�elec

tricity�

cons

umption�an

d�elec

tricity�

prod

uction

�in�in

dustry

Dan

sk�Ene

rgi�A

nalyze

�a/

s�(D

K)

The�projec

t�aim

s�at�promoting�indu

stry’s�acces

s�to�price

-elastic�electricity�

cons

umption�by

�creating�interest�amon

g�co

mpa

nies

�in�th

e�op

portun

ity�to�

max

imize�ga

ins,�and

�mak

ing�it�eas

ier�for�th

em�to

�ass

ess�their�p

oten

tial�

with�de

pend

ence

�on�e.g.�th

e�ac

tiva

tion

�pay

men

t,�and

�by�de

veloping

�the�

contractua

l�con

dition

s�in�th

e�elec

tricity�marke

ts.

Mar�200

6�-�

Jun�20

10DK

Integrated

�Sys

tem

153

Price�elas

tic�elec

tricity�

cons

umption�as

�rese

rve�

power�-�a�de

mon

stration

�projec

t�in�the�ho

rticultural�

sector

DEG

�Green

�Tea

m�(D

K)

The�projec

t�objec

tive

�is�cha

rting�the�sc

ale�of�th

e�realizab

le�poten

tial�fo

r�price-elas

tic�elec

tricity�co

nsum

ption�within�the�ho

rticultural�s

ector,�an

d�de

mon

stration

�of�the

�tech

nica

l�opp

ortunities

�and

�the�fin

ancial�in

centive�

for�t

he�in

dividu

al�m

arke

t�garde

ns�to

�participa

te�in

�the�marke

ts�fo

r�regu

lated�an

d�rese

rve�po

wer�via�price

-elastic�electricity�con

sumption.

Apr�2

006�-�

Jun�20

10DK

Integrated

�Sys

tem

154

Proa

ctive�pa

rticipation�

of�w

ind�in�th

e�elec

tricity�

marke

ts,�F

orsk

EL��

EMD�In

ternationa

l,�(D

K)

This�project�w

ants�to

�dem

onstrate�th

at�w

ind�turbines

�them

selves

�may

�de

liver�an�im

portan

t�part�o

f�the

�balan

cing

�task

s�ne

eded

,�thu

s�redu

cing

�high

�unb

alan

ce�price

s�an

d�prom

oting�the�de

velopm

ent�o

f�wind�en

ergy

�in�

Europe

.

Jun�20

09�-�

Dec

�201

0DK

Integrated

�Sys

tem

Page 107: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

155

Projec

t�AMR

Vatten

fall�AB

�(SE)

Eche

lon’s�Network�En

ergy

�Service

s�sy

stem

�provide

s�Va

tten

fall�with�

an�ope

n,�bidirec

tion

al,�a

nd�exten

sible�infras

truc

ture�th

at�ena

bles

�a�

compreh

ensive

�rang

e�of�utility�ap

plications

�that�bring

s�be

nefits�to�

every�as

pect�of�the

ir�ope

ration

,�from�m

etering,�to

�cus

tomer�service

s,�to

�distribu

tion

�ope

ration

s,�to

�value

-add

ed�service

s.

2006

�-�20

09SE

Smart�M

eter�and

�AMI

156

Projec

t�“Intellige

nt�hom

e”SEA

S-NVE,��(DSO

)�(DK)

The�aim�is

�throug

h�inform

ation�to�cus

tomers�to�ach

ieve

�ene

rgy�sa

ving

�be

havior�cha

nge�by

�mak

ing�visible�the�bigg

est�e

nergy�co

nsum

ers.�The

�projec

t�also�includ

es�th

e�man

agem

ent�o

f�ind

ividua

l�com

pone

nts�ba

sed�

on�defi

ned�co

nditions

.

2009

-201

1DK

Smart�M

eter�and

�AMI

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

157

Projec

t�“Th

e�Island

�of�F

ur�on�

the�map

”Not�ava

ilable

The�projec

t�has

�arise

n�in�coo

peration

�with�Sk

ive�Mun

icipality.�The

�vision�

is�to

�mak

e�Fu

r�a�VEØ

�(ren

ewab

le�ene

rgy�island

),�th

at�is

�inde

pend

ent�

of�fo

ssil�fuels�an

d�thereb

y�do

es�not�disch

arge

�CO2�em

ission

s�to�th

e�en

vironm

ent.�

Mar�201

0�-�

Mar�202

0DK

Integrated

�Sys

tem

158

Prøv

1Elbil

Dan

ish�Te

chno

logica

l�Institute�(D

K)

The�pu

rpos

e�of�th

is�project�is

�to�collect�in

form

ation�on

�driving

�patterns,�

need

s�an

d�us

er�exp

erienc

es,�c

harging�times

�and

�patterns�an

d�load

s�on

�the�ne

twork.

Jan�20

09�-�

Dec

�201

2DK

Integrated

�Sys

tem

159

PV-Islan

d�Bornh

olm,�F

orsk

EL�

EnergiMidt�A

/S,�(DK)

The�“P

V�Is

land

�Bornh

olm”�(PVIB

)�project�aim

s�at�estab

lishing

�5�M

Wp�PV

�on

�the�island

�of�B

orn-ho

lm.�A

pp.�1

MWp�of�th

em�w

ill�be�installed�du

ring

�this�pha

se.�P

VIB

�will�fo

cus�on

�dem

onstration

�and

�furthe

r�utiliz

ation�of�

PV�and

�as�su

ch�provide

�uniqu

e�facilities�to�te

st�how

�PV�as�a�flu

ctua

ting

�en

ergy

�sou

rce�ca

n�be

�implem

ented�in�a�fu

ture�in

tellige

nt�pow

er�sys

tem.

Jan�20

10�-�

Dec

�201

2DK

Integrated

�Sys

tem

160

REA

LISEG

RID

RSE�(IT)

The�ob

jective�of�REA

LISEG

RID

�is�to

�dev

elop

�a�set�of�c

riteria,�m

etrics

,�metho

ds�and

�tools�to�ass

ess�ho

w�th

e�tran

smission

�infras

truc

ture�

shou

ld�be�op

timally�dev

elop

ed�to

�sup

port�th

e�ac

hiev

emen

t�of�a

�relia

ble,�

compe

titive

�and

�sus

tainab

le�electricity�sup

ply�in�th

e�Eu

rope

an�Union

�(EU).

Sept�200

8�-�

May

�201

1

IT

Other

NL

AT FR RU DE

UK SI

BE

Page 108: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

161

Real-tim

e�de

mon

stration

�test�

and�ev

alua

tion

�of�B

ornh

olm�

elec

tricity�ne

twork�with�high

�wind�po

wer�pen

etration

CET-DTU

,�(DK)

Crea

te�a�re

search

�platform,�w

here�elemen

ts�of�future�the�en

ergy

�sys

tem�

can�be

�tested

.�Tes

ting

�can

�be�pe

rformed

�from

�the�labo

ratory�le

vel�a

nd�up�

to�fu

ll�sc

ale�de

mon

stration

�on�Bornh

olm.�

Oct�200

9�-�

Dec

�201

2DK

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

162

Rege

nerative

�Mod

ellreg

ion�

Harz�

(Reg

Mod

Harz)

Frau

nhofer�IW

ES�(D

E)

Within�this�project,�g

rid�op

erators,�ene

rgy�su

pplie

rs,�m

unicipal�utilities,�

wind�farm

�ope

rators,�u

nive

rsities,�re

search

�institutes

�and

�RES

/ICT

�related�co

mpa

nies

�will�dev

elop

�tools,�in

fras

truc

tures�an

d�strategies

�to�sup

ply�a�co

mplete�district�w

ith�elec

tricity�so

lely�from

�Ren

ewab

le�

Energies

.

2008

-201

2DE

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

163

Regu

lated�po

wer,�O

UH

Not�ava

ilable

The�projec

t’s�m

ission

�is�to

�con

tribute�to�th

e�de

velopm

ent�o

f�a�sus

tainab

le�

energy

�sys

tem�by�be

ing�av

ailable�to�re

gulate�out�th

e�va

rying�se

rvices

�that�w

ind�turbines

�con

tribute�to�in

�the�va

riou

s�wea

ther�con

dition

s.

Jan�20

09�-�

Jun�20

09DK

Integrated

�Sys

tem

164

Remote�Se

rvices

�for�C

HP,�

ForskE

L�Eu

risc

o,�(D

K)

The�main�pu

rpos

e�of�th

e�projec

t�is�to�ana

lyze

�and

�dev

elop

�a�con

cept�fo

r�remote�su

pervision�of�Com

bine

d�Hea

t�and

�Pow

er�plants.

Apr�2

009�-�

Dec

�201

0DK

Integrated

�Sys

tem

165

SAFE

WIN

DRT

E,�(F

R)

The�projec

t�will�dev

elop

:�New

�foreca

sting�metho

ds�fo

r�wind�ge

neration

�focu

sing

�on�un

certainty�an

d�ch

alleng

ing�situations

/extremes

.�-�M

odels�

for�“

alarming”

:�providing

�inform

ation�for�t

he�le

vel �o

f�predictab

ility�in

�the�

(very)�sho

rt-term.�-�M

odels�for�“

warning

”:�providing

�inform

ation�for�t

he�

leve

l�of�p

redictab

ility�in

�the�med

ium-term�(n

ext�d

ay(s)).

Sept�200

8�-�

Aug�20

12

DK

Other

FR ES�

DE IE UK EL

166

SACS

eDONG�Ene

rgy,��(DSO

),�

(DK)

The�ob

jective�of�th

e�SA

CSe�projec

t�was

�autom

atic�con

version�in�th

e�10

�kV�

grid�in

�order�to

�improv

e�su

pply�qua

lity�in�con

nection�with�10

�kV�fa

ults�–�

the�so

�called�“self-he

aling”

�grid.

2008

�-�20

10DK

Grid�Au

tomation�Distribution

Page 109: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

167

Seco

nd1�-�S

ecurity�co

ncep

t�for�D

EREU

RISCO

�ApS

�(DK)

The�projec

t�objec

tive

�is�to

�ana

lyze

�and

�implem

ent�a

�sec

urity�co

ncep

t�that�can

�be�us

ed�in

�a�pow

er�sys

tem�w

ith�a�high

�deg

ree�of�dec

entralized

�prod

uction

�and

�with�man

y�ac

tors�in

�an�un

bund

led�marke

t.�It�w

ill�also�

inve

stigate�va

riou

s�form

s�of�ro

le�bas

ed�acces

s�co

ntrol�(RBAC

).

Mar�201

0�-�

Jul�2

011

DK

Smart�M

eter�and

�AMI

168

Self-orga

nizing

�distributed

�co

ntrol�o

f�a�distributed

�en

ergy

�sys

tem�w

ith�a�high

�pe

netration�of�re

new-able�

energy

DTU

�Inform

atics,�(D

K)

The�projec

t�studied

�asp

ects�of�the

�bas

is�fo

r�distributed

�reso

urce

s�su

ch�

as�w

ind�turbines

,�pho

tovo

ltaics

�and

�not�le

ast�c

onsu

mers�pa

rticipating�

in�pow

er�sys

tem�con

trol,�inc

luding

�the�as

pect�of�h

ow�build-up�of�suc

h�co

ntrol�c

an�be�au

tomated

.

Jan�20

07�-�

Jun�20

10DK

Grid�Au

tomation�Distribution

169

Service�op

timization�of�th

e�distribu

tion

�network

Not�ava

ilable

To�in

vestigate�differen

t�param

eters�which

�can

�optim

ize�the�op

eration�of�

the�distribu

tion

�network�on

�the�ba

sis�of��T

he�Dan

ish�En

ergy

�Reg

ulatory�

Authority’s�regu

lation

�of�the

�distribution�ne

twork�co

mpa

nies

�in�th

e�form

�of�fina

ncial�reg

ulation�an

d�regu

lation

�of�the

�sec

urity�of�sup

ply.

2009

�-�20

10DK

Integrated

�Sys

tem

170

Smartcity�Malag

aEn

desa

�(ES)

The�go

als�of�SmartCity�Málag

a�ca

n�be

�sum

marized

�into�th

e�follo

wing�

ones

:-�T

est�a

nd�dep

loym

ent�o

f�the

�new

�ene

rgy�man

agem

ent�m

odel;

-�Implem

entation

�and

�integration�of�Distributed

�Ene

rgy�Re

source

s,�

Energy

�Storage

�facilities,�Electric�Ve

hicles

�cha

rging�proc

esse

s�an

d�intellige

nt�Pub

lic�Lighting�de

vice

s�into�th

e�ne

w�ope

ration

�grid�sy

stem

s

Mar�200

9�-�

Mar�201

3ES

Smart�M

eter�and

�AMI

Grid�Au

tomation�Tran

smission

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

171

Smart�E

nergy�Co

llective

KEM

A�(N

L)

The�Sm

art�E

nergy�Co

llective�is�an�indu

stry-w

ide�co

llective�that�is

�setting

�up

�5�to

�10�large-sc

ale�sm

art�g

rids

�dem

onstration

�projects�ac

ross

�the�

Nethe

rlan

ds�w

ith�a�total�o

f�aroun

d�5,00

0�private�an

d�sm

all�b

usines

s�en

d-us

ers.�This�indu

stry�in

itiative

�is�ded

icated

�to�th

e�prac

tica

l�dev

elop

men

t�of�

smart�e

nergy�se

rvices

�and

�networks

,�integ

rating

�interope

rable�se

rvices

,�tech

nologies

,�and

�infras

truc

tures,�i.e.�electricity,�g

as,�h

eat,�and

�ICT.�

2010

-201

3NL

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

172

SmartG

enSw

eco�Norge

�AS,�(N

O)

Dem

onstrate�and

�qua

ntify

�the�be

nefits�of�com

bining

�SGT�with�DG�and

�LM

�and

�sha

re�th

is�kno

wledg

e�with�stak

eholde

rs�and

�dec

ision�mak

ers�

in�priva

te�and

�pub

lic�sec

tor.�Dev

elop

�the�“S

martG

en�M

odels”

�which

�illus

trates

�both�en

ergy

�reso

urce

s�an

d�grid�in

form

ation�visu

ally�by�

combining

�SGT�sc

enarios�with�inpu

t�from�GIS�and

�NIS.

Oct�201

0-Se

pt�201

3

NO

Integrated

�Sys

tem

DK LV CH

Page 110: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

173

Smart�g

reen

�circu

its,�ESB

�Networks

�-�Sm

art�g

rid�

demon

stration

�project

ESB�Networks

�(IE)

This�project�aim

s�to�ena

ble�the�crea

tion

�of�s

mart�g

reen

�circu

its,�th

roug

h�the�im

plem

entation

�of�tec

hnolog

y�to�re

duce

�distribution�loss

es,�improv

e�co

ntinuity�w

ith�se

lf�he

aling�loop

s,�optim

ally�use

�distribution�co

nnec

ted�

gene

ration

,�eva

luate�an

d�op

timize�sy

stem

�voltage

s�an

d�po

wer�fa

ctors�

and�inve

stigate�op

timal�sys

tem�sec

tion

alization�an

d�po

wer�flow

s.��

Jan�20

10�-�

Dec

�201

2IE

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

Other

174

Smart�G

rid��

SEA

S�NVE�(D

K)

SEA

S�NVE�de

cide

d�to�dep

loy�the�NES

�sys

tem�fo

r�all�of�its�ne

arly�400

,000

�cu

stom

ers�to�ass

ist�w

ith�a�go

al�to

ward�en

ergy

�inde

pend

ence

.�The

�sy

stem

�will�help�them

�to�better�u

nderstan

d�the�op

eration�of�th

eir�g

rid�

and�co

mmun

icate�bi-direc

tion

ally�w

ith�their�c

ustomers�in�order�to

�better�

man

age�su

pply�and

�dem

and.

2008

�-�20

11DK

Smart�M

eter�and

�AMI

175

Smart�G

rid�Dem

onstration

�Sy

stem

Arqiva

�(UK)

Arqiva

�will�use

�its�de

dica

ted�UHF�sp

ectrum

,�com

bine

d�with�Se

nsus

’�pu

rpos

e�de

sign

ed�sec

urity�mea

sures,�to

�provide

�a�bes

poke

�co

mmun

ications

�network�for�ind

epen

dent�use

�by�the�UK’s�w

ater,�g

as�and

�elec

tric�utilities.

Apr�2

010-

Apr�2

011

UK

Integrated

�Sys

tem

176

Smart�g

rids

�and

�ene

rgy�

marke

tsClee

n�Oy,�(F

I)

Gen

eral�objec

tive

s�of�th

e�rese

arch

�program

�are:�c

reate�an

�inno

vation

�foun

dation

�for�n

ew�solutions

,�produ

cts�an

d�se

rvices

�to�ena

ble�the�

implem

entation

�of�the

�Smart�G

rids

�vision;�dem

onstration

s�of�solutions

�in�

real�env

iron

men

t;�cultiva

te�th

e�co

mpe

tenc

e�ac

cumulation�in�th

e�rese

arch

�an

d�bu

sine

ss�env

iron

men

ts�to

�sec

ure�the�long

�term

�com

petitive

ness

;�internationa

l�res

earch�co

operation�is�a�pre-req

uisite�to

�ach

ieve

�the�

objectives

.

Sept�200

9�-�

Sept�201

4FI

Integrated

�Sys

tem

177

Smart�G

rid�Fu

el�Cell�C

HP�on

�Bornh

olm,�F

orsk

EL�

Dan

therm�Pow

er�A/S

,�(D

K)

The�projec

t�will�in

trod

uce�po

wer�produ

cing

�elemen

ts�to

�the�Sm

art�G

rid�

implem

ented�in�th

e�“E

c-oG

rid.EU

”�projec

t�exe

cuted�on

�Bornh

olm.�T

he�

power�produ

cing

�elemen

ts�w

ill�be�ba

sed�on

�fuel�cell�tec

hnolog

y�an

d�will�

prod

uce�bo

th�electricity�and

�hea

t�for�e.g.�c

entral/d

istrict�h

eating

,�FCC

HP�

units.

Jan�20

11�

-Oct�201

1DK

Integrated

�Sys

tem

178

Smart�G

rid�Gotland

Vatten

fall�AB

�(SE)

The�Sm

art�G

rid�Gotland

�R&D�dem

onstration

�project�in

tend

s�to�dev

elop

�strategies

�for�t

he�plann

ing,�con

struction�an

d�op

eration�of�a�fu

lly�

deve

lope

d,�la

rge-sc

ale�sm

art�g

rid,�in

clud

ing�a�large�sh

are�of�in

term

ittent�

prod

uction

,�primarily

�from

�wind�po

wer�in

�the�distribu

tion

�network.�

Nov

�201

0�-�

Dec

�201

5SE

Integrated

�Sys

tem

179

Smart�G

rid�Ta

sk�Force

�project

Energine

t.dk

,��(TSO

),�

(DK)

To�des

cribe�an

d�ca

lculate�a�“D

anish�bu

sine

ss�cas

e�for�full�S

mart�G

rid�

diss

emination”

�from

�a�soc

io�eco

nomical�persp

ective

.Jan�20

09�-�

Sept�201

0DK

Other

180

Smart�H

eat�N

etworks

Salzbu

rg�AG�(A

T)

The�ob

jective�is�to

�ana

lyze

�and

�eva

luate�the�po

tential�o

f�Smart�G

rid�

conc

epts�fo

r�district�h

eating

�sys

tems�in�th

e�mod

el�re

gion

�of�S

alzb

urg.�

Dyn

amic�network�simulation�an

d�mod

el�calcu

lation

s�are�ap

plied�to�

inve

stigate�intellige

nt�ope

ration

�strateg

ies �an

d�co

ntrol�m

echa

nism

s�for�

the�redu

ction�of�pea

k�load

s.

Mar�201

0�-D

ec�201

2AT

Integrated

�Sys

tem

Page 111: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

181

SmartH

ouse

/SmartG

rid

SAP�Re

search

�(DE)

The�Sm

artH

ouse

/SmartG

rid�projec

t�sets�ou

t�to�va

lidate�an

d�test�how

�ICT-en

abled�co

llabo

rative

�tech

nica

l-co

mmercial�agg

rega

tion

s�of�Smart�

Hou

ses�prov

ide�an

�ess

ential�step�to�ach

ieve

�the�ne

eded

�radica

lly�highe

r�leve

ls�of�e

nergy�effic

ienc

y�in�Europ

e.�

Not�

available�

NL

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

DE EL

182

Smart�M

etering��

Fortum

�(FI)

Fortum

�selec

ted�Ec

helon’s�NES

�Value

-Add

ed�Res

eller�p

artner�Telve

nt�

as�prime�co

ntractor�to

�sup

ply�the�NES

�(Networke

d�En

ergy

�Service

s)�

adva

nced

�metering�sy

stem

�integrated

�with�Te

lven

t’s�Smart�M

etering�

Titanium

�for�5

50,000

�cus

tomers�in�Finland

�in�order�to

�fulfill�ke

y�ob

jectives

�of�o

ffering�en

ergy

�sav

ing�an

d�ho

me�au

tomation�prog

rams�for�

homeo

wne

rs.

2010

�-�20

14FI

Smart�M

eter�and

�AMI

183

Smart�m

etering�

ZSE�Distribúc

ia�a.s.�-�

E.ON�group

,�(SK)

Test�differen

t�typ

es�of�two-way

�com

mun

ication�be

twee

n�the�meter�and

�ce

ntral�in�typica

l�areas

�of�a

pplic

ation.�Ass

ess�the�tech

nica

l�pos

sibilities�

and�iden

tify�ope

n�qu

estion

s�an

d�prob

lems.�

Jul�2

008-Oct�

2010

SK

Smart�M

eter�and

�AMI

184

Smart�M

etering�Multi�Utility�

Pilot

ELM€�Hálóz

ati�K

ft.�

(Electricity,�D

SO),�(H

U)

The�prim

ary�ob

jective�of�th

e�pilot�p

roject�is

�to�obtain�ex

perien

ce�in

�the�

field�of�e

stab

lishing

�a�pilo

t�project,�o

perating

�the�installed�pilot�s

mart�

metering�sy

stem

s,�and

�to�obtain�de

taile

d�an

d�ac

curate�in

form

ation�ab

out�

the�ad

vantag

es�and

�disad

vantag

es,�p

roblem

s�of�th

e�sm

art�m

etering�

system

.

Feb�20

11-

Aug�20

12HU

Smart�M

eter�and

�AMI

185

Smart�M

etering�NTA

�Roll�O

utEn

exis�(N

L)To

�introd

uce �the�NTA

-smart�m

eter�as�the�de

fault�m

eter�in

�all�proc

esse

s�an

d�to�be�read

y�for�t

he�obligations

�introd

uced

�by�the�ne

w�la

w.�Inv

olving

�the�co

ntracting�of�in

stallation

�cap

acity�an

d��training

�of�p

eople.

Jul�2

010-Dec

�20

11NL

Smart�M

eter�and

�AMI

186

Smart�m

etering��

proo

f�of�c

once

ptOres�(B

E)15

00�electricity�and

�gas

�smart�m

eters�will�be�installed�in�th

e�cities

�of�

Nivelles�an

d�Mare-en

-Fam

enne

.Jun�20

09�-�

Sept�201

2BE

Smart�M

eter�and

�AMI

187

Smart�n

eigh

boring

�hea

t�su

pply�bas

ed�on�grou

nd�hea

t�pu

mps

,�Forsk

EL

Solrød

�Mun

icipality�

(DK)

The�prop

osed

�projects�is�to

�dev

elop

�and

�dem

onstrate�th

e�co

ncep

t�of�‘n

eigh

boring

�hea

ting

’�bas

ed�on�sm

art�c

ontrol�of�a

�hea

t�pum

p�in�a�

combina

tion

�with�a �ho

t�water�storage

,�whe

re�th

e�po

ssibilities

�of�‘tapp

ing’�

chea

p�elec

tricity�from

�the�grid�in

�periods

�with�low�electricity�dem

and�or/

and�high

�wind�prod

uction

�are�ana

lyze

d�an

d�de

mon

strated.

Jan�20

11�-�

Apr�2

012

DK

Integrated

�Sys

tem

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

188

Smart�P

ower�Sys

tem�-�First�

trial

ECN,�E

nergy�rese

arch

�Ce

ntre�of�the

�Nethe

rlan

ds�(N

L)

The�main�go

al�of�the

�field�test�w

as�to

�dem

onstrate�th

e�ab

ility�of�s

uch�

a�VPP

�to�re

duce

�the�loca

l�pea

k�load

�on�the�sing

le�lo

w-voltage

�grid�

segm

ent.�

2006

-200

7NL

Integrated

�Sys

tem

189

SyM2-Projec

tE.ON�Netz�AG

,�EnB

W,�

RWE�DAG

�(DE)

Toge

ther�w

ith�the�pa

rtne

rs�E.O

N�and

�EnB

W�in

�200

6�RW

E�laun

ched

�a�

projec

t�to�de

velop�a�ne

w�m

eter�fo

r �ind

ustrial�a

nd�com

mercial�app

lianc

es�

(I&C�meter).�The

se�kind�of�m

eters�are�de

ploy

ed�in

�German

y�at�cos

tumers�

with�an

�ann

ual�c

onsu

mption�>

�100

.000

kWh.

Jun�20

06-

Dec

�200

9DE

Smart�M

eter�and

�AMI

Page 112: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

190

Smart�R

egion

CEZ�Distribuc

e�a.s.,�

(CZ)

Fully

�autom

ated

�and

�mon

itored

�LV�and

�MV�grid,�balan

ced�distribu

tion

�grid�w

hich

�can

�eas

ily�switch

�betwee

n�island

�and

�normal�ope

ration

�mod

e,�

high

er�qua

lity�an

d�se

curity�of�p

ower�sup

ply,�CHP�un

its�an

d�rene

wab

les�

operation.

2011-201

4CZ

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

191

Smart�S

ynergy

Salzbu

rg�AG�(A

T)

For�S

mart�G

rid�an

d�e-mob

ility�app

lications

�differen

t�data�an

d�inform

ation�ha

ve�to

�be�reco

rded

�and

�distributed

�with�differen

t�tec

hnical�

requ

irem

ents,�w

hich

�also�fund

amen

tally

�affec

ts�th

e�co

nstruc

tion

�cos

ts�of�

ICT�infras

truc

ture.�T

he�syn

ergistic�use

s�of�IC

T�infras

truc

ture�fo

r�multiple�

applications

�includ

ing�the�va

lidation�of�th

e�ac

tual�re

alizab

le�syn

ergies

�are�ke

y�ob

jectives

�of�the

�project.

Jun�20

10�

-May

2012

ATIntegrated

�Sys

tem

192

Smart�W

atts�

Utilic

ount�GmbH

�&�Co.�

KG,�A

ache

n,�(D

E)

The�Sm

art�W

atts�projects�im

plem

ents�th

e�co

ncep

t�of�the

�‚smart�w

att‘,�

i.e.�the

�intellige

nt�kilo

watt�h

our:�an�op

en�sys

tem,�w

hich

�ena

bles

�new

�se

rvices

,�value

�add

ed�and

�increa

sed�effic

ienc

y�for�u

tility�co

mpa

nies

,�de

vice

�man

ufac

turers,�s

ervice

�provide

rs�and

�con

sumers.

Nov

�200

8-Se

pt�201

2DE

Smart�M

eter�and

�AMI

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Integrated

�Sys

tem

193

Smart�W

eb�Grid

Salzbu

rg�AG�(A

T)

Future�smart�g

rids

�will�re

ly�on�da

ta�exc

hang

e�be

twee

n�differen

t�ap

plications

�and

�marke

t�participa

nts.�Smart�W

eb�Grid�an

alyz

es�use

r�interaction,�te

chno

logy

,�cos

t�effec

tive

ness

�and

�data�se

curity�of�s

uch�a�

data�exc

hang

e�by

�mea

ns�of�three

�con

crete�ex

amples

�in�th

e�mod

el�re

gion

�Sa

lzbu

rg.�T

he�goa

l �is�the�co

ncep

tual�des

ign�of�an�inform

ation�mod

el�fo

r�Web

�service

-bas

ed�acces

s�to�smart�g

rids

�data�so

urce

s.

Mar�201

1�-�

Feb�20

13AT

Integrated

�Sys

tem

194

STAm

i:�Ad

vanc

ed��

Metering�Interfac

eEn

el�SpA

�(IT)

The�projec

t�aim

s�at�dev

elop

ing�a�de

dica

ted�ap

plication�for�L

V�network�

man

agem

ent�a

nd�bus

ines

s�pu

rpos

es�w

hich

�leve

rage

s�the�ex

isting

�metering�infras

truc

ture.�S

TAmi�p

rovide

s�ne

twork�op

erators�with�a�

dedica

ted�web

�interfac

e�to�collect,�o

n�de

man

d�an

d�real-tim

e,�spe

cific

�high

�qua

lity�an

d�ac

curate�data�stored

�in�smart�m

eters�witho

ut�

addition

al�lo

ad�fo

r�the

�Adv

ance

d�Meter�M

anag

emen

t�(AMM)�s

ystem.�

Both�the�op

erators�in�th

e�co

ntrol�roo

m,�in�the�ba

ck�office

�and

�on�fie

ld�

work�op

erators�(via�ta

blet�PC)�are�provide

d�with�a�de

dica

ted�su

ite�of�

func

tion

alities�an

d�tools�ba

sed�on

�web

�interfac

es.

Jan�20

10�-�

Jan�20

11IT

Smart�M

eter�and

�AMI

195

Star

Iberdrola�Distribuc

ion�

(ES)

The�projec

t�aim

s�at�in

tegrating�10

0k�smart�m

eters�with�a�va

riety�of�

equipm

ent�m

anufac

turers�and

�com

mun

ications

�into�an�Ad

vanc

ed�

Metering�Man

agem

ent�(AMM)�S

ystem�and

�man

age�it�re

motely.�Build�an�

interope

rable�an

d�future�proof�solution�for�s

mart�m

etering.

Apr�2

010�-�

Mar�201

1ES

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

Page 113: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

196

Steink

jer�P

ilot�P

roject

The�Norweg

ian�Sm

art�

Grid�Ce

ntre,�(NO)

The�projec

t�objec

tive

�is�to

�prepa

re�fo

r�the

�nationa

l�roll-ou

t�of�s

mart�

metering�infras

truc

ture�i.e.�building�kn

owledg

e,�te

sting�of�differen

t�tech

nologies

�and

�interope

rability.�

Jan�20

11-D

ec�

2015

NO

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

197

Stoc

kholm�Roy

al�sea

port�pre-

stud

y�ph

ase

Fortum

�Distribution�

AB�(F

I)

The�pre-stud

y�for�S

tock

holm

�Roy

al�Sea

port�-�an

�urban

�smart�g

rid�

area

,�will�deliver�a�con

cept�des

cription

�includ

ing�marke

t�mod

els�an

d�de

scription�of�te

chnica

l�solutions

�read

y�for�implem

entation

�and

�testing�

as�a�new

�project�pha

se.�

Oct�201

0�-�

Mar�201

1SE

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

Spec

ific�Storag

e�Te

chno

logy

�Dem

onstration

Other

198

Storstad

��Sm

art�M

etering

E.ON�Sve

rige

�AB�(S

E)

Eche

lon’s�Network�En

ergy

�Service

s�sy

stem

�provide

s�E.ON�w

ith�an

�ope

n,�

bidirectiona

l,�an

d�ex

tens

ible�in

fras

truc

ture�th

at�ena

bles

�a�com

preh

ensive

�rang

e�of�utility�ap

plications

�that�bring

s�be

nefits�to�eve

ry�asp

ect�o

f�their�o

peration

,�from�m

etering,�to

�cus

tomer�service

s,�to

�distribution�

operations

,�to�va

lue-ad

ded�se

rvices

.

2006

�-�20

09SE

Smart�M

eter�and

�AMI

199

SUMO

Elek

tro-Slov

enija

�(TSO

),�(S

I)

Dyn

amic�th

ermal�ra

ting

�will�be�inco

rporated

�in�SCAD

A/EM

S�en

vironm

ent.�

Network�an

alys

es�w

ill�use

�nea

r�rea

l�tim

e�sy

stem

�cap

abilities

.�Calcu

lation

�of�elemen

t�ratings

�will�use

�ambien

t�param

eters�from

�releva

nt�

geog

raph

ical�areas

.

2011-201

4SI

not�a

vaila

ble

200

Supe

rmen

Iskra�MIS�d.d.�(SL

)

Optim

ization�of�th

e�op

eration�of�distribution�as

sets�and

�improv

e�the�

effic

ienc

y�of�th

e�ne

twork�throug

h�en

hanc

ed�autom

ation,�m

onitoring,�

protec

tion

�and

�real�time�op

eration.�Fas

ter�fau

lt�id

entific

ation/

reso

lution

�will�help�im

prov

e�co

ntinuity�of�s

upply�leve

ls.

Sept�200

9�-�

Jan�20

11SI

Integrated

�Sys

tem

Page 114: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

201

SUSPL

AN

SIN

TEF�

ENER

GIFORSKNIN

G�

A/S�(N

O)

The�ov

erall�impa

ct�from

�SUSPL

AN�is

�con

tribution�to�a�sub

stan

tially�

increa

sed�sh

are�of�re

newab

le�ene

rgy�so

urce

s�(R

ES)�in�Eu

rope

�at�a

n�ac

ceptab

le�le

vel�o

f�cos

t,�th

ereb

y�increa

sing

�sec

urity�of�sup

ply�an

d�co

mpe

titive

ness

�of�R

ES�in

dustry.�T

he�m

ain�ob

jective�is�to

�dev

elop

�gu

idelines

�for�m

ore�effic

ient�in

tegration�of�RES

�into�fu

ture�in

fras

truc

tures�

as�a�sup

port�fo

r�dec

ision�mak

ers�at�re

gion

al�as�well�a

s�Pa

n-Eu

rope

an�

leve

l.�Th

e�gu

idelines

�sha

ll�co

nsist�o

f�strateg

ies,�re

commen

dation

s,�

criteria�and

�ben

chmarks

�for�p

olitical,�infrastructure�an

d�ne

twork�de

cision

�mak

ers�an

d�po

wer�distributors�with�a�time�pe

rspe

ctive�20

30-205

0.

Sept�200

8-Se

pt�201

1

PL

Other

RO DE AT UK

NL

ES�

BG CZ IT RS

202

Sustaina

ble�urba

n�liv

ing

Fortum

�Electricity�

solution

s�an

d�distribu

tion

�(FI)

Dev

elop

�a�new

�building�co

ncep

t�for�urban

�reside

ntial�c

onstruction�aiming�

to�m

inim

ize�the�en

ergy

�con

sumption�an

d�en

able�cus

tomers�to�m

ake�

intellige

nt�cho

ice�for�c

onse

rving�en

ergy

.

Sept�200

9�-�

Dec

�201

3FI

Integrated

�Sys

tem

Hom

e�ap

plication�-�C

ustomer�

Beh

avior�

203

Swiss2

GKraftwerke

�Obe

rhas

li�(K

WO),�(C

H)

The�go

al�of�the

�project�is

�the�de

velopm

ent�o

f�an�algo

rithm�w

hich

�allo

ws�a�

grid�con

nected

�dev

ice�to�id

entify�th

e�status

�of�the

�(distribution)�grid�an

d�to�m

ake�ap

prop

riate�ac

tion

s�to�stabiliz

e�an

d�im

prov

e�its�be

havior.

2010

-201

3CH

Grid�Au

tomation�Distribution

204

System

�outpu

t�project

Not�ava

ilable

To�ach

ieve

�regu

lation

�reso

urce

s�that�can

�sup

port�th

e�sa

fe�and

�efficien

t�op

eration�of�th

e�elec

tricity�sy

stem

�and

�also�crea

te�th

e�ba

sis�for �

realization�of�con

tinu

ous�co

st�sav

ing.

Jan�20

10�-�

Dec

�201

0�DK

Integrated

�Sys

tem

205

System

s�with�High�Le

vel�

Integration�of�Ren

ewab

le�

Gen

eration�Units

Dep

artm

ent�o

f�Ene

rgy�

Tech

nology

�–�Aalbo

rg�

Unive

rsity,�(D

K)

The�projec

t�dev

elop

ed�proba

bilis

tic�metho

ds�fo

r�optim

um�ope

ration

�and

�plan

ning

�of�c

ontempo

rary�distribution�sy

stem

s,�in

clud

ing�prob

abilistic�

mod

els�for�w

ind�po

wer,�s

mall-sc

ale�CH

P�plan

ts�and

�load

.

Jan�20

07�-�

Dec

�200

9DK

Integrated

�Sys

tem

Page 115: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

206

Telege

store

Enel�Distribuz

ione

�(IT)

Enel’s�Teleg

estore�Project�provide

s�the�installation

�of�m

ore�than

�32�

million�sm

art�m

eters.��T

hese

�smart�m

eters�allow�Ene

l�to�pe

riod

ically�

colle

ct�data�on

�voltage

�qua

lity�an

d�interrup

tion

s,�daily�con

sumptions

,�ac

tive

�and

�reac

tive

�ene

rgy�mea

suremen

ts,�a

nd�re

motely�man

age�

contractua

l�activities.��M

eters�are�ab

le�to

�tran

smit�data�rega

rding�

cons

umptions

,�rec

eive

�upd

ates

�of�the

�con

trac

tual�param

eters�an

d�remotely�man

age�the�su

pply�con

nectivity.

Dec

�200

1�-�

Dec

�200

6IT

Smart�M

eter�and

�AMI

207

Tertiary�re

serve�po

wer�w

ith�

zero�CO2�em

ission

Elek

tro-Slov

enija

�(TSO

),�(S

I)

Dem

and�side

�man

agem

ent�a

nd�re

newab

le�produ

cers�w

ill�be�integrated

�in�TSO

’s�anc

illary�se

rvices

�as�ad

dition

al�te

rtiary�re

serve�po

wer�fo

r�loa

d�freq

uenc

y�co

ntrol.

2011-201

4SI

not�a

vaila

ble

208

The�ce

ll�co

ntrolle

r�project

Energine

t.dk

,��(TSO

),�

(DK)

Via�a�full-sc

ale�Sm

art�G

rid�de

velopm

ent�a

nd�dem

onstration

�project�in

�a�

60�kV�distribution�grid�it�is

�sou

ght�to�ac

hiev

e�su

fficien

t�kno

wledg

e�an

d�a�ba

sis�for�a

�long

-term�re

-des

ign�proc

ess,�in

�order�to

�turn�th

e�trad

itiona

l�pa

ssive�distribu

tion

�grids

�into�active�grids�that�can

�optim

ally�utiliz

e�the�

grow

ing�vo

lume�of�dec

entralized

�produ

ction.

Nov

�200

4�-�

Oct�201

1DK

Grid�Au

tomation�Distribution

209

The�metering�da

ta�proce

ssing�

and�ce

ntral�rep

ository�

conc

ept

PSE�Ope

rator�S

.A.(PL

)

The�go

al�of�the

�project�is

�to�prepa

re�cos

t�ben

efit�a

nalysis�of�smart�

metering�im

plem

entation

�in�Polan

d�an

d�to�dev

elop

�the�lega

l�and

�orga

niza

tion

al�fram

ework�to��implem

ent�m

etering�da

ta�proce

ssing�an

d�ce

ntral �rep

ository�co

ncep

t.��

Jan�20

10-�

Mar�201

1PL

Integrated

�Sys

tem

210

Trials�w

ith�he

at�pum

ps�on�

spot�agree

men

tsSy

dEne

rgi,��(D

SO),��

(DK)

The�ob

jective�of�th

e�projec

t�is�to�gain�kn

owledg

e�of�th

e�tech

nica

l�ch

alleng

es�of�e

stab

lishing

�a�hea

t�pum

p�so

lution

�in�priva

te�hou

seho

lds�in�

orde

r�to�plan

�the�he

at�pum

p’s�elec

tricity�co

nsum

ption�for�w

hen�elec

tricity�

prod

uction

�is�highe

st/g

reen

est.�

Mar�201

0�-�

Dec

�201

1DK

Smart�M

eter�and

�AMI

Grid�Au

tomation�Distribution

211

TWEN

TIES

Red�Eléc

trica�de

�Es

paña

�(REE

)�(ES)

TWEN

TIES

�Project�aim

s�to�dem

onstrate�th

roug

h�real-life

,�large

-sca

le�

demon

stration

s,�th

e�be

nefits�an

d�im

pact�of�s

everal�critica

l�typ

es�of�

tech

nology

�requ

ired

�to�im

prov

e�the�Eu

rope

an�tran

smission

�network,�th

us�

giving

�Europ

e�the�ab

ility�to

�increa

se�th

e�sh

are�of�re

newab

les�in�its�en

ergy

�mix�by�20

20�and

�bey

ond,�w

hile�kee

ping

�its�pres

ent�reliability.

2010

-201

3

DK

Grid�Au

tomation�Tran

smission

ES�

FR BE

212

Vehicle�to�Grid�-�Interface

sSa

lzbu

rg�AG�(A

T)

New

�con

cepts�for�u

ser�interface

s�for�e

-mob

ility�cos

tumers�within�the�

Smart�G

rids

�mod

el�re

gion

�of�S

alzb

urg�are�de

velope

d;�param

eters�an

d�co

st/b

enefi

ts�of�a

�future�Veh

icle�to

�Grid�im

plem

entation

�will�be�ev

alua

ted�

by�th

is�fe

asibility�study

.

Jun�20

10-

May

�201

1AT

Other

213

Vehicle�to�Grid�-�S

trateg

ies

Salzbu

rg�AG�(A

T)Th

e�op

tion

s�of�sys

tem�re

lated�e-mob

ility�in

tegration�in�urban

�and

�rural�

case

�studies

�are�ana

lyze

d�de

veloping

�active�grid�in

tegration�as

�well�a

s�ne

w�bus

ines

s�mod

els�for�G

rid�to�Veh

icle�and

�Veh

icle�to

�Grid�co

ncep

ts.

Jun�20

10�- �

Dec

�201

2AT

Other

Page 116: Smart Grid Projects in Europe: Lessons Learned and Current

Pr

ojec

t nam

eO

rgan

izat

ion

nam

e B

rief

pro

ject

des

crip

tion

Peri

odCo

untr

y*Pr

ojec

t cat

egor

y

214

Virtua

l�Pow

er�Plant

RWE�DAG

�(DE)

The�aim�of�this�pilot�p

roject�is

�the�de

mon

stration

�of�the

�tech

nica

l�and

�ec

onom

ical�fe

asibility�of�the

�VPP

�con

cept-W

ithin�the�projec

t�duration�

furthe

r�dec

entralized

�pow

er�produ

cer,�lik

e�CH

P,�Biomas

s�or�W

ind�

turbines

,�will�be�includ

ed�in

to�th

e�VPP

.

2008

-201

0DE

Integrated

�Sys

tem

215

WAMPA

CElek

tro-Slov

enija

�(TSO

),�(S

I)

Existing

�wide�area

�mea

suremen

t�sys

tem�w

ill�be�up

grad

ed�w

ith�protec

tion

�an

d�co

ntrol�fun

ctions

.�Relev

ant�c

ritica

l�ope

ration

�sce

narios

�will�be�

inve

stigated

�in�due

�cou

rse.�

2011-201

4SI

not�a

vaila

ble

216

web

2ene

rgy

HSE�AG

�(DE)

The�projec

t�Web

2Ene

rgy�is�direc

ted�to�im

plem

ent�a

nd�app

rove

�all�

three�pilla

rs�of�“

Smart�D

istribution”

.�Smart�M

etering�–�the�co

nsum

er�

participates

�in�th

e�en

ergy

�marke

t�Smart�E

nergy�Man

agem

ent�–

�Clustering�

of�small�p

ower�produ

cers.�S

mart�D

istribution�Au

tomation�–�high

er�

relia

bility�of�sup

ply.

Jan�20

10-

Dec

�201

2

DE

Smart�M

eter�and

�AMI

NL

Grid�Au

tomation�Tran

smission

ATSm

art�M

eter�and

�AMI

PLGrid�Au

tomation�Tran

smission

CH�

217

WIN

DGRID

RED

�ELE

CTRICA�DE�

ESPA

ÑA,�S.A.�(ES

)

Wind�on

�the�Grid�is�a�project�fo

cuse

d�on

�prepa

ration

�of�the

�Europ

ean�

elec

tricity�ne

twork�for�t

he�la

rge-sc

ale�integration�of�w

ind�farm

s�throug

h�the�de

sign

,�dev

elop

men

t�and

�validation�of�new

�tools�an

d�de

vice

s�for�its�

plan

ning

,�con

trol�and

�ope

ration

�in�a�com

petitive

�marke

t.

Dec

�200

6�-D

ec�200

9

ES�

Other

PT DK SI IT CZ DE

218

Zone

�con

cept�and

�smart�

protec

tion

�pilo

tFo

rtum

�Sah

kons

iirto�

Oy�(FI)

The�pilot�a

ims�to�te

st�a�smart�p

rotection�co

ncep

t�which

�sho

uld�redu

ce�

the�ou

tage

�times

�and

�autom

ation �inve

stmen

t�nee

ds.�T

he�sys

tem�con

sists�

of�cen

tral�unit�in�the�prim

ary�su

bstation

�which

�ana

lyse

s�the�ne

twork�

status

�and

�faults.

2010

�-�20

13FI

Grid�Au

tomation�Distribution

219

ZUQDE

Salzbu

rg�AG�(A

T)ZU

QDE�will�dev

elop

�furthe

r�the

�DMS�ap

plication�Vo

lt/v

ar�Con

trol�(V

VC)�to�

keep

�a�certain�voltage

�leve

l�in�the�who

le�distribution�ne

twork�with�a�high

�pe

netration�of�Distributed

�Gen

eration�(D

G).��

Jul�2

010-

May

�201

2AT

Grid�Au

tomation�Distribution

Page 117: Smart Grid Projects in Europe: Lessons Learned and Current

European Commission

EUR 24856 EN – Joint Research Centre – Institute for Energy

Title: Smart Grid projects in Europe: lessons learned and current developments

Authors: Vincenzo Giordano, Flavia Gangale, Gianluca Fulli (JRC-IE), Manuel Sánchez Jiménez (DG ENER)Other JRC-IE contributors: Ijeoma Onyeji, Alexandru Colta, Ioulia Papaioannou, Anna Mengolini, Corina Alecu, Tauno Ojala, Isabella Maschio

Luxembourg: Publications Office of the European Union2011 – 118 pp. – 21.0 x 29.7 cmEUR – Scientific and Technical Research series – ISSN 1831-9424 ISBN 978-92-79-20487-6 Catalogue number LD-NA-24856-EN-N doi:10.2790/32946

AbstractThe main goal of this study is to provide a complete catalogue of Smart Grid projects in Europe to date and use project data to support analysis on trends and developments. The report looks into several aspects of the Smart Grids landscape to describe the state of the art of their implementation, the emerging hallmarks of the new electricity system and the foreseeable developments. A key focus of the Report is to describe how Smart Grid projects address and respond to the EU energy policy challenges and to point out potential benefits and benefi-ciaries. Particular attention is devoted to identifying the most important obstacles to investments and the possible solutions that could help to overcome them.

Page 118: Smart Grid Projects in Europe: Lessons Learned and Current

The mission of the Joint Research Centre (JRC) is to provide customer-driven scientific and technical sup-port for the conception, development, implementation and monitoring of European Union policies. As a service of the European Commission, the JRC functions as a reference centre of science and technology for the Union. Close to the policy-making process, it serves the common interest of the Member States, while being independent of special interests, whether private or national.

LD-NA-248

56-EN-N