Top Banner
Research Article Second Hankel Determinants for the Class of Typically Real Functions PaweB Zaprawa Department of Mathematics, Lublin University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland Correspondence should be addressed to Paweł Zaprawa; [email protected] Received 5 November 2015; Revised 22 December 2015; Accepted 3 January 2016 Academic Editor: Marco Donatelli Copyright © 2016 Paweł Zaprawa. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We discuss the Hankel determinants 2 () = +2 − ( +1 ) 2 for typically real functions, that is, analytic functions which satisfy the condition ImIm() ≥ 0 in the unit disk Δ. Main results are concerned with 2 (2) and 2 (3). e sharp upper and lower bounds are given. In general case, for ≥4, the results are not sharp. Moreover, we present some remarks connected with typically real odd functions. 1. Introduction Let Δ be the unit disk { ∈ C : || < 1} and let A be the family of all functions analytic in Δ that have the Taylor series expansion () = + ∑ =2 . In [1, 2] Pommerenke defined th Hankel determinant for a function as () = +1 ⋅⋅⋅ +−1 +1 +2 ⋅⋅⋅ + ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ +−1 + ⋅⋅⋅ +2−2 , (1) where , ∈ N. Recently, the Hankel determinant has been studied inten- sively by many mathematicians. e research was focused on 2 (2) for various classes of univalent functions. e papers by Janteng et al. [3, 4], Lee et al. [5], Vamshee Krishna and Ramreddy [6], and Selvaraj and Kumar [7] are worth mentioning here. Janteng et al. derived the exact bounds of | 2 (2)| for the classes: of star-like functions (| 2 (2)| ≤ 1), K of convex functions (| 2 (2)| ≤ 1/8), and R of functions whose derivative has a positive real part (| 2 (2)| ≤ 4/9). Lee et al. [5] investigated the Hankel determinant in the general class () of star-like functions with respect to a given function . is class was defined by Ma and Minda in [8]. In particular, Lee et al. obtained the results for the following classes: () of star-like functions of order (| 2 (2)| ≤ (1 − ) 2 ), SL of lemniscate star-like functions (| 2 (2)| ≤ 1/16; for the definition of SL , see [9]), and of strongly star- like functions of order (| 2 (2)| ≤ 2 ). Vamshee Krishna and Ramreddy [6] generalized the result of Janteng et al. ey gave the bound of | 2 (2)| in the class K() of convex functions of order . Selvaraj and Kumar [7] proved that the estimate of the second Hankel determinant for the class C of close-to-convex functions is the same as that for the class . e question whether this bound is good for the class of all univalent functions has no answer yet. One can find some other results in this direction in [10–14]. Taking different set of parameters and , the research on the Hankel determinant is much more difficult. In [15] Hayami and Owa discussed 2 () for functions satisfying Re()/ > or Re () > . On the other hand, Babalola [16] tried to estimate | 3 (1)| for , K, and R. Shanmugam et al. [17] discussed | 3 (1)| for the class of -star-like functions defined by Mocanu in [18]. In particular, if =2 and =1 then 2 (1) is known as a classical functional of Fekete-Szeg¨ o. A lot of papers have been devoted to the studies concerning this functional. Because 2 (1) is not related to the subject of this paper, we omit recalling results obtained in this direction. e majority of results concerning the Hankel determi- nants were obtained for univalent functions. In this paper we discuss functions which, in general, are not univalent. We focus our investigation on typically real functions. Hindawi Publishing Corporation Abstract and Applied Analysis Volume 2016, Article ID 3792367, 7 pages http://dx.doi.org/10.1155/2016/3792367
8

Research Article Second Hankel Determinants for the Class ...downloads.hindawi.com/journals/aaa/2016/3792367.pdf · Research Article Second Hankel Determinants for the Class of Typically

Jun 29, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Research Article Second Hankel Determinants for the Class ...downloads.hindawi.com/journals/aaa/2016/3792367.pdf · Research Article Second Hankel Determinants for the Class of Typically

Research ArticleSecond Hankel Determinants for the Class ofTypically Real Functions

PaweB Zaprawa

Department of Mathematics Lublin University of Technology Nadbystrzycka 38D 20-618 Lublin Poland

Correspondence should be addressed to Paweł Zaprawa pzaprawapollubpl

Received 5 November 2015 Revised 22 December 2015 Accepted 3 January 2016

Academic Editor Marco Donatelli

Copyright copy 2016 Paweł Zaprawa This is an open access article distributed under the Creative Commons Attribution Licensewhich permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited

We discuss the Hankel determinants 1198672(119899) = 119886

119899119886119899+2

minus (119886119899+1

)2 for typically real functions that is analytic functions which satisfy

the condition Im119911Im119891(119911) ge 0 in the unit disk Δ Main results are concerned with 1198672(2) and 119867

2(3) The sharp upper and lower

bounds are given In general case for 119899 ge 4 the results are not sharp Moreover we present some remarks connected with typicallyreal odd functions

1 Introduction

Let Δ be the unit disk 119911 isin C |119911| lt 1 and let A be thefamily of all functions 119891 analytic in Δ that have the Taylorseries expansion 119891(119911) = 119911 + sum

infin

119899=2119886119899119911119899 In [1 2] Pommerenke

defined 119902th Hankel determinant for a function 119891 as

119867119902(119899) =

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

119886119899

119886119899+1

sdot sdot sdot 119886119899+119902minus1

119886119899+1

119886119899+2

sdot sdot sdot 119886119899+119902

sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot sdot

119886119899+119902minus1

119886119899+119902

sdot sdot sdot 119886119899+2119902minus2

100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816100381610038161003816

(1)

where 119899 119902 isin NRecently the Hankel determinant has been studied inten-

sively by many mathematiciansThe research was focused on1198672(2) for various classes of univalent functions The papers

by Janteng et al [3 4] Lee et al [5] Vamshee Krishnaand Ramreddy [6] and Selvaraj and Kumar [7] are worthmentioning here Janteng et al derived the exact bounds of|1198672(2)| for the classes 119878lowast of star-like functions (|119867

2(2)| le 1)

K of convex functions (|1198672(2)| le 18) and R of functions

whose derivative has a positive real part (|1198672(2)| le 49) Lee

et al [5] investigated the Hankel determinant in the generalclass 119878

lowast(120593) of star-like functions with respect to a given

function 120593 This class was defined by Ma and Minda in [8]In particular Lee et al obtained the results for the followingclasses 119878lowast(120572) of star-like functions of order 120572 (|119867

2(2)| le (1 minus

120572)2) SLlowast of lemniscate star-like functions (|119867

2(2)| le 116

for the definition of SLlowast see [9]) and 119878lowast

120573of strongly star-

like functions of order 120573 (|1198672(2)| le 120573

2) Vamshee Krishnaand Ramreddy [6] generalized the result of Janteng et alThey gave the bound of |119867

2(2)| in the class K(120572) of convex

functions of order 120572 Selvaraj and Kumar [7] proved that theestimate of the second Hankel determinant for the classC ofclose-to-convex functions is the same as that for the class 119878lowastThe question whether this bound is good for the class 119878 ofall univalent functions has no answer yet One can find someother results in this direction in [10ndash14]

Taking different set of parameters 119902 and 119899 the researchon the Hankel determinant is much more difficult In [15]Hayami and Owa discussed 119867

2(119899) for functions 119891 satisfying

Re119891(119911)119911 gt 120572 or Re1198911015840(119911) gt 120572 On the other hand Babalola[16] tried to estimate |119867

3(1)| for 119878lowastK andR Shanmugam

et al [17] discussed |1198673(1)| for the class 119872

120572of 120572-star-like

functions defined by Mocanu in [18]In particular if 119902 = 2 and 119899 = 1 then119867

2(1) is known as a

classical functional of Fekete-Szego A lot of papers have beendevoted to the studies concerning this functional Because1198672(1) is not related to the subject of this paper we omit

recalling results obtained in this directionThe majority of results concerning the Hankel determi-

nants were obtained for univalent functions In this paperwe discuss functions which in general are not univalent Wefocus our investigation on typically real functions

Hindawi Publishing CorporationAbstract and Applied AnalysisVolume 2016 Article ID 3792367 7 pageshttpdxdoiorg10115520163792367

2 Abstract and Applied Analysis

2 Class 119879 and the Hankel Determinants fora Selected Functions in 119879

A function 119891 isin A that satisfies the condition Im 119911 Im119891(119911) ge

0 for 119911 isin Δ is called a typically real function Let 119879 denotethe class of all typically real functions Robertson [19] provedthat 119891 isin 119879 if and only if there exists a probability measure 120583on [minus1 1] such that the following formula holds

119891 (119911) = int

1

minus1

119911

1 minus 2119911119905 + 1199112119889120583 (119905) (2)

The coefficients of a function 119891(119911) = 119911 + suminfin

119899=2119886119899119911119899isin 119879 can

be written as follows

119886119899= int

1

minus1

sin (119899 arccos 119905)sin (arccos 119905)

119889120583 (119905) = int

1

minus1

119880119899minus1

(119905) 119889120583 (119905)

119899 = 1 2

(3)

The functions 119880119899(119905) 119899 = 1 2 which appear in the above

formula are the well-known Chebyshev polynomials of thesecond kind

Since all coefficients of 119891 isin 119879 are real we look for thelower and the upper bounds of119867

2(2) instead of the bound of

|1198672(2)| At the beginning let us look at a few examples

Example 1 All the functions 119891119905(119911) = 119911(1 minus 2119911119905 + 119911

2) 119905 isin

[minus1 1] are in 119878lowast Since 119891119905(119911) = 119911 + 2119905119911

2+ (41199052minus 1)1199113+ (81199053minus

4119905)1199114+sdot sdot sdot we have119867

2(2) = minus1 for each 119905 isin [minus1 1]Moreover

1198672(119899) = 119880

119899minus1(119905)119880119899+1

(119905) minus 119880119899(119905)2 This and the Turan identity

for Chebyshev polynomials 119880119899(119905) result in 119867

2(119899) = minus1 for

each 119899 = 2 3

Example 2 For a function 119891(119911) = 119911(1 + 1199112)(1 minus 119911

2)2 having

the Taylor series expansion 119891(119911) = 119911 + 31199113+ 51199115+ sdot sdot sdot there

is1198672(119899) = minus(119899 + 1)

2 for even 119899 and1198672(119899) = (119899 + 1)

2minus 1 for

odd 119899 In this case the function 119891 is not univalent the boundof |1198672(2)| is much greater than 1 the value of the second

Hankel determinant for star-like functions or close-to-convexfunctions

Example 3 EveryHankel determinant1198672(119899) 119899 = 1 2 for

a function 119891(119911) = log(1(1 minus 119911)) = 119911+ (12)1199112+ (13)119911

3+ sdot sdot sdot

is positive Namely1198672(119899) = 1119899(119899 + 1)

2(119899 + 2)

For a given class 119860 sub A we denote by Ω119899(119860) 119899 ge 1

the region of variability of three succeeding coefficients offunctions in 119860 that is the set (119886

119899(119891) 119886119899+1

(119891) 119886119899+2

(119891))

119891 isin 119860 As it is seen in (3) the coefficients of typicallyreal functions are the Stieltjes integrals of the Chebyshevpolynomials of the second kind with respect to a probabilitymeasure HenceΩ

119899(119879) is the closed convex hull of the curve

120574 [minus1 1] ni 119905 rarr (119880119899minus1

(119905) 119880119899(119905) 119880119899+1

(119905)) (see eg [20])

Lemma 4 The functional 119879 ni 119891 rarr 1198672(119899) 119899 ge 2 attains its

extreme values on the boundary of Ω119899(119879)

Proof The only critical point of ℎ(119909 119910 119911) = 119909119911 minus 1199102 where

119909 = 119886119899 119910 = 119886

119899+1 and 119911 = 119886

119899+2 is (0 0 0) But ℎ(0 0 0) = 0

Since ℎ may be positive as well as negative for (119909 119910 119911) isin

Ω119899(119879) (see Examples 1 and 3) it means that the extreme

values of ℎ are attained on the boundary ofΩ119899(119879)

3 Bounds of 1198672(2) in 119879

In [21] Ma proved so-called generalized Zalcman conjecturefor the class 119879

1003816100381610038161003816119886119899119886119898 minus 119886119899+119898minus1

1003816100381610038161003816

le

119899 + 1 119898 = 2 119899 = 2 4 6

119898 + 1 119899 = 2 119898 = 2 4 6

(119899 minus 1) (119898 minus 1) otherwise

(4)

We apply this result to prove the following

Theorem 5 If 119891 isin 119879 then |1198672(2)| le 9

Proof The result of Ma and the triangle inequality result in1003816100381610038161003816100381611988621198864minus 1198863

210038161003816100381610038161003816le100381610038161003816100381611988621198864 minus 119886

5

1003816100381610038161003816 +100381610038161003816100381610038161198865minus 1198863

210038161003816100381610038161003816le 5 + 4 = 9 (5)

This result is sharp the equality holds for 119891(119911) = 119911(1 +

1199112)(1 minus 119911

2)2 Furthermore we can see the following

Corollary 6 For 119879 one has

min 1198672(2) 119891 isin 119879 = minus9 (6)

For our next theorem let us cite two results First one isthe obvious conclusion from the Caratheodory theorem andthe Krein-Milman theorem We assume that 119883 is a compactHausdorff space and

119869120583= int119883

119869 (119905) 119889120583 (119905) (7)

Theorem A (see [22 Thm 140]) If 119869 119883 rarr R119899 is continu-ous then the convex hull of 119869(119883) is a compact set and it coincideswith the set 119869

120583 120583 isin 119875

119883 |supp(120583)| le 119899

In the above the symbols 119875119883and |supp(120583)| stand for the

set of probability measures on 119883 and the cardinality of thesupport of 120583 respectively

It means that 120583 is atomic measure having at most 119899 stepsMore precise information about the relation between themeasure and the convex hull is presented in the followingtheorem In what follows ⟨ 119886 ⟩ means the scalar product of119886 and

Theorem B (see [22 Thm 149]) Let 119869 [120572 120573] rarr R119899 becontinuous Suppose that there exists a positive integer 119896 suchthat for each nonzero 119901 in R119899 the number of solutions of anyequation ⟨

997888997888rarr119869(119905) ⟩ = const 120572 le 119905 le 120573 is not greater than 119896

Abstract and Applied Analysis 3

Then for every 120583 isin 119875[120572120573]

such that 119869120583belongs to the boundary

of the convex hull of 119869([120572 120573]) the following statements aretrue

(1) If 119896 = 2119898 then

(a) |supp(120583)| le 119898 or(b) |supp(120583)| = 119898 + 1 and 120572 120573 sub supp(120583)

(2) If 119896 = 2119898 + 1 then

(a) |supp(120583)| le 119898 or(b) |supp(120583)| = 119898 + 1 and one of the points 120572 and 120573

belongs to supp(120583)

This theorem in slightly modified version was publishedin [23] as Lemma 2

Putting 119869(119905) = [1198801(119905) 1198802(119905) 1198803(119905)] 119905 isin [minus1 1] and =

[1199011 1199012 1199013] we can see that any equation of the form

11990111198801(119905) + 119901

21198802(119905) + 119901

31198803(119905) = const 119905 isin [minus1 1] (8)

is equivalent to 1198823(119905) = const where 119882

3(119905) is a polynomial

of degree 3 Hence (8) has at most 3 solutions According toTheorem B the boundary of the convex hull of 119869([minus1 1]) isdetermined by atomic measures 120583 for which support consistsof at most 2 points Moreover one of them has to be minus1 or 1We have proved the following

Lemma7 Theboundary ofΩ2(119879) consists of points (119886

2 1198863 1198864)

that correspond to the following functions

119891 (119911) = 120572119911

1 minus 2119911119905 + 1199112+ (1 minus 120572)

119911

(1 minus 119911)2

120572 isin [0 1] 119905 isin [minus1 1]

(9)

or

119891 (119911) = 120572119911

1 minus 2119911119905 + 1199112+ (1 minus 120572)

119911

(1 + 119911)2

120572 isin [0 1] 119905 isin [minus1 1]

(10)

Now we are ready to prove the following

Theorem 8 For 119879 one has

max 1198672(2) 119891 isin 119879 = 1 (11)

Proof By Lemma 7 it is enough to take functions given by(9) or (10) Consider the following

(I) Function (9) has the series expansion

119891 (119911) = 119911 + 2 (1 minus 120572 + 120572119905) 1199112

+ [3 (1 minus 120572) + (41199052minus 1) 120572] 119911

3

+ 4 [1 minus 120572 + (21199053minus 119905) 120572] 119911

4+ sdot sdot sdot

(12)

Hence1198672(2) = 119892

1(120572 119905) where

1198921(120572 119905) = 8 (1 minus 120572 + 120572119905) [1 minus 120572 + (2119905

3minus 119905) 120572]

minus (41199052120572 minus 4120572 + 3)

2

120572 isin [0 1] 119905 isin [minus1 1]

(13)

From

1205971198921

120597120572= 8 (1 minus 119905

2) (2 (2 minus 120572) 119905

2+ 1 minus 2120572)

1205971198921

120597119905= 16120572 (120572 minus 1) (4119905

2minus 3119905 + 3)

(14)

it follows that the critical points of 1198921are as follows (0 minus1)

(0 1) (1 minus1) (1 1) (1 minus1radic2) (1 1radic2) and (12 0)Among these points only (12 0) lies inside the set [0 1] times[minus1 1]

If 120572 = 0 or 120572 = 1 then functions (9) coincide with 119891119905

from Example 1 If 119905 = 1 then 119891(119911) = 119911(1 minus 119911)2 In each

case 1198672(2) = minus1 For 119905 = minus1 function (9) takes the form

119891(119911) = 120572(119911(1 + 119911)2) + (1 minus 120572)(119911(1 minus 119911)

2) Then 119867

2(2) =

8(1 minus 2120572)2minus 9 le minus1

If 120572 = 12 and 119905 = 0 we have1198672(2) = 1 It means that the

greatest value of1198672(2) for functions given by (9) is equal to 1

The extremal function is

119891 (119911) =1

2[

119911

1 + 1199112+

119911

(1 minus 119911)2]

= 119911 + 1199112+ 1199113+ 21199114+ 31199115+ sdot sdot sdot

(15)

(II) For functions (10)1198672(2) is equal to 119892

2(120572 119905) where

1198922(120572 119905) = 8 (minus1 + 120572 + 120572119905) [minus1 + 120572 + (2119905

3minus 119905) 120572]

minus (41199052120572 minus 4120572 + 3)

2

120572 isin [0 1] 119905 isin [minus1 1]

(16)

Moreover 1198922(120572 119905) = 119892

1(120572 minus119905) Taking into account the sym-

metry of the range of variability of 119905 we obtain the sameresult as above also for functions defined by (10)The extremalfunction is

119891 (119911) =1

2[

119911

1 + 1199112+

119911

(1 + 119911)2]

= 119911 minus 1199112+ 1199113minus 21199114+ 31199115+ sdot sdot sdot

(17)

4 Bounds of 1198672(3) in 119879

The proof of the following theorem is obvious

Theorem 9 If 119899 is odd then

max 1198672(119899) 119891 isin 119879 = 119899 (119899 + 2) (18)

Hence one has the following

4 Abstract and Applied Analysis

Corollary 10 For 119879 one has

max 1198672(3) 119891 isin 119879 = 15 (19)

In similar way as it was done for Lemma 7 one can provethe following

Lemma 11 The boundary of Ω3(119879) consists of points (119886

3

1198864 1198865) that correspond to the following functions

119891 (119911) = 120572119911

1 minus 21199111199051+ 1199112

+ (1 minus 120572)119911

1 minus 21199111199052+ 1199112

120572 isin [0 1] 1199051 1199052 isin [minus1 1]

(20)

or

119891 (119911) = 120572119911

(1 + 119911)2+ 120573

119911

(1 minus 119911)2

+ (1 minus 120572 minus 120573)119911

1 minus 2119911119905 + 1199112

120572 120573 isin [0 1] 120572 + 120573 le 1 119905 isin [minus1 1]

(21)

Theorem 12 For 119879 one has

min 1198672(3) 119891 isin 119879 = minus

4

3+8

9

radic6 = minus351 (22)

Proof By Lemma 11 it suffices to discuss functions given by(20) or (21) Consider the following

(I) For functions (20) we have

1198863= (41199051

2minus 1) 120572 + (4119905

2

2minus 1) (1 minus 120572)

1198864= (81199051

3minus 41199051) 120572 + (8119905

2

3minus 41199052) (1 minus 120572)

1198865= (16119905

1

4minus 121199051

2+ 1) 120572

+ (161199052

4minus 121199052

2+ 1) (1 minus 120572)

(23)

and hence applying the Turan identity1198672(3) = 119892

3(120572 1199051 1199052)

where

1198923(120572 1199051 1199052)

= minus1205722minus (1 minus 120572)

2

+ 2120572 (1 minus 120572) [8 (1199051minus 1199052)2

(1 minus 1199051

2) (1 minus 119905

2

2) minus 1]

120572 isin [0 1] 1199051 1199052 isin [minus1 1]

(24)

The expression in brackets is greater than or equal to minus1for all 119905

1 1199052isin [minus1 1] Hence

1198672(3) ge minus120572

2minus (1 minus 120572)

2minus 2120572 (1 minus 120572) = minus1 (25)

(II) If function 119891 is given by (21) then

1198863= 3 (120572 + 120573) + (4119905

2minus 1) (1 minus 120572 minus 120573)

1198864= 4 (120573 minus 120572) + (8119905

3minus 4119905) (1 minus 120572 minus 120573)

1198865= 5 (120572 + 120573) + (16119905

4minus 121199052+ 1) (1 minus 120572 minus 120573)

(26)

Using the Turan identity it follows that 1198672(3) = 119892

4(120572 120573 119905)

where

1198924(120572 120573 119905) = minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)

2

+ 64120572120573

+ 2 (1 minus 120572 minus 120573) 119902 (119905)

119902 (119905) = (120572 + 120573) (241199054minus 81199052minus 1)

+ (120572 minus 120573) (321199053minus 16119905)

(27)

under the assumptions 120572 120573 isin [0 1] 120572+120573 le 1 and 119905 isin [minus1 1]Let 120572 and 120573 be fixed Since

120597119902

120597119905= 8 (6119905

2minus 1) [119905 (120572 + 120573) + 120572 minus 120573] (28)

the critical points of 119902 are as follows minus1radic6 1radic6 and (120573 minus

120572)(120572 + 120573) It is easily seen that all these points are in [minus1 1]Therefore

min 119902 (119905) 119905 isin [minus1 1] = min119902 (minus1) 119902 ( minus1

radic6

)

119902 (1

radic6

) 119902 (1) 119902 (120573 minus 120572

120572 + 120573)

(29)

For 119905 = minus1 or 119905 = 1 the functions given by (21) have theform

119891 (119911) = 119911

(1 + 119911)2+ 120573

119911

(1 minus 119911)2 + 120573 = 1 (30)

One can show directly from formula (30) that

1198672(3) = minus1 + 64 (1 minus ) ge minus1 (31)

For 119905 = (120573 minus 120572)(120572 + 120573) there is

1198672(3) = minus1 +

64120572120573 [4 (120572 + 120573) 120572120573 + (120573 minus 120572)2

]

(120572 + 120573)3

(32)

hence

1198672(3) ge minus1 (33)

If 119905 = minus1radic6 or 119905 = 1radic6 then1198672(3) is equal to

1198672(3)

= minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)2

+ 64120572120573

+ (1 minus 120572 minus 120573) [minus10

3(120572 + 120573) minus

64

3radic6

(120572 minus 120573)]

(34)

or

1198672(3)

= minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)2

+ 64120572120573

+ (1 minus 120572 minus 120573) [minus10

3(120572 + 120573) +

64

3radic6

(120572 minus 120573)]

(35)

Abstract and Applied Analysis 5

respectively Without loss of generality we can assume that120572 ge 120573 Then while looking for the minimum value of119867

2(3)

we can restrict the research to the first stated above case (sinceexpression (35) is not less than expression (34))

Transforming (35) we obtain

1198672(3) = minus1 + 64120572120573 minus

4

3(120572 + 120573) (1 minus 120572 minus 120573)

+64

3radic6

(120573 minus 120572) (1 minus 120572 minus 120573)

(36)

Taking the smallest possible 120573 (ie 120573 = 0) the second andthe forth component of this expression will not increase Thevalue of the third component does not depend only on 120573 infact it depends on 120572 + 120573 For this reason we can take 120573 = 0Combining these facts it yields that

1198672(3) ge minus1 minus

4

3120572 (1 minus 120572) minus

64

3radic6

120572 (1 minus 120572) (37)

The smallest value of the right hand side of this inequality isachieved for 120572 = 12 In this case

1198672(3) ge minus1 minus

1

3minus

16

3radic6

= minus4

3minus8

9

radic6 = minus351 (38)

Combining two parts of the proof we obtain the conclu-sion of the theorem Furthermore the above shows that theextremal functions are

119891 (119911) =1

2[

119911

(1 + 119911)2+

119911

1 minus 21199111199050+ 1199112

]

119891 (119911) =1

2[

119911

(1 minus 119911)2+

119911

1 + 21199111199050+ 1199112

]

(39)

where 1199050= 1radic6

5 Bounds of 1198672(119899) 119899 ge 4 in 119879

It is easily seen that 1198672(119899) le 119899(119899 + 2) for any typically real

function ByTheorem 9 this estimate is sharp providing that119899 is an odd integer At the beginning of this section we willprove the following

Theorem 13 For 119879 one has

min 119886119899119886119899+2

119891 isin 119879 = minus1 (40)

Proof Thecoefficients of the series expansion of function119891 isin

119879 can be written as follows

119886119899= int

120587

0

sin (119899120579)sin 120579

119889] (120579) ] isin 119875[0120587]

(41)

Hence

119886119899119886119899+2

= int

120587

0

sin ((119899 + 1) 120579 minus 120579)

sin 120579119889] (120579)

sdot int

120587

0

sin ((119899 + 1) 120579 + 120579)

sin 120579119889] (120579)

= (int

120587

0

sin (119899 + 1) 120579

sin 120579cos 120579 119889] (120579))

2

minus (int

120587

0

cos (119899 + 1) 120579 119889] (120579))2

(42)

Since

int

120587

0

cos (119899 + 1) 120579 119889] (120579) le int

120587

0

119889] (120579) = 1 (43)

we obtain

119886119899119886119899+2

ge minus1 (44)

In order to prove that the estimate is sharp let us take themeasure ] for which support satisfies condition (119899 + 1)120579 =

120587 This measure corresponds to the function 119891(119911) = 119911(1 minus

2119911cos(120587(119899 + 1)) + 1199112)

Observe that 119886119899119886119899+2

= minus1 holds not only for the measurestated above Namely the value minus1 in (42) is taken also if (119899 +1)120579 = 119896120587 where 119896 is any positive integer less than or equal to119899 From this we conclude that the support of the measure has119899 points 120579

119896= 119896120587(119899 + 1) with weights 120572

119896 119896 = 1 2 119899 such

that sum119899119896=1

120572119896= 1

The weights satisfy

(

119899

sum

119896=1

120572119896(minus1)119896)

2

= 1 (45)

Indeed if the support of ] consists of 119899 points then 119891 takesthe form

119891 (119911) =

119899

sum

119896=1

120572119896

119911

1 minus 2119911 cos 120579119896+ 1199112

(46)

Using trigonometric identities we obtain

119886119899=

119899

sum

119896=1

120572119896(minus1)119896+1

119886119899+2

=

119899

sum

119896=1

120572119896(minus1)119896

(47)

which results in (45)Connecting (45) andsum119899

119896=1120572119896= 1we conclude that119891 is of

the form

119891 (119911) =

119899

sum

119896=1119896 is odd120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112(48)

6 Abstract and Applied Analysis

Table 1 The bounds of the Hankel determinants for functions defined by (51)

Bounds of1198672(119899) Equality in the lower bound for Equality in the upper bound for

minus9 le 1198672(2) le 1 119905 = 1 119905 = 0

minus351 le 1198672(3) le 15 119905 = 0 40 119905 = 1

minus25 le 1198672(4) le 446 119905 = 1 119905 = 061

minus784 le 1198672(5) le 35 119905 = 0 72 119905 = 1

minus49 le 1198672(6) le 967 119905 = 1 119905 = 079

or

119891 (119911) =

119899

sum

119896=1119896 is even120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112 (49)

Itmeans that for even 119899 the support of ] consists of 1198992 pointsand for even 119899 the number of points of the support of ] is equalto (119899 + 1)2 or (119899 minus 1)2

Taking into account |119886119899+1

| le 119899 + 1 and Theorem 13 weobtain the following

Theorem 14 For 119879 one has

1198672(119899) ge minus (119899 + 1)

2minus 1 (50)

Unfortunately this bound is not sharp However thefollowing can be conjectured

Conjecture 15 For any positive integer 119899 the following esti-mate 119867

2(119899) ge minus(119899 + 1)

2 holds Moreover this bound is sharpfor even 119899

This conjecture is supported by the facts that in thetheorems concerning119867

2(2) and119867

2(3) the extremal functions

are of the form

119891 (119911) =1

2[

119911

(1 + 119911)2+

119911

1 minus 2119911119905 + 1199112]

119891 (119911) =1

2[

119911

(1 minus 119911)2+

119911

1 minus 2119911119905 + 1199112]

(51)

for appropriately taken 119905 isin [minus1 1] The exact bounds ofthe Hankel determinants for these functions are collected inTable 1 They were obtained numerically

6 Remarks Concerning 1198672(119899) in 119879

(2)

In class 119879 we discuss subclass 119879(2) consisting of the functionswhich are odd The definition of this class is

119879(2)

= 119891 isin 119879 119891 (minus119911) = minus119891 (119911) 119911 isin Δ (52)

For 119891 isin 119879(2) the representation formula similar to (2) is

valid Namely

119891 (119911) = int

1

minus1

119911 (1 + 1199112)

(1 + 1199112)2

minus 411991121199052119889] (119905) ] isin 119875

[minus11] (53)

Function 119891 has the Taylor series expansion

119891 (119911) = sum

119899 is odd119886119899119911119899 119886119899= int

1

minus1

119880119899minus1

(119905) 119889] (119905) (54)

The following inequalities are obvious

minus (119899 + 1)2le 1198672(119899) le 0 for even 119899

1198672(119899) le (119899 + 1)

2minus 1 for odd 119899

(55)

equalities hold for 119891(119911) = 119911(1 + 1199112)(1 minus 119911

2)2

For a given class 119860 sub A let us denote by Ψ119899(119860) 119899 ge 1

the set (119886119899 119886119899+2

) 119891 isin 119860 From (53) it follows that Ψ119899(119879) is

the closed convex hull of the curve

120582 [minus1 1] ni 119905 997888rarr (119880119899minus1

(119905) 119880119899+1

(119905)) (56)

FromTheorem 13 and from the equivalence

(119886119899 119886119899+2

) isin Ψ119899(119879) lArrrArr (119886

119899 119886119899+2

) isin Ψ119899(119879(2)) (57)

we get

min 119886119899119886119899+2

119891 isin 119879(2) = minus1 (58)

Hence for odd 119899 we know that

min 1198672(119899) 119891 isin 119879

(2) ge minus1 (59)

The equality holds for functions (48) or (49) providing that120572119896

= 120572119899+1minus119896

Then connecting the components of theseformulae in pairs we obtain

120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112

+ 120572119899+1minus119896

119911

1 minus 2119911 cos ((119899 + 1 minus 119896) 120587 (119899 + 1)) + 1199112

= 2120572119896

119911 (1 + 1199112)

(1 + 1199112)2

minus 41199112cos2 (119896120587 (119899 + 1))

(60)

With help of the argument given in the proof of Theorem 13we eventually obtain the odd functions for which 119886

119899119886119899+2

=

minus1

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 7

References

[1] C Pommerenke ldquoOn the coefficients and Hankel determinantsof univalent functionsrdquo Journal of the London MathematicalSociety vol 41 pp 111ndash122 1966

[2] C Pommerenke ldquoOn the Hankel determinants of univalentfunctionsrdquoMathematika vol 14 pp 108ndash112 1967

[3] A Janteng S A Halim and M Darus ldquoCoefficient inequalityfor a function whose derivative has a positive real partrdquo Journalof Inequalities in Pure and Applied Mathematics vol 7 no 2article 50 2006

[4] A Janteng S A Halim andMDarus ldquoHankel determinant forstarlike and convex functionsrdquo International Journal of Mathe-matical Analysis vol 1 no 13 pp 619ndash625 2007

[5] S K Lee V Ravichandran and S Supramaniam ldquoBounds forthe second Hankel determinant of certain univalent functionsrdquoJournal of Inequalities and Applications vol 2013 article 2812013

[6] D Vamshee Krishna andT Ramreddy ldquoHankel determinant forstarlike and convex functions of order alphardquo Tbilisi Mathemat-ical Journal vol 5 no 1 pp 65ndash76 2012

[7] C Selvaraj and T R K Kumar ldquoSecond Hankel determinantfor certain classes of analytic functionsrdquo International Journalof Applied Mathematics vol 28 no 1 pp 37ndash50 2015

[8] W Ma and D Minda ldquoA unified treatment of some specialclasses of univalent functionsrdquo in Proceedings of the Conferenceon Complex Analysis Conference Proceedings and LectureNotes in Analysis Vol 1 pp 157ndash169 International PressTianjin China 1992

[9] J Sokoł and J Stankiewicz ldquoRadius of convexity of some sub-classes of strongly starlike functionsrdquoZeszytyNaukowe Politech-niki Rzeszowskiej Matematyka vol 19 pp 101ndash105 1996

[10] M-S Liu J-F Xu and M Yang ldquoUpper bound of second Han-kel determinant for certain subclasses of analytic functionsrdquoAbstract and Applied Analysis vol 2014 Article ID 603180 10pages 2014

[11] A K Mishra and P Gochhayat ldquoSecond Hankel determinantfor a class of analytic functions defined by fractional deriva-tiverdquo International Journal of Mathematics and MathematicalSciences vol 2008 Article ID 153280 10 pages 2008

[12] J W Noonan and D K Thomas ldquoOn the Hankel determinantsof areally mean 119901-valent functionsrdquo Proceedings of the LondonMathematical Society vol 25 pp 503ndash524 1972

[13] G Singh ldquoHankel determinant for a new subclass of analyticfunctionsrdquo Scientia Magna vol 8 no 4 pp 61ndash65 2012

[14] G Singh ldquoHankel determinant for analytic functions withrespect to other pointsrdquo Engineering Mathematics Letters vol2 no 2 pp 115ndash123 2013

[15] T Hayami and S Owa ldquoGeneralized hankel determinant forcertain classesrdquo International Journal of Mathematical Analysisvol 4 no 52 pp 2573ndash2585 2010

[16] K O Babalola ldquoOnH3(1) Hankel determinants for some classes

of univalent functionsrdquo in Inequality Theory and Applicationsvol 6 17 Nova Science Publishers New York NY USA 2010

[17] G Shanmugam B Adolf Stephen and K O Babalola ldquoThirdHankel determinant for 120572-starlike functionsrdquo Gulf Journal ofMathematics vol 2 no 2 pp 107ndash113 2014

[18] P T Mocanu ldquoUne proprit de convexit gnralise dans la thoriede la representation conformerdquoMathematica (Cluj) vol 11 no34 pp 127ndash133 1969

[19] M S Robertson ldquoOn the coefficients of a typically-real func-tionrdquo Bulletin of the American Mathematical Society vol 41 no8 pp 565ndash572 1935

[20] D J Hallenbeck and T H MacGregor Linear Problems andConvexity Techniques in Geometric Function Theory Mono-graphs and Studies in Mathematics 22 Pitman AdavancedPublishing Program Boston Mass USA 1984

[21] W Ma ldquoGeneralized Zalcman conjecture for starlike and typ-ically real functionsrdquo Journal of Mathematical Analysis andApplications vol 234 no 1 pp 328ndash339 1999

[22] W Szapiel Extremal problems for convex sets Applications toholomorphic functions [Dissertation XXXVII] UMCS PressLublin Poland reviewer J Krzyz 1986 (Polish)

[23] W Szapiel ldquoExtreme points of convex sets (II) Inuence of nor-malization on integral representationrdquo Bulletin de lrsquoAcademiePolonaise des Sciences Serie des SciencesMathematiques vol 29pp 535ndash544 1981

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 2: Research Article Second Hankel Determinants for the Class ...downloads.hindawi.com/journals/aaa/2016/3792367.pdf · Research Article Second Hankel Determinants for the Class of Typically

2 Abstract and Applied Analysis

2 Class 119879 and the Hankel Determinants fora Selected Functions in 119879

A function 119891 isin A that satisfies the condition Im 119911 Im119891(119911) ge

0 for 119911 isin Δ is called a typically real function Let 119879 denotethe class of all typically real functions Robertson [19] provedthat 119891 isin 119879 if and only if there exists a probability measure 120583on [minus1 1] such that the following formula holds

119891 (119911) = int

1

minus1

119911

1 minus 2119911119905 + 1199112119889120583 (119905) (2)

The coefficients of a function 119891(119911) = 119911 + suminfin

119899=2119886119899119911119899isin 119879 can

be written as follows

119886119899= int

1

minus1

sin (119899 arccos 119905)sin (arccos 119905)

119889120583 (119905) = int

1

minus1

119880119899minus1

(119905) 119889120583 (119905)

119899 = 1 2

(3)

The functions 119880119899(119905) 119899 = 1 2 which appear in the above

formula are the well-known Chebyshev polynomials of thesecond kind

Since all coefficients of 119891 isin 119879 are real we look for thelower and the upper bounds of119867

2(2) instead of the bound of

|1198672(2)| At the beginning let us look at a few examples

Example 1 All the functions 119891119905(119911) = 119911(1 minus 2119911119905 + 119911

2) 119905 isin

[minus1 1] are in 119878lowast Since 119891119905(119911) = 119911 + 2119905119911

2+ (41199052minus 1)1199113+ (81199053minus

4119905)1199114+sdot sdot sdot we have119867

2(2) = minus1 for each 119905 isin [minus1 1]Moreover

1198672(119899) = 119880

119899minus1(119905)119880119899+1

(119905) minus 119880119899(119905)2 This and the Turan identity

for Chebyshev polynomials 119880119899(119905) result in 119867

2(119899) = minus1 for

each 119899 = 2 3

Example 2 For a function 119891(119911) = 119911(1 + 1199112)(1 minus 119911

2)2 having

the Taylor series expansion 119891(119911) = 119911 + 31199113+ 51199115+ sdot sdot sdot there

is1198672(119899) = minus(119899 + 1)

2 for even 119899 and1198672(119899) = (119899 + 1)

2minus 1 for

odd 119899 In this case the function 119891 is not univalent the boundof |1198672(2)| is much greater than 1 the value of the second

Hankel determinant for star-like functions or close-to-convexfunctions

Example 3 EveryHankel determinant1198672(119899) 119899 = 1 2 for

a function 119891(119911) = log(1(1 minus 119911)) = 119911+ (12)1199112+ (13)119911

3+ sdot sdot sdot

is positive Namely1198672(119899) = 1119899(119899 + 1)

2(119899 + 2)

For a given class 119860 sub A we denote by Ω119899(119860) 119899 ge 1

the region of variability of three succeeding coefficients offunctions in 119860 that is the set (119886

119899(119891) 119886119899+1

(119891) 119886119899+2

(119891))

119891 isin 119860 As it is seen in (3) the coefficients of typicallyreal functions are the Stieltjes integrals of the Chebyshevpolynomials of the second kind with respect to a probabilitymeasure HenceΩ

119899(119879) is the closed convex hull of the curve

120574 [minus1 1] ni 119905 rarr (119880119899minus1

(119905) 119880119899(119905) 119880119899+1

(119905)) (see eg [20])

Lemma 4 The functional 119879 ni 119891 rarr 1198672(119899) 119899 ge 2 attains its

extreme values on the boundary of Ω119899(119879)

Proof The only critical point of ℎ(119909 119910 119911) = 119909119911 minus 1199102 where

119909 = 119886119899 119910 = 119886

119899+1 and 119911 = 119886

119899+2 is (0 0 0) But ℎ(0 0 0) = 0

Since ℎ may be positive as well as negative for (119909 119910 119911) isin

Ω119899(119879) (see Examples 1 and 3) it means that the extreme

values of ℎ are attained on the boundary ofΩ119899(119879)

3 Bounds of 1198672(2) in 119879

In [21] Ma proved so-called generalized Zalcman conjecturefor the class 119879

1003816100381610038161003816119886119899119886119898 minus 119886119899+119898minus1

1003816100381610038161003816

le

119899 + 1 119898 = 2 119899 = 2 4 6

119898 + 1 119899 = 2 119898 = 2 4 6

(119899 minus 1) (119898 minus 1) otherwise

(4)

We apply this result to prove the following

Theorem 5 If 119891 isin 119879 then |1198672(2)| le 9

Proof The result of Ma and the triangle inequality result in1003816100381610038161003816100381611988621198864minus 1198863

210038161003816100381610038161003816le100381610038161003816100381611988621198864 minus 119886

5

1003816100381610038161003816 +100381610038161003816100381610038161198865minus 1198863

210038161003816100381610038161003816le 5 + 4 = 9 (5)

This result is sharp the equality holds for 119891(119911) = 119911(1 +

1199112)(1 minus 119911

2)2 Furthermore we can see the following

Corollary 6 For 119879 one has

min 1198672(2) 119891 isin 119879 = minus9 (6)

For our next theorem let us cite two results First one isthe obvious conclusion from the Caratheodory theorem andthe Krein-Milman theorem We assume that 119883 is a compactHausdorff space and

119869120583= int119883

119869 (119905) 119889120583 (119905) (7)

Theorem A (see [22 Thm 140]) If 119869 119883 rarr R119899 is continu-ous then the convex hull of 119869(119883) is a compact set and it coincideswith the set 119869

120583 120583 isin 119875

119883 |supp(120583)| le 119899

In the above the symbols 119875119883and |supp(120583)| stand for the

set of probability measures on 119883 and the cardinality of thesupport of 120583 respectively

It means that 120583 is atomic measure having at most 119899 stepsMore precise information about the relation between themeasure and the convex hull is presented in the followingtheorem In what follows ⟨ 119886 ⟩ means the scalar product of119886 and

Theorem B (see [22 Thm 149]) Let 119869 [120572 120573] rarr R119899 becontinuous Suppose that there exists a positive integer 119896 suchthat for each nonzero 119901 in R119899 the number of solutions of anyequation ⟨

997888997888rarr119869(119905) ⟩ = const 120572 le 119905 le 120573 is not greater than 119896

Abstract and Applied Analysis 3

Then for every 120583 isin 119875[120572120573]

such that 119869120583belongs to the boundary

of the convex hull of 119869([120572 120573]) the following statements aretrue

(1) If 119896 = 2119898 then

(a) |supp(120583)| le 119898 or(b) |supp(120583)| = 119898 + 1 and 120572 120573 sub supp(120583)

(2) If 119896 = 2119898 + 1 then

(a) |supp(120583)| le 119898 or(b) |supp(120583)| = 119898 + 1 and one of the points 120572 and 120573

belongs to supp(120583)

This theorem in slightly modified version was publishedin [23] as Lemma 2

Putting 119869(119905) = [1198801(119905) 1198802(119905) 1198803(119905)] 119905 isin [minus1 1] and =

[1199011 1199012 1199013] we can see that any equation of the form

11990111198801(119905) + 119901

21198802(119905) + 119901

31198803(119905) = const 119905 isin [minus1 1] (8)

is equivalent to 1198823(119905) = const where 119882

3(119905) is a polynomial

of degree 3 Hence (8) has at most 3 solutions According toTheorem B the boundary of the convex hull of 119869([minus1 1]) isdetermined by atomic measures 120583 for which support consistsof at most 2 points Moreover one of them has to be minus1 or 1We have proved the following

Lemma7 Theboundary ofΩ2(119879) consists of points (119886

2 1198863 1198864)

that correspond to the following functions

119891 (119911) = 120572119911

1 minus 2119911119905 + 1199112+ (1 minus 120572)

119911

(1 minus 119911)2

120572 isin [0 1] 119905 isin [minus1 1]

(9)

or

119891 (119911) = 120572119911

1 minus 2119911119905 + 1199112+ (1 minus 120572)

119911

(1 + 119911)2

120572 isin [0 1] 119905 isin [minus1 1]

(10)

Now we are ready to prove the following

Theorem 8 For 119879 one has

max 1198672(2) 119891 isin 119879 = 1 (11)

Proof By Lemma 7 it is enough to take functions given by(9) or (10) Consider the following

(I) Function (9) has the series expansion

119891 (119911) = 119911 + 2 (1 minus 120572 + 120572119905) 1199112

+ [3 (1 minus 120572) + (41199052minus 1) 120572] 119911

3

+ 4 [1 minus 120572 + (21199053minus 119905) 120572] 119911

4+ sdot sdot sdot

(12)

Hence1198672(2) = 119892

1(120572 119905) where

1198921(120572 119905) = 8 (1 minus 120572 + 120572119905) [1 minus 120572 + (2119905

3minus 119905) 120572]

minus (41199052120572 minus 4120572 + 3)

2

120572 isin [0 1] 119905 isin [minus1 1]

(13)

From

1205971198921

120597120572= 8 (1 minus 119905

2) (2 (2 minus 120572) 119905

2+ 1 minus 2120572)

1205971198921

120597119905= 16120572 (120572 minus 1) (4119905

2minus 3119905 + 3)

(14)

it follows that the critical points of 1198921are as follows (0 minus1)

(0 1) (1 minus1) (1 1) (1 minus1radic2) (1 1radic2) and (12 0)Among these points only (12 0) lies inside the set [0 1] times[minus1 1]

If 120572 = 0 or 120572 = 1 then functions (9) coincide with 119891119905

from Example 1 If 119905 = 1 then 119891(119911) = 119911(1 minus 119911)2 In each

case 1198672(2) = minus1 For 119905 = minus1 function (9) takes the form

119891(119911) = 120572(119911(1 + 119911)2) + (1 minus 120572)(119911(1 minus 119911)

2) Then 119867

2(2) =

8(1 minus 2120572)2minus 9 le minus1

If 120572 = 12 and 119905 = 0 we have1198672(2) = 1 It means that the

greatest value of1198672(2) for functions given by (9) is equal to 1

The extremal function is

119891 (119911) =1

2[

119911

1 + 1199112+

119911

(1 minus 119911)2]

= 119911 + 1199112+ 1199113+ 21199114+ 31199115+ sdot sdot sdot

(15)

(II) For functions (10)1198672(2) is equal to 119892

2(120572 119905) where

1198922(120572 119905) = 8 (minus1 + 120572 + 120572119905) [minus1 + 120572 + (2119905

3minus 119905) 120572]

minus (41199052120572 minus 4120572 + 3)

2

120572 isin [0 1] 119905 isin [minus1 1]

(16)

Moreover 1198922(120572 119905) = 119892

1(120572 minus119905) Taking into account the sym-

metry of the range of variability of 119905 we obtain the sameresult as above also for functions defined by (10)The extremalfunction is

119891 (119911) =1

2[

119911

1 + 1199112+

119911

(1 + 119911)2]

= 119911 minus 1199112+ 1199113minus 21199114+ 31199115+ sdot sdot sdot

(17)

4 Bounds of 1198672(3) in 119879

The proof of the following theorem is obvious

Theorem 9 If 119899 is odd then

max 1198672(119899) 119891 isin 119879 = 119899 (119899 + 2) (18)

Hence one has the following

4 Abstract and Applied Analysis

Corollary 10 For 119879 one has

max 1198672(3) 119891 isin 119879 = 15 (19)

In similar way as it was done for Lemma 7 one can provethe following

Lemma 11 The boundary of Ω3(119879) consists of points (119886

3

1198864 1198865) that correspond to the following functions

119891 (119911) = 120572119911

1 minus 21199111199051+ 1199112

+ (1 minus 120572)119911

1 minus 21199111199052+ 1199112

120572 isin [0 1] 1199051 1199052 isin [minus1 1]

(20)

or

119891 (119911) = 120572119911

(1 + 119911)2+ 120573

119911

(1 minus 119911)2

+ (1 minus 120572 minus 120573)119911

1 minus 2119911119905 + 1199112

120572 120573 isin [0 1] 120572 + 120573 le 1 119905 isin [minus1 1]

(21)

Theorem 12 For 119879 one has

min 1198672(3) 119891 isin 119879 = minus

4

3+8

9

radic6 = minus351 (22)

Proof By Lemma 11 it suffices to discuss functions given by(20) or (21) Consider the following

(I) For functions (20) we have

1198863= (41199051

2minus 1) 120572 + (4119905

2

2minus 1) (1 minus 120572)

1198864= (81199051

3minus 41199051) 120572 + (8119905

2

3minus 41199052) (1 minus 120572)

1198865= (16119905

1

4minus 121199051

2+ 1) 120572

+ (161199052

4minus 121199052

2+ 1) (1 minus 120572)

(23)

and hence applying the Turan identity1198672(3) = 119892

3(120572 1199051 1199052)

where

1198923(120572 1199051 1199052)

= minus1205722minus (1 minus 120572)

2

+ 2120572 (1 minus 120572) [8 (1199051minus 1199052)2

(1 minus 1199051

2) (1 minus 119905

2

2) minus 1]

120572 isin [0 1] 1199051 1199052 isin [minus1 1]

(24)

The expression in brackets is greater than or equal to minus1for all 119905

1 1199052isin [minus1 1] Hence

1198672(3) ge minus120572

2minus (1 minus 120572)

2minus 2120572 (1 minus 120572) = minus1 (25)

(II) If function 119891 is given by (21) then

1198863= 3 (120572 + 120573) + (4119905

2minus 1) (1 minus 120572 minus 120573)

1198864= 4 (120573 minus 120572) + (8119905

3minus 4119905) (1 minus 120572 minus 120573)

1198865= 5 (120572 + 120573) + (16119905

4minus 121199052+ 1) (1 minus 120572 minus 120573)

(26)

Using the Turan identity it follows that 1198672(3) = 119892

4(120572 120573 119905)

where

1198924(120572 120573 119905) = minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)

2

+ 64120572120573

+ 2 (1 minus 120572 minus 120573) 119902 (119905)

119902 (119905) = (120572 + 120573) (241199054minus 81199052minus 1)

+ (120572 minus 120573) (321199053minus 16119905)

(27)

under the assumptions 120572 120573 isin [0 1] 120572+120573 le 1 and 119905 isin [minus1 1]Let 120572 and 120573 be fixed Since

120597119902

120597119905= 8 (6119905

2minus 1) [119905 (120572 + 120573) + 120572 minus 120573] (28)

the critical points of 119902 are as follows minus1radic6 1radic6 and (120573 minus

120572)(120572 + 120573) It is easily seen that all these points are in [minus1 1]Therefore

min 119902 (119905) 119905 isin [minus1 1] = min119902 (minus1) 119902 ( minus1

radic6

)

119902 (1

radic6

) 119902 (1) 119902 (120573 minus 120572

120572 + 120573)

(29)

For 119905 = minus1 or 119905 = 1 the functions given by (21) have theform

119891 (119911) = 119911

(1 + 119911)2+ 120573

119911

(1 minus 119911)2 + 120573 = 1 (30)

One can show directly from formula (30) that

1198672(3) = minus1 + 64 (1 minus ) ge minus1 (31)

For 119905 = (120573 minus 120572)(120572 + 120573) there is

1198672(3) = minus1 +

64120572120573 [4 (120572 + 120573) 120572120573 + (120573 minus 120572)2

]

(120572 + 120573)3

(32)

hence

1198672(3) ge minus1 (33)

If 119905 = minus1radic6 or 119905 = 1radic6 then1198672(3) is equal to

1198672(3)

= minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)2

+ 64120572120573

+ (1 minus 120572 minus 120573) [minus10

3(120572 + 120573) minus

64

3radic6

(120572 minus 120573)]

(34)

or

1198672(3)

= minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)2

+ 64120572120573

+ (1 minus 120572 minus 120573) [minus10

3(120572 + 120573) +

64

3radic6

(120572 minus 120573)]

(35)

Abstract and Applied Analysis 5

respectively Without loss of generality we can assume that120572 ge 120573 Then while looking for the minimum value of119867

2(3)

we can restrict the research to the first stated above case (sinceexpression (35) is not less than expression (34))

Transforming (35) we obtain

1198672(3) = minus1 + 64120572120573 minus

4

3(120572 + 120573) (1 minus 120572 minus 120573)

+64

3radic6

(120573 minus 120572) (1 minus 120572 minus 120573)

(36)

Taking the smallest possible 120573 (ie 120573 = 0) the second andthe forth component of this expression will not increase Thevalue of the third component does not depend only on 120573 infact it depends on 120572 + 120573 For this reason we can take 120573 = 0Combining these facts it yields that

1198672(3) ge minus1 minus

4

3120572 (1 minus 120572) minus

64

3radic6

120572 (1 minus 120572) (37)

The smallest value of the right hand side of this inequality isachieved for 120572 = 12 In this case

1198672(3) ge minus1 minus

1

3minus

16

3radic6

= minus4

3minus8

9

radic6 = minus351 (38)

Combining two parts of the proof we obtain the conclu-sion of the theorem Furthermore the above shows that theextremal functions are

119891 (119911) =1

2[

119911

(1 + 119911)2+

119911

1 minus 21199111199050+ 1199112

]

119891 (119911) =1

2[

119911

(1 minus 119911)2+

119911

1 + 21199111199050+ 1199112

]

(39)

where 1199050= 1radic6

5 Bounds of 1198672(119899) 119899 ge 4 in 119879

It is easily seen that 1198672(119899) le 119899(119899 + 2) for any typically real

function ByTheorem 9 this estimate is sharp providing that119899 is an odd integer At the beginning of this section we willprove the following

Theorem 13 For 119879 one has

min 119886119899119886119899+2

119891 isin 119879 = minus1 (40)

Proof Thecoefficients of the series expansion of function119891 isin

119879 can be written as follows

119886119899= int

120587

0

sin (119899120579)sin 120579

119889] (120579) ] isin 119875[0120587]

(41)

Hence

119886119899119886119899+2

= int

120587

0

sin ((119899 + 1) 120579 minus 120579)

sin 120579119889] (120579)

sdot int

120587

0

sin ((119899 + 1) 120579 + 120579)

sin 120579119889] (120579)

= (int

120587

0

sin (119899 + 1) 120579

sin 120579cos 120579 119889] (120579))

2

minus (int

120587

0

cos (119899 + 1) 120579 119889] (120579))2

(42)

Since

int

120587

0

cos (119899 + 1) 120579 119889] (120579) le int

120587

0

119889] (120579) = 1 (43)

we obtain

119886119899119886119899+2

ge minus1 (44)

In order to prove that the estimate is sharp let us take themeasure ] for which support satisfies condition (119899 + 1)120579 =

120587 This measure corresponds to the function 119891(119911) = 119911(1 minus

2119911cos(120587(119899 + 1)) + 1199112)

Observe that 119886119899119886119899+2

= minus1 holds not only for the measurestated above Namely the value minus1 in (42) is taken also if (119899 +1)120579 = 119896120587 where 119896 is any positive integer less than or equal to119899 From this we conclude that the support of the measure has119899 points 120579

119896= 119896120587(119899 + 1) with weights 120572

119896 119896 = 1 2 119899 such

that sum119899119896=1

120572119896= 1

The weights satisfy

(

119899

sum

119896=1

120572119896(minus1)119896)

2

= 1 (45)

Indeed if the support of ] consists of 119899 points then 119891 takesthe form

119891 (119911) =

119899

sum

119896=1

120572119896

119911

1 minus 2119911 cos 120579119896+ 1199112

(46)

Using trigonometric identities we obtain

119886119899=

119899

sum

119896=1

120572119896(minus1)119896+1

119886119899+2

=

119899

sum

119896=1

120572119896(minus1)119896

(47)

which results in (45)Connecting (45) andsum119899

119896=1120572119896= 1we conclude that119891 is of

the form

119891 (119911) =

119899

sum

119896=1119896 is odd120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112(48)

6 Abstract and Applied Analysis

Table 1 The bounds of the Hankel determinants for functions defined by (51)

Bounds of1198672(119899) Equality in the lower bound for Equality in the upper bound for

minus9 le 1198672(2) le 1 119905 = 1 119905 = 0

minus351 le 1198672(3) le 15 119905 = 0 40 119905 = 1

minus25 le 1198672(4) le 446 119905 = 1 119905 = 061

minus784 le 1198672(5) le 35 119905 = 0 72 119905 = 1

minus49 le 1198672(6) le 967 119905 = 1 119905 = 079

or

119891 (119911) =

119899

sum

119896=1119896 is even120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112 (49)

Itmeans that for even 119899 the support of ] consists of 1198992 pointsand for even 119899 the number of points of the support of ] is equalto (119899 + 1)2 or (119899 minus 1)2

Taking into account |119886119899+1

| le 119899 + 1 and Theorem 13 weobtain the following

Theorem 14 For 119879 one has

1198672(119899) ge minus (119899 + 1)

2minus 1 (50)

Unfortunately this bound is not sharp However thefollowing can be conjectured

Conjecture 15 For any positive integer 119899 the following esti-mate 119867

2(119899) ge minus(119899 + 1)

2 holds Moreover this bound is sharpfor even 119899

This conjecture is supported by the facts that in thetheorems concerning119867

2(2) and119867

2(3) the extremal functions

are of the form

119891 (119911) =1

2[

119911

(1 + 119911)2+

119911

1 minus 2119911119905 + 1199112]

119891 (119911) =1

2[

119911

(1 minus 119911)2+

119911

1 minus 2119911119905 + 1199112]

(51)

for appropriately taken 119905 isin [minus1 1] The exact bounds ofthe Hankel determinants for these functions are collected inTable 1 They were obtained numerically

6 Remarks Concerning 1198672(119899) in 119879

(2)

In class 119879 we discuss subclass 119879(2) consisting of the functionswhich are odd The definition of this class is

119879(2)

= 119891 isin 119879 119891 (minus119911) = minus119891 (119911) 119911 isin Δ (52)

For 119891 isin 119879(2) the representation formula similar to (2) is

valid Namely

119891 (119911) = int

1

minus1

119911 (1 + 1199112)

(1 + 1199112)2

minus 411991121199052119889] (119905) ] isin 119875

[minus11] (53)

Function 119891 has the Taylor series expansion

119891 (119911) = sum

119899 is odd119886119899119911119899 119886119899= int

1

minus1

119880119899minus1

(119905) 119889] (119905) (54)

The following inequalities are obvious

minus (119899 + 1)2le 1198672(119899) le 0 for even 119899

1198672(119899) le (119899 + 1)

2minus 1 for odd 119899

(55)

equalities hold for 119891(119911) = 119911(1 + 1199112)(1 minus 119911

2)2

For a given class 119860 sub A let us denote by Ψ119899(119860) 119899 ge 1

the set (119886119899 119886119899+2

) 119891 isin 119860 From (53) it follows that Ψ119899(119879) is

the closed convex hull of the curve

120582 [minus1 1] ni 119905 997888rarr (119880119899minus1

(119905) 119880119899+1

(119905)) (56)

FromTheorem 13 and from the equivalence

(119886119899 119886119899+2

) isin Ψ119899(119879) lArrrArr (119886

119899 119886119899+2

) isin Ψ119899(119879(2)) (57)

we get

min 119886119899119886119899+2

119891 isin 119879(2) = minus1 (58)

Hence for odd 119899 we know that

min 1198672(119899) 119891 isin 119879

(2) ge minus1 (59)

The equality holds for functions (48) or (49) providing that120572119896

= 120572119899+1minus119896

Then connecting the components of theseformulae in pairs we obtain

120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112

+ 120572119899+1minus119896

119911

1 minus 2119911 cos ((119899 + 1 minus 119896) 120587 (119899 + 1)) + 1199112

= 2120572119896

119911 (1 + 1199112)

(1 + 1199112)2

minus 41199112cos2 (119896120587 (119899 + 1))

(60)

With help of the argument given in the proof of Theorem 13we eventually obtain the odd functions for which 119886

119899119886119899+2

=

minus1

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 7

References

[1] C Pommerenke ldquoOn the coefficients and Hankel determinantsof univalent functionsrdquo Journal of the London MathematicalSociety vol 41 pp 111ndash122 1966

[2] C Pommerenke ldquoOn the Hankel determinants of univalentfunctionsrdquoMathematika vol 14 pp 108ndash112 1967

[3] A Janteng S A Halim and M Darus ldquoCoefficient inequalityfor a function whose derivative has a positive real partrdquo Journalof Inequalities in Pure and Applied Mathematics vol 7 no 2article 50 2006

[4] A Janteng S A Halim andMDarus ldquoHankel determinant forstarlike and convex functionsrdquo International Journal of Mathe-matical Analysis vol 1 no 13 pp 619ndash625 2007

[5] S K Lee V Ravichandran and S Supramaniam ldquoBounds forthe second Hankel determinant of certain univalent functionsrdquoJournal of Inequalities and Applications vol 2013 article 2812013

[6] D Vamshee Krishna andT Ramreddy ldquoHankel determinant forstarlike and convex functions of order alphardquo Tbilisi Mathemat-ical Journal vol 5 no 1 pp 65ndash76 2012

[7] C Selvaraj and T R K Kumar ldquoSecond Hankel determinantfor certain classes of analytic functionsrdquo International Journalof Applied Mathematics vol 28 no 1 pp 37ndash50 2015

[8] W Ma and D Minda ldquoA unified treatment of some specialclasses of univalent functionsrdquo in Proceedings of the Conferenceon Complex Analysis Conference Proceedings and LectureNotes in Analysis Vol 1 pp 157ndash169 International PressTianjin China 1992

[9] J Sokoł and J Stankiewicz ldquoRadius of convexity of some sub-classes of strongly starlike functionsrdquoZeszytyNaukowe Politech-niki Rzeszowskiej Matematyka vol 19 pp 101ndash105 1996

[10] M-S Liu J-F Xu and M Yang ldquoUpper bound of second Han-kel determinant for certain subclasses of analytic functionsrdquoAbstract and Applied Analysis vol 2014 Article ID 603180 10pages 2014

[11] A K Mishra and P Gochhayat ldquoSecond Hankel determinantfor a class of analytic functions defined by fractional deriva-tiverdquo International Journal of Mathematics and MathematicalSciences vol 2008 Article ID 153280 10 pages 2008

[12] J W Noonan and D K Thomas ldquoOn the Hankel determinantsof areally mean 119901-valent functionsrdquo Proceedings of the LondonMathematical Society vol 25 pp 503ndash524 1972

[13] G Singh ldquoHankel determinant for a new subclass of analyticfunctionsrdquo Scientia Magna vol 8 no 4 pp 61ndash65 2012

[14] G Singh ldquoHankel determinant for analytic functions withrespect to other pointsrdquo Engineering Mathematics Letters vol2 no 2 pp 115ndash123 2013

[15] T Hayami and S Owa ldquoGeneralized hankel determinant forcertain classesrdquo International Journal of Mathematical Analysisvol 4 no 52 pp 2573ndash2585 2010

[16] K O Babalola ldquoOnH3(1) Hankel determinants for some classes

of univalent functionsrdquo in Inequality Theory and Applicationsvol 6 17 Nova Science Publishers New York NY USA 2010

[17] G Shanmugam B Adolf Stephen and K O Babalola ldquoThirdHankel determinant for 120572-starlike functionsrdquo Gulf Journal ofMathematics vol 2 no 2 pp 107ndash113 2014

[18] P T Mocanu ldquoUne proprit de convexit gnralise dans la thoriede la representation conformerdquoMathematica (Cluj) vol 11 no34 pp 127ndash133 1969

[19] M S Robertson ldquoOn the coefficients of a typically-real func-tionrdquo Bulletin of the American Mathematical Society vol 41 no8 pp 565ndash572 1935

[20] D J Hallenbeck and T H MacGregor Linear Problems andConvexity Techniques in Geometric Function Theory Mono-graphs and Studies in Mathematics 22 Pitman AdavancedPublishing Program Boston Mass USA 1984

[21] W Ma ldquoGeneralized Zalcman conjecture for starlike and typ-ically real functionsrdquo Journal of Mathematical Analysis andApplications vol 234 no 1 pp 328ndash339 1999

[22] W Szapiel Extremal problems for convex sets Applications toholomorphic functions [Dissertation XXXVII] UMCS PressLublin Poland reviewer J Krzyz 1986 (Polish)

[23] W Szapiel ldquoExtreme points of convex sets (II) Inuence of nor-malization on integral representationrdquo Bulletin de lrsquoAcademiePolonaise des Sciences Serie des SciencesMathematiques vol 29pp 535ndash544 1981

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 3: Research Article Second Hankel Determinants for the Class ...downloads.hindawi.com/journals/aaa/2016/3792367.pdf · Research Article Second Hankel Determinants for the Class of Typically

Abstract and Applied Analysis 3

Then for every 120583 isin 119875[120572120573]

such that 119869120583belongs to the boundary

of the convex hull of 119869([120572 120573]) the following statements aretrue

(1) If 119896 = 2119898 then

(a) |supp(120583)| le 119898 or(b) |supp(120583)| = 119898 + 1 and 120572 120573 sub supp(120583)

(2) If 119896 = 2119898 + 1 then

(a) |supp(120583)| le 119898 or(b) |supp(120583)| = 119898 + 1 and one of the points 120572 and 120573

belongs to supp(120583)

This theorem in slightly modified version was publishedin [23] as Lemma 2

Putting 119869(119905) = [1198801(119905) 1198802(119905) 1198803(119905)] 119905 isin [minus1 1] and =

[1199011 1199012 1199013] we can see that any equation of the form

11990111198801(119905) + 119901

21198802(119905) + 119901

31198803(119905) = const 119905 isin [minus1 1] (8)

is equivalent to 1198823(119905) = const where 119882

3(119905) is a polynomial

of degree 3 Hence (8) has at most 3 solutions According toTheorem B the boundary of the convex hull of 119869([minus1 1]) isdetermined by atomic measures 120583 for which support consistsof at most 2 points Moreover one of them has to be minus1 or 1We have proved the following

Lemma7 Theboundary ofΩ2(119879) consists of points (119886

2 1198863 1198864)

that correspond to the following functions

119891 (119911) = 120572119911

1 minus 2119911119905 + 1199112+ (1 minus 120572)

119911

(1 minus 119911)2

120572 isin [0 1] 119905 isin [minus1 1]

(9)

or

119891 (119911) = 120572119911

1 minus 2119911119905 + 1199112+ (1 minus 120572)

119911

(1 + 119911)2

120572 isin [0 1] 119905 isin [minus1 1]

(10)

Now we are ready to prove the following

Theorem 8 For 119879 one has

max 1198672(2) 119891 isin 119879 = 1 (11)

Proof By Lemma 7 it is enough to take functions given by(9) or (10) Consider the following

(I) Function (9) has the series expansion

119891 (119911) = 119911 + 2 (1 minus 120572 + 120572119905) 1199112

+ [3 (1 minus 120572) + (41199052minus 1) 120572] 119911

3

+ 4 [1 minus 120572 + (21199053minus 119905) 120572] 119911

4+ sdot sdot sdot

(12)

Hence1198672(2) = 119892

1(120572 119905) where

1198921(120572 119905) = 8 (1 minus 120572 + 120572119905) [1 minus 120572 + (2119905

3minus 119905) 120572]

minus (41199052120572 minus 4120572 + 3)

2

120572 isin [0 1] 119905 isin [minus1 1]

(13)

From

1205971198921

120597120572= 8 (1 minus 119905

2) (2 (2 minus 120572) 119905

2+ 1 minus 2120572)

1205971198921

120597119905= 16120572 (120572 minus 1) (4119905

2minus 3119905 + 3)

(14)

it follows that the critical points of 1198921are as follows (0 minus1)

(0 1) (1 minus1) (1 1) (1 minus1radic2) (1 1radic2) and (12 0)Among these points only (12 0) lies inside the set [0 1] times[minus1 1]

If 120572 = 0 or 120572 = 1 then functions (9) coincide with 119891119905

from Example 1 If 119905 = 1 then 119891(119911) = 119911(1 minus 119911)2 In each

case 1198672(2) = minus1 For 119905 = minus1 function (9) takes the form

119891(119911) = 120572(119911(1 + 119911)2) + (1 minus 120572)(119911(1 minus 119911)

2) Then 119867

2(2) =

8(1 minus 2120572)2minus 9 le minus1

If 120572 = 12 and 119905 = 0 we have1198672(2) = 1 It means that the

greatest value of1198672(2) for functions given by (9) is equal to 1

The extremal function is

119891 (119911) =1

2[

119911

1 + 1199112+

119911

(1 minus 119911)2]

= 119911 + 1199112+ 1199113+ 21199114+ 31199115+ sdot sdot sdot

(15)

(II) For functions (10)1198672(2) is equal to 119892

2(120572 119905) where

1198922(120572 119905) = 8 (minus1 + 120572 + 120572119905) [minus1 + 120572 + (2119905

3minus 119905) 120572]

minus (41199052120572 minus 4120572 + 3)

2

120572 isin [0 1] 119905 isin [minus1 1]

(16)

Moreover 1198922(120572 119905) = 119892

1(120572 minus119905) Taking into account the sym-

metry of the range of variability of 119905 we obtain the sameresult as above also for functions defined by (10)The extremalfunction is

119891 (119911) =1

2[

119911

1 + 1199112+

119911

(1 + 119911)2]

= 119911 minus 1199112+ 1199113minus 21199114+ 31199115+ sdot sdot sdot

(17)

4 Bounds of 1198672(3) in 119879

The proof of the following theorem is obvious

Theorem 9 If 119899 is odd then

max 1198672(119899) 119891 isin 119879 = 119899 (119899 + 2) (18)

Hence one has the following

4 Abstract and Applied Analysis

Corollary 10 For 119879 one has

max 1198672(3) 119891 isin 119879 = 15 (19)

In similar way as it was done for Lemma 7 one can provethe following

Lemma 11 The boundary of Ω3(119879) consists of points (119886

3

1198864 1198865) that correspond to the following functions

119891 (119911) = 120572119911

1 minus 21199111199051+ 1199112

+ (1 minus 120572)119911

1 minus 21199111199052+ 1199112

120572 isin [0 1] 1199051 1199052 isin [minus1 1]

(20)

or

119891 (119911) = 120572119911

(1 + 119911)2+ 120573

119911

(1 minus 119911)2

+ (1 minus 120572 minus 120573)119911

1 minus 2119911119905 + 1199112

120572 120573 isin [0 1] 120572 + 120573 le 1 119905 isin [minus1 1]

(21)

Theorem 12 For 119879 one has

min 1198672(3) 119891 isin 119879 = minus

4

3+8

9

radic6 = minus351 (22)

Proof By Lemma 11 it suffices to discuss functions given by(20) or (21) Consider the following

(I) For functions (20) we have

1198863= (41199051

2minus 1) 120572 + (4119905

2

2minus 1) (1 minus 120572)

1198864= (81199051

3minus 41199051) 120572 + (8119905

2

3minus 41199052) (1 minus 120572)

1198865= (16119905

1

4minus 121199051

2+ 1) 120572

+ (161199052

4minus 121199052

2+ 1) (1 minus 120572)

(23)

and hence applying the Turan identity1198672(3) = 119892

3(120572 1199051 1199052)

where

1198923(120572 1199051 1199052)

= minus1205722minus (1 minus 120572)

2

+ 2120572 (1 minus 120572) [8 (1199051minus 1199052)2

(1 minus 1199051

2) (1 minus 119905

2

2) minus 1]

120572 isin [0 1] 1199051 1199052 isin [minus1 1]

(24)

The expression in brackets is greater than or equal to minus1for all 119905

1 1199052isin [minus1 1] Hence

1198672(3) ge minus120572

2minus (1 minus 120572)

2minus 2120572 (1 minus 120572) = minus1 (25)

(II) If function 119891 is given by (21) then

1198863= 3 (120572 + 120573) + (4119905

2minus 1) (1 minus 120572 minus 120573)

1198864= 4 (120573 minus 120572) + (8119905

3minus 4119905) (1 minus 120572 minus 120573)

1198865= 5 (120572 + 120573) + (16119905

4minus 121199052+ 1) (1 minus 120572 minus 120573)

(26)

Using the Turan identity it follows that 1198672(3) = 119892

4(120572 120573 119905)

where

1198924(120572 120573 119905) = minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)

2

+ 64120572120573

+ 2 (1 minus 120572 minus 120573) 119902 (119905)

119902 (119905) = (120572 + 120573) (241199054minus 81199052minus 1)

+ (120572 minus 120573) (321199053minus 16119905)

(27)

under the assumptions 120572 120573 isin [0 1] 120572+120573 le 1 and 119905 isin [minus1 1]Let 120572 and 120573 be fixed Since

120597119902

120597119905= 8 (6119905

2minus 1) [119905 (120572 + 120573) + 120572 minus 120573] (28)

the critical points of 119902 are as follows minus1radic6 1radic6 and (120573 minus

120572)(120572 + 120573) It is easily seen that all these points are in [minus1 1]Therefore

min 119902 (119905) 119905 isin [minus1 1] = min119902 (minus1) 119902 ( minus1

radic6

)

119902 (1

radic6

) 119902 (1) 119902 (120573 minus 120572

120572 + 120573)

(29)

For 119905 = minus1 or 119905 = 1 the functions given by (21) have theform

119891 (119911) = 119911

(1 + 119911)2+ 120573

119911

(1 minus 119911)2 + 120573 = 1 (30)

One can show directly from formula (30) that

1198672(3) = minus1 + 64 (1 minus ) ge minus1 (31)

For 119905 = (120573 minus 120572)(120572 + 120573) there is

1198672(3) = minus1 +

64120572120573 [4 (120572 + 120573) 120572120573 + (120573 minus 120572)2

]

(120572 + 120573)3

(32)

hence

1198672(3) ge minus1 (33)

If 119905 = minus1radic6 or 119905 = 1radic6 then1198672(3) is equal to

1198672(3)

= minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)2

+ 64120572120573

+ (1 minus 120572 minus 120573) [minus10

3(120572 + 120573) minus

64

3radic6

(120572 minus 120573)]

(34)

or

1198672(3)

= minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)2

+ 64120572120573

+ (1 minus 120572 minus 120573) [minus10

3(120572 + 120573) +

64

3radic6

(120572 minus 120573)]

(35)

Abstract and Applied Analysis 5

respectively Without loss of generality we can assume that120572 ge 120573 Then while looking for the minimum value of119867

2(3)

we can restrict the research to the first stated above case (sinceexpression (35) is not less than expression (34))

Transforming (35) we obtain

1198672(3) = minus1 + 64120572120573 minus

4

3(120572 + 120573) (1 minus 120572 minus 120573)

+64

3radic6

(120573 minus 120572) (1 minus 120572 minus 120573)

(36)

Taking the smallest possible 120573 (ie 120573 = 0) the second andthe forth component of this expression will not increase Thevalue of the third component does not depend only on 120573 infact it depends on 120572 + 120573 For this reason we can take 120573 = 0Combining these facts it yields that

1198672(3) ge minus1 minus

4

3120572 (1 minus 120572) minus

64

3radic6

120572 (1 minus 120572) (37)

The smallest value of the right hand side of this inequality isachieved for 120572 = 12 In this case

1198672(3) ge minus1 minus

1

3minus

16

3radic6

= minus4

3minus8

9

radic6 = minus351 (38)

Combining two parts of the proof we obtain the conclu-sion of the theorem Furthermore the above shows that theextremal functions are

119891 (119911) =1

2[

119911

(1 + 119911)2+

119911

1 minus 21199111199050+ 1199112

]

119891 (119911) =1

2[

119911

(1 minus 119911)2+

119911

1 + 21199111199050+ 1199112

]

(39)

where 1199050= 1radic6

5 Bounds of 1198672(119899) 119899 ge 4 in 119879

It is easily seen that 1198672(119899) le 119899(119899 + 2) for any typically real

function ByTheorem 9 this estimate is sharp providing that119899 is an odd integer At the beginning of this section we willprove the following

Theorem 13 For 119879 one has

min 119886119899119886119899+2

119891 isin 119879 = minus1 (40)

Proof Thecoefficients of the series expansion of function119891 isin

119879 can be written as follows

119886119899= int

120587

0

sin (119899120579)sin 120579

119889] (120579) ] isin 119875[0120587]

(41)

Hence

119886119899119886119899+2

= int

120587

0

sin ((119899 + 1) 120579 minus 120579)

sin 120579119889] (120579)

sdot int

120587

0

sin ((119899 + 1) 120579 + 120579)

sin 120579119889] (120579)

= (int

120587

0

sin (119899 + 1) 120579

sin 120579cos 120579 119889] (120579))

2

minus (int

120587

0

cos (119899 + 1) 120579 119889] (120579))2

(42)

Since

int

120587

0

cos (119899 + 1) 120579 119889] (120579) le int

120587

0

119889] (120579) = 1 (43)

we obtain

119886119899119886119899+2

ge minus1 (44)

In order to prove that the estimate is sharp let us take themeasure ] for which support satisfies condition (119899 + 1)120579 =

120587 This measure corresponds to the function 119891(119911) = 119911(1 minus

2119911cos(120587(119899 + 1)) + 1199112)

Observe that 119886119899119886119899+2

= minus1 holds not only for the measurestated above Namely the value minus1 in (42) is taken also if (119899 +1)120579 = 119896120587 where 119896 is any positive integer less than or equal to119899 From this we conclude that the support of the measure has119899 points 120579

119896= 119896120587(119899 + 1) with weights 120572

119896 119896 = 1 2 119899 such

that sum119899119896=1

120572119896= 1

The weights satisfy

(

119899

sum

119896=1

120572119896(minus1)119896)

2

= 1 (45)

Indeed if the support of ] consists of 119899 points then 119891 takesthe form

119891 (119911) =

119899

sum

119896=1

120572119896

119911

1 minus 2119911 cos 120579119896+ 1199112

(46)

Using trigonometric identities we obtain

119886119899=

119899

sum

119896=1

120572119896(minus1)119896+1

119886119899+2

=

119899

sum

119896=1

120572119896(minus1)119896

(47)

which results in (45)Connecting (45) andsum119899

119896=1120572119896= 1we conclude that119891 is of

the form

119891 (119911) =

119899

sum

119896=1119896 is odd120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112(48)

6 Abstract and Applied Analysis

Table 1 The bounds of the Hankel determinants for functions defined by (51)

Bounds of1198672(119899) Equality in the lower bound for Equality in the upper bound for

minus9 le 1198672(2) le 1 119905 = 1 119905 = 0

minus351 le 1198672(3) le 15 119905 = 0 40 119905 = 1

minus25 le 1198672(4) le 446 119905 = 1 119905 = 061

minus784 le 1198672(5) le 35 119905 = 0 72 119905 = 1

minus49 le 1198672(6) le 967 119905 = 1 119905 = 079

or

119891 (119911) =

119899

sum

119896=1119896 is even120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112 (49)

Itmeans that for even 119899 the support of ] consists of 1198992 pointsand for even 119899 the number of points of the support of ] is equalto (119899 + 1)2 or (119899 minus 1)2

Taking into account |119886119899+1

| le 119899 + 1 and Theorem 13 weobtain the following

Theorem 14 For 119879 one has

1198672(119899) ge minus (119899 + 1)

2minus 1 (50)

Unfortunately this bound is not sharp However thefollowing can be conjectured

Conjecture 15 For any positive integer 119899 the following esti-mate 119867

2(119899) ge minus(119899 + 1)

2 holds Moreover this bound is sharpfor even 119899

This conjecture is supported by the facts that in thetheorems concerning119867

2(2) and119867

2(3) the extremal functions

are of the form

119891 (119911) =1

2[

119911

(1 + 119911)2+

119911

1 minus 2119911119905 + 1199112]

119891 (119911) =1

2[

119911

(1 minus 119911)2+

119911

1 minus 2119911119905 + 1199112]

(51)

for appropriately taken 119905 isin [minus1 1] The exact bounds ofthe Hankel determinants for these functions are collected inTable 1 They were obtained numerically

6 Remarks Concerning 1198672(119899) in 119879

(2)

In class 119879 we discuss subclass 119879(2) consisting of the functionswhich are odd The definition of this class is

119879(2)

= 119891 isin 119879 119891 (minus119911) = minus119891 (119911) 119911 isin Δ (52)

For 119891 isin 119879(2) the representation formula similar to (2) is

valid Namely

119891 (119911) = int

1

minus1

119911 (1 + 1199112)

(1 + 1199112)2

minus 411991121199052119889] (119905) ] isin 119875

[minus11] (53)

Function 119891 has the Taylor series expansion

119891 (119911) = sum

119899 is odd119886119899119911119899 119886119899= int

1

minus1

119880119899minus1

(119905) 119889] (119905) (54)

The following inequalities are obvious

minus (119899 + 1)2le 1198672(119899) le 0 for even 119899

1198672(119899) le (119899 + 1)

2minus 1 for odd 119899

(55)

equalities hold for 119891(119911) = 119911(1 + 1199112)(1 minus 119911

2)2

For a given class 119860 sub A let us denote by Ψ119899(119860) 119899 ge 1

the set (119886119899 119886119899+2

) 119891 isin 119860 From (53) it follows that Ψ119899(119879) is

the closed convex hull of the curve

120582 [minus1 1] ni 119905 997888rarr (119880119899minus1

(119905) 119880119899+1

(119905)) (56)

FromTheorem 13 and from the equivalence

(119886119899 119886119899+2

) isin Ψ119899(119879) lArrrArr (119886

119899 119886119899+2

) isin Ψ119899(119879(2)) (57)

we get

min 119886119899119886119899+2

119891 isin 119879(2) = minus1 (58)

Hence for odd 119899 we know that

min 1198672(119899) 119891 isin 119879

(2) ge minus1 (59)

The equality holds for functions (48) or (49) providing that120572119896

= 120572119899+1minus119896

Then connecting the components of theseformulae in pairs we obtain

120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112

+ 120572119899+1minus119896

119911

1 minus 2119911 cos ((119899 + 1 minus 119896) 120587 (119899 + 1)) + 1199112

= 2120572119896

119911 (1 + 1199112)

(1 + 1199112)2

minus 41199112cos2 (119896120587 (119899 + 1))

(60)

With help of the argument given in the proof of Theorem 13we eventually obtain the odd functions for which 119886

119899119886119899+2

=

minus1

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 7

References

[1] C Pommerenke ldquoOn the coefficients and Hankel determinantsof univalent functionsrdquo Journal of the London MathematicalSociety vol 41 pp 111ndash122 1966

[2] C Pommerenke ldquoOn the Hankel determinants of univalentfunctionsrdquoMathematika vol 14 pp 108ndash112 1967

[3] A Janteng S A Halim and M Darus ldquoCoefficient inequalityfor a function whose derivative has a positive real partrdquo Journalof Inequalities in Pure and Applied Mathematics vol 7 no 2article 50 2006

[4] A Janteng S A Halim andMDarus ldquoHankel determinant forstarlike and convex functionsrdquo International Journal of Mathe-matical Analysis vol 1 no 13 pp 619ndash625 2007

[5] S K Lee V Ravichandran and S Supramaniam ldquoBounds forthe second Hankel determinant of certain univalent functionsrdquoJournal of Inequalities and Applications vol 2013 article 2812013

[6] D Vamshee Krishna andT Ramreddy ldquoHankel determinant forstarlike and convex functions of order alphardquo Tbilisi Mathemat-ical Journal vol 5 no 1 pp 65ndash76 2012

[7] C Selvaraj and T R K Kumar ldquoSecond Hankel determinantfor certain classes of analytic functionsrdquo International Journalof Applied Mathematics vol 28 no 1 pp 37ndash50 2015

[8] W Ma and D Minda ldquoA unified treatment of some specialclasses of univalent functionsrdquo in Proceedings of the Conferenceon Complex Analysis Conference Proceedings and LectureNotes in Analysis Vol 1 pp 157ndash169 International PressTianjin China 1992

[9] J Sokoł and J Stankiewicz ldquoRadius of convexity of some sub-classes of strongly starlike functionsrdquoZeszytyNaukowe Politech-niki Rzeszowskiej Matematyka vol 19 pp 101ndash105 1996

[10] M-S Liu J-F Xu and M Yang ldquoUpper bound of second Han-kel determinant for certain subclasses of analytic functionsrdquoAbstract and Applied Analysis vol 2014 Article ID 603180 10pages 2014

[11] A K Mishra and P Gochhayat ldquoSecond Hankel determinantfor a class of analytic functions defined by fractional deriva-tiverdquo International Journal of Mathematics and MathematicalSciences vol 2008 Article ID 153280 10 pages 2008

[12] J W Noonan and D K Thomas ldquoOn the Hankel determinantsof areally mean 119901-valent functionsrdquo Proceedings of the LondonMathematical Society vol 25 pp 503ndash524 1972

[13] G Singh ldquoHankel determinant for a new subclass of analyticfunctionsrdquo Scientia Magna vol 8 no 4 pp 61ndash65 2012

[14] G Singh ldquoHankel determinant for analytic functions withrespect to other pointsrdquo Engineering Mathematics Letters vol2 no 2 pp 115ndash123 2013

[15] T Hayami and S Owa ldquoGeneralized hankel determinant forcertain classesrdquo International Journal of Mathematical Analysisvol 4 no 52 pp 2573ndash2585 2010

[16] K O Babalola ldquoOnH3(1) Hankel determinants for some classes

of univalent functionsrdquo in Inequality Theory and Applicationsvol 6 17 Nova Science Publishers New York NY USA 2010

[17] G Shanmugam B Adolf Stephen and K O Babalola ldquoThirdHankel determinant for 120572-starlike functionsrdquo Gulf Journal ofMathematics vol 2 no 2 pp 107ndash113 2014

[18] P T Mocanu ldquoUne proprit de convexit gnralise dans la thoriede la representation conformerdquoMathematica (Cluj) vol 11 no34 pp 127ndash133 1969

[19] M S Robertson ldquoOn the coefficients of a typically-real func-tionrdquo Bulletin of the American Mathematical Society vol 41 no8 pp 565ndash572 1935

[20] D J Hallenbeck and T H MacGregor Linear Problems andConvexity Techniques in Geometric Function Theory Mono-graphs and Studies in Mathematics 22 Pitman AdavancedPublishing Program Boston Mass USA 1984

[21] W Ma ldquoGeneralized Zalcman conjecture for starlike and typ-ically real functionsrdquo Journal of Mathematical Analysis andApplications vol 234 no 1 pp 328ndash339 1999

[22] W Szapiel Extremal problems for convex sets Applications toholomorphic functions [Dissertation XXXVII] UMCS PressLublin Poland reviewer J Krzyz 1986 (Polish)

[23] W Szapiel ldquoExtreme points of convex sets (II) Inuence of nor-malization on integral representationrdquo Bulletin de lrsquoAcademiePolonaise des Sciences Serie des SciencesMathematiques vol 29pp 535ndash544 1981

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 4: Research Article Second Hankel Determinants for the Class ...downloads.hindawi.com/journals/aaa/2016/3792367.pdf · Research Article Second Hankel Determinants for the Class of Typically

4 Abstract and Applied Analysis

Corollary 10 For 119879 one has

max 1198672(3) 119891 isin 119879 = 15 (19)

In similar way as it was done for Lemma 7 one can provethe following

Lemma 11 The boundary of Ω3(119879) consists of points (119886

3

1198864 1198865) that correspond to the following functions

119891 (119911) = 120572119911

1 minus 21199111199051+ 1199112

+ (1 minus 120572)119911

1 minus 21199111199052+ 1199112

120572 isin [0 1] 1199051 1199052 isin [minus1 1]

(20)

or

119891 (119911) = 120572119911

(1 + 119911)2+ 120573

119911

(1 minus 119911)2

+ (1 minus 120572 minus 120573)119911

1 minus 2119911119905 + 1199112

120572 120573 isin [0 1] 120572 + 120573 le 1 119905 isin [minus1 1]

(21)

Theorem 12 For 119879 one has

min 1198672(3) 119891 isin 119879 = minus

4

3+8

9

radic6 = minus351 (22)

Proof By Lemma 11 it suffices to discuss functions given by(20) or (21) Consider the following

(I) For functions (20) we have

1198863= (41199051

2minus 1) 120572 + (4119905

2

2minus 1) (1 minus 120572)

1198864= (81199051

3minus 41199051) 120572 + (8119905

2

3minus 41199052) (1 minus 120572)

1198865= (16119905

1

4minus 121199051

2+ 1) 120572

+ (161199052

4minus 121199052

2+ 1) (1 minus 120572)

(23)

and hence applying the Turan identity1198672(3) = 119892

3(120572 1199051 1199052)

where

1198923(120572 1199051 1199052)

= minus1205722minus (1 minus 120572)

2

+ 2120572 (1 minus 120572) [8 (1199051minus 1199052)2

(1 minus 1199051

2) (1 minus 119905

2

2) minus 1]

120572 isin [0 1] 1199051 1199052 isin [minus1 1]

(24)

The expression in brackets is greater than or equal to minus1for all 119905

1 1199052isin [minus1 1] Hence

1198672(3) ge minus120572

2minus (1 minus 120572)

2minus 2120572 (1 minus 120572) = minus1 (25)

(II) If function 119891 is given by (21) then

1198863= 3 (120572 + 120573) + (4119905

2minus 1) (1 minus 120572 minus 120573)

1198864= 4 (120573 minus 120572) + (8119905

3minus 4119905) (1 minus 120572 minus 120573)

1198865= 5 (120572 + 120573) + (16119905

4minus 121199052+ 1) (1 minus 120572 minus 120573)

(26)

Using the Turan identity it follows that 1198672(3) = 119892

4(120572 120573 119905)

where

1198924(120572 120573 119905) = minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)

2

+ 64120572120573

+ 2 (1 minus 120572 minus 120573) 119902 (119905)

119902 (119905) = (120572 + 120573) (241199054minus 81199052minus 1)

+ (120572 minus 120573) (321199053minus 16119905)

(27)

under the assumptions 120572 120573 isin [0 1] 120572+120573 le 1 and 119905 isin [minus1 1]Let 120572 and 120573 be fixed Since

120597119902

120597119905= 8 (6119905

2minus 1) [119905 (120572 + 120573) + 120572 minus 120573] (28)

the critical points of 119902 are as follows minus1radic6 1radic6 and (120573 minus

120572)(120572 + 120573) It is easily seen that all these points are in [minus1 1]Therefore

min 119902 (119905) 119905 isin [minus1 1] = min119902 (minus1) 119902 ( minus1

radic6

)

119902 (1

radic6

) 119902 (1) 119902 (120573 minus 120572

120572 + 120573)

(29)

For 119905 = minus1 or 119905 = 1 the functions given by (21) have theform

119891 (119911) = 119911

(1 + 119911)2+ 120573

119911

(1 minus 119911)2 + 120573 = 1 (30)

One can show directly from formula (30) that

1198672(3) = minus1 + 64 (1 minus ) ge minus1 (31)

For 119905 = (120573 minus 120572)(120572 + 120573) there is

1198672(3) = minus1 +

64120572120573 [4 (120572 + 120573) 120572120573 + (120573 minus 120572)2

]

(120572 + 120573)3

(32)

hence

1198672(3) ge minus1 (33)

If 119905 = minus1radic6 or 119905 = 1radic6 then1198672(3) is equal to

1198672(3)

= minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)2

+ 64120572120573

+ (1 minus 120572 minus 120573) [minus10

3(120572 + 120573) minus

64

3radic6

(120572 minus 120573)]

(34)

or

1198672(3)

= minus1 + 2 (120572 + 120573) minus 2 (120572 + 120573)2

+ 64120572120573

+ (1 minus 120572 minus 120573) [minus10

3(120572 + 120573) +

64

3radic6

(120572 minus 120573)]

(35)

Abstract and Applied Analysis 5

respectively Without loss of generality we can assume that120572 ge 120573 Then while looking for the minimum value of119867

2(3)

we can restrict the research to the first stated above case (sinceexpression (35) is not less than expression (34))

Transforming (35) we obtain

1198672(3) = minus1 + 64120572120573 minus

4

3(120572 + 120573) (1 minus 120572 minus 120573)

+64

3radic6

(120573 minus 120572) (1 minus 120572 minus 120573)

(36)

Taking the smallest possible 120573 (ie 120573 = 0) the second andthe forth component of this expression will not increase Thevalue of the third component does not depend only on 120573 infact it depends on 120572 + 120573 For this reason we can take 120573 = 0Combining these facts it yields that

1198672(3) ge minus1 minus

4

3120572 (1 minus 120572) minus

64

3radic6

120572 (1 minus 120572) (37)

The smallest value of the right hand side of this inequality isachieved for 120572 = 12 In this case

1198672(3) ge minus1 minus

1

3minus

16

3radic6

= minus4

3minus8

9

radic6 = minus351 (38)

Combining two parts of the proof we obtain the conclu-sion of the theorem Furthermore the above shows that theextremal functions are

119891 (119911) =1

2[

119911

(1 + 119911)2+

119911

1 minus 21199111199050+ 1199112

]

119891 (119911) =1

2[

119911

(1 minus 119911)2+

119911

1 + 21199111199050+ 1199112

]

(39)

where 1199050= 1radic6

5 Bounds of 1198672(119899) 119899 ge 4 in 119879

It is easily seen that 1198672(119899) le 119899(119899 + 2) for any typically real

function ByTheorem 9 this estimate is sharp providing that119899 is an odd integer At the beginning of this section we willprove the following

Theorem 13 For 119879 one has

min 119886119899119886119899+2

119891 isin 119879 = minus1 (40)

Proof Thecoefficients of the series expansion of function119891 isin

119879 can be written as follows

119886119899= int

120587

0

sin (119899120579)sin 120579

119889] (120579) ] isin 119875[0120587]

(41)

Hence

119886119899119886119899+2

= int

120587

0

sin ((119899 + 1) 120579 minus 120579)

sin 120579119889] (120579)

sdot int

120587

0

sin ((119899 + 1) 120579 + 120579)

sin 120579119889] (120579)

= (int

120587

0

sin (119899 + 1) 120579

sin 120579cos 120579 119889] (120579))

2

minus (int

120587

0

cos (119899 + 1) 120579 119889] (120579))2

(42)

Since

int

120587

0

cos (119899 + 1) 120579 119889] (120579) le int

120587

0

119889] (120579) = 1 (43)

we obtain

119886119899119886119899+2

ge minus1 (44)

In order to prove that the estimate is sharp let us take themeasure ] for which support satisfies condition (119899 + 1)120579 =

120587 This measure corresponds to the function 119891(119911) = 119911(1 minus

2119911cos(120587(119899 + 1)) + 1199112)

Observe that 119886119899119886119899+2

= minus1 holds not only for the measurestated above Namely the value minus1 in (42) is taken also if (119899 +1)120579 = 119896120587 where 119896 is any positive integer less than or equal to119899 From this we conclude that the support of the measure has119899 points 120579

119896= 119896120587(119899 + 1) with weights 120572

119896 119896 = 1 2 119899 such

that sum119899119896=1

120572119896= 1

The weights satisfy

(

119899

sum

119896=1

120572119896(minus1)119896)

2

= 1 (45)

Indeed if the support of ] consists of 119899 points then 119891 takesthe form

119891 (119911) =

119899

sum

119896=1

120572119896

119911

1 minus 2119911 cos 120579119896+ 1199112

(46)

Using trigonometric identities we obtain

119886119899=

119899

sum

119896=1

120572119896(minus1)119896+1

119886119899+2

=

119899

sum

119896=1

120572119896(minus1)119896

(47)

which results in (45)Connecting (45) andsum119899

119896=1120572119896= 1we conclude that119891 is of

the form

119891 (119911) =

119899

sum

119896=1119896 is odd120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112(48)

6 Abstract and Applied Analysis

Table 1 The bounds of the Hankel determinants for functions defined by (51)

Bounds of1198672(119899) Equality in the lower bound for Equality in the upper bound for

minus9 le 1198672(2) le 1 119905 = 1 119905 = 0

minus351 le 1198672(3) le 15 119905 = 0 40 119905 = 1

minus25 le 1198672(4) le 446 119905 = 1 119905 = 061

minus784 le 1198672(5) le 35 119905 = 0 72 119905 = 1

minus49 le 1198672(6) le 967 119905 = 1 119905 = 079

or

119891 (119911) =

119899

sum

119896=1119896 is even120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112 (49)

Itmeans that for even 119899 the support of ] consists of 1198992 pointsand for even 119899 the number of points of the support of ] is equalto (119899 + 1)2 or (119899 minus 1)2

Taking into account |119886119899+1

| le 119899 + 1 and Theorem 13 weobtain the following

Theorem 14 For 119879 one has

1198672(119899) ge minus (119899 + 1)

2minus 1 (50)

Unfortunately this bound is not sharp However thefollowing can be conjectured

Conjecture 15 For any positive integer 119899 the following esti-mate 119867

2(119899) ge minus(119899 + 1)

2 holds Moreover this bound is sharpfor even 119899

This conjecture is supported by the facts that in thetheorems concerning119867

2(2) and119867

2(3) the extremal functions

are of the form

119891 (119911) =1

2[

119911

(1 + 119911)2+

119911

1 minus 2119911119905 + 1199112]

119891 (119911) =1

2[

119911

(1 minus 119911)2+

119911

1 minus 2119911119905 + 1199112]

(51)

for appropriately taken 119905 isin [minus1 1] The exact bounds ofthe Hankel determinants for these functions are collected inTable 1 They were obtained numerically

6 Remarks Concerning 1198672(119899) in 119879

(2)

In class 119879 we discuss subclass 119879(2) consisting of the functionswhich are odd The definition of this class is

119879(2)

= 119891 isin 119879 119891 (minus119911) = minus119891 (119911) 119911 isin Δ (52)

For 119891 isin 119879(2) the representation formula similar to (2) is

valid Namely

119891 (119911) = int

1

minus1

119911 (1 + 1199112)

(1 + 1199112)2

minus 411991121199052119889] (119905) ] isin 119875

[minus11] (53)

Function 119891 has the Taylor series expansion

119891 (119911) = sum

119899 is odd119886119899119911119899 119886119899= int

1

minus1

119880119899minus1

(119905) 119889] (119905) (54)

The following inequalities are obvious

minus (119899 + 1)2le 1198672(119899) le 0 for even 119899

1198672(119899) le (119899 + 1)

2minus 1 for odd 119899

(55)

equalities hold for 119891(119911) = 119911(1 + 1199112)(1 minus 119911

2)2

For a given class 119860 sub A let us denote by Ψ119899(119860) 119899 ge 1

the set (119886119899 119886119899+2

) 119891 isin 119860 From (53) it follows that Ψ119899(119879) is

the closed convex hull of the curve

120582 [minus1 1] ni 119905 997888rarr (119880119899minus1

(119905) 119880119899+1

(119905)) (56)

FromTheorem 13 and from the equivalence

(119886119899 119886119899+2

) isin Ψ119899(119879) lArrrArr (119886

119899 119886119899+2

) isin Ψ119899(119879(2)) (57)

we get

min 119886119899119886119899+2

119891 isin 119879(2) = minus1 (58)

Hence for odd 119899 we know that

min 1198672(119899) 119891 isin 119879

(2) ge minus1 (59)

The equality holds for functions (48) or (49) providing that120572119896

= 120572119899+1minus119896

Then connecting the components of theseformulae in pairs we obtain

120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112

+ 120572119899+1minus119896

119911

1 minus 2119911 cos ((119899 + 1 minus 119896) 120587 (119899 + 1)) + 1199112

= 2120572119896

119911 (1 + 1199112)

(1 + 1199112)2

minus 41199112cos2 (119896120587 (119899 + 1))

(60)

With help of the argument given in the proof of Theorem 13we eventually obtain the odd functions for which 119886

119899119886119899+2

=

minus1

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 7

References

[1] C Pommerenke ldquoOn the coefficients and Hankel determinantsof univalent functionsrdquo Journal of the London MathematicalSociety vol 41 pp 111ndash122 1966

[2] C Pommerenke ldquoOn the Hankel determinants of univalentfunctionsrdquoMathematika vol 14 pp 108ndash112 1967

[3] A Janteng S A Halim and M Darus ldquoCoefficient inequalityfor a function whose derivative has a positive real partrdquo Journalof Inequalities in Pure and Applied Mathematics vol 7 no 2article 50 2006

[4] A Janteng S A Halim andMDarus ldquoHankel determinant forstarlike and convex functionsrdquo International Journal of Mathe-matical Analysis vol 1 no 13 pp 619ndash625 2007

[5] S K Lee V Ravichandran and S Supramaniam ldquoBounds forthe second Hankel determinant of certain univalent functionsrdquoJournal of Inequalities and Applications vol 2013 article 2812013

[6] D Vamshee Krishna andT Ramreddy ldquoHankel determinant forstarlike and convex functions of order alphardquo Tbilisi Mathemat-ical Journal vol 5 no 1 pp 65ndash76 2012

[7] C Selvaraj and T R K Kumar ldquoSecond Hankel determinantfor certain classes of analytic functionsrdquo International Journalof Applied Mathematics vol 28 no 1 pp 37ndash50 2015

[8] W Ma and D Minda ldquoA unified treatment of some specialclasses of univalent functionsrdquo in Proceedings of the Conferenceon Complex Analysis Conference Proceedings and LectureNotes in Analysis Vol 1 pp 157ndash169 International PressTianjin China 1992

[9] J Sokoł and J Stankiewicz ldquoRadius of convexity of some sub-classes of strongly starlike functionsrdquoZeszytyNaukowe Politech-niki Rzeszowskiej Matematyka vol 19 pp 101ndash105 1996

[10] M-S Liu J-F Xu and M Yang ldquoUpper bound of second Han-kel determinant for certain subclasses of analytic functionsrdquoAbstract and Applied Analysis vol 2014 Article ID 603180 10pages 2014

[11] A K Mishra and P Gochhayat ldquoSecond Hankel determinantfor a class of analytic functions defined by fractional deriva-tiverdquo International Journal of Mathematics and MathematicalSciences vol 2008 Article ID 153280 10 pages 2008

[12] J W Noonan and D K Thomas ldquoOn the Hankel determinantsof areally mean 119901-valent functionsrdquo Proceedings of the LondonMathematical Society vol 25 pp 503ndash524 1972

[13] G Singh ldquoHankel determinant for a new subclass of analyticfunctionsrdquo Scientia Magna vol 8 no 4 pp 61ndash65 2012

[14] G Singh ldquoHankel determinant for analytic functions withrespect to other pointsrdquo Engineering Mathematics Letters vol2 no 2 pp 115ndash123 2013

[15] T Hayami and S Owa ldquoGeneralized hankel determinant forcertain classesrdquo International Journal of Mathematical Analysisvol 4 no 52 pp 2573ndash2585 2010

[16] K O Babalola ldquoOnH3(1) Hankel determinants for some classes

of univalent functionsrdquo in Inequality Theory and Applicationsvol 6 17 Nova Science Publishers New York NY USA 2010

[17] G Shanmugam B Adolf Stephen and K O Babalola ldquoThirdHankel determinant for 120572-starlike functionsrdquo Gulf Journal ofMathematics vol 2 no 2 pp 107ndash113 2014

[18] P T Mocanu ldquoUne proprit de convexit gnralise dans la thoriede la representation conformerdquoMathematica (Cluj) vol 11 no34 pp 127ndash133 1969

[19] M S Robertson ldquoOn the coefficients of a typically-real func-tionrdquo Bulletin of the American Mathematical Society vol 41 no8 pp 565ndash572 1935

[20] D J Hallenbeck and T H MacGregor Linear Problems andConvexity Techniques in Geometric Function Theory Mono-graphs and Studies in Mathematics 22 Pitman AdavancedPublishing Program Boston Mass USA 1984

[21] W Ma ldquoGeneralized Zalcman conjecture for starlike and typ-ically real functionsrdquo Journal of Mathematical Analysis andApplications vol 234 no 1 pp 328ndash339 1999

[22] W Szapiel Extremal problems for convex sets Applications toholomorphic functions [Dissertation XXXVII] UMCS PressLublin Poland reviewer J Krzyz 1986 (Polish)

[23] W Szapiel ldquoExtreme points of convex sets (II) Inuence of nor-malization on integral representationrdquo Bulletin de lrsquoAcademiePolonaise des Sciences Serie des SciencesMathematiques vol 29pp 535ndash544 1981

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 5: Research Article Second Hankel Determinants for the Class ...downloads.hindawi.com/journals/aaa/2016/3792367.pdf · Research Article Second Hankel Determinants for the Class of Typically

Abstract and Applied Analysis 5

respectively Without loss of generality we can assume that120572 ge 120573 Then while looking for the minimum value of119867

2(3)

we can restrict the research to the first stated above case (sinceexpression (35) is not less than expression (34))

Transforming (35) we obtain

1198672(3) = minus1 + 64120572120573 minus

4

3(120572 + 120573) (1 minus 120572 minus 120573)

+64

3radic6

(120573 minus 120572) (1 minus 120572 minus 120573)

(36)

Taking the smallest possible 120573 (ie 120573 = 0) the second andthe forth component of this expression will not increase Thevalue of the third component does not depend only on 120573 infact it depends on 120572 + 120573 For this reason we can take 120573 = 0Combining these facts it yields that

1198672(3) ge minus1 minus

4

3120572 (1 minus 120572) minus

64

3radic6

120572 (1 minus 120572) (37)

The smallest value of the right hand side of this inequality isachieved for 120572 = 12 In this case

1198672(3) ge minus1 minus

1

3minus

16

3radic6

= minus4

3minus8

9

radic6 = minus351 (38)

Combining two parts of the proof we obtain the conclu-sion of the theorem Furthermore the above shows that theextremal functions are

119891 (119911) =1

2[

119911

(1 + 119911)2+

119911

1 minus 21199111199050+ 1199112

]

119891 (119911) =1

2[

119911

(1 minus 119911)2+

119911

1 + 21199111199050+ 1199112

]

(39)

where 1199050= 1radic6

5 Bounds of 1198672(119899) 119899 ge 4 in 119879

It is easily seen that 1198672(119899) le 119899(119899 + 2) for any typically real

function ByTheorem 9 this estimate is sharp providing that119899 is an odd integer At the beginning of this section we willprove the following

Theorem 13 For 119879 one has

min 119886119899119886119899+2

119891 isin 119879 = minus1 (40)

Proof Thecoefficients of the series expansion of function119891 isin

119879 can be written as follows

119886119899= int

120587

0

sin (119899120579)sin 120579

119889] (120579) ] isin 119875[0120587]

(41)

Hence

119886119899119886119899+2

= int

120587

0

sin ((119899 + 1) 120579 minus 120579)

sin 120579119889] (120579)

sdot int

120587

0

sin ((119899 + 1) 120579 + 120579)

sin 120579119889] (120579)

= (int

120587

0

sin (119899 + 1) 120579

sin 120579cos 120579 119889] (120579))

2

minus (int

120587

0

cos (119899 + 1) 120579 119889] (120579))2

(42)

Since

int

120587

0

cos (119899 + 1) 120579 119889] (120579) le int

120587

0

119889] (120579) = 1 (43)

we obtain

119886119899119886119899+2

ge minus1 (44)

In order to prove that the estimate is sharp let us take themeasure ] for which support satisfies condition (119899 + 1)120579 =

120587 This measure corresponds to the function 119891(119911) = 119911(1 minus

2119911cos(120587(119899 + 1)) + 1199112)

Observe that 119886119899119886119899+2

= minus1 holds not only for the measurestated above Namely the value minus1 in (42) is taken also if (119899 +1)120579 = 119896120587 where 119896 is any positive integer less than or equal to119899 From this we conclude that the support of the measure has119899 points 120579

119896= 119896120587(119899 + 1) with weights 120572

119896 119896 = 1 2 119899 such

that sum119899119896=1

120572119896= 1

The weights satisfy

(

119899

sum

119896=1

120572119896(minus1)119896)

2

= 1 (45)

Indeed if the support of ] consists of 119899 points then 119891 takesthe form

119891 (119911) =

119899

sum

119896=1

120572119896

119911

1 minus 2119911 cos 120579119896+ 1199112

(46)

Using trigonometric identities we obtain

119886119899=

119899

sum

119896=1

120572119896(minus1)119896+1

119886119899+2

=

119899

sum

119896=1

120572119896(minus1)119896

(47)

which results in (45)Connecting (45) andsum119899

119896=1120572119896= 1we conclude that119891 is of

the form

119891 (119911) =

119899

sum

119896=1119896 is odd120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112(48)

6 Abstract and Applied Analysis

Table 1 The bounds of the Hankel determinants for functions defined by (51)

Bounds of1198672(119899) Equality in the lower bound for Equality in the upper bound for

minus9 le 1198672(2) le 1 119905 = 1 119905 = 0

minus351 le 1198672(3) le 15 119905 = 0 40 119905 = 1

minus25 le 1198672(4) le 446 119905 = 1 119905 = 061

minus784 le 1198672(5) le 35 119905 = 0 72 119905 = 1

minus49 le 1198672(6) le 967 119905 = 1 119905 = 079

or

119891 (119911) =

119899

sum

119896=1119896 is even120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112 (49)

Itmeans that for even 119899 the support of ] consists of 1198992 pointsand for even 119899 the number of points of the support of ] is equalto (119899 + 1)2 or (119899 minus 1)2

Taking into account |119886119899+1

| le 119899 + 1 and Theorem 13 weobtain the following

Theorem 14 For 119879 one has

1198672(119899) ge minus (119899 + 1)

2minus 1 (50)

Unfortunately this bound is not sharp However thefollowing can be conjectured

Conjecture 15 For any positive integer 119899 the following esti-mate 119867

2(119899) ge minus(119899 + 1)

2 holds Moreover this bound is sharpfor even 119899

This conjecture is supported by the facts that in thetheorems concerning119867

2(2) and119867

2(3) the extremal functions

are of the form

119891 (119911) =1

2[

119911

(1 + 119911)2+

119911

1 minus 2119911119905 + 1199112]

119891 (119911) =1

2[

119911

(1 minus 119911)2+

119911

1 minus 2119911119905 + 1199112]

(51)

for appropriately taken 119905 isin [minus1 1] The exact bounds ofthe Hankel determinants for these functions are collected inTable 1 They were obtained numerically

6 Remarks Concerning 1198672(119899) in 119879

(2)

In class 119879 we discuss subclass 119879(2) consisting of the functionswhich are odd The definition of this class is

119879(2)

= 119891 isin 119879 119891 (minus119911) = minus119891 (119911) 119911 isin Δ (52)

For 119891 isin 119879(2) the representation formula similar to (2) is

valid Namely

119891 (119911) = int

1

minus1

119911 (1 + 1199112)

(1 + 1199112)2

minus 411991121199052119889] (119905) ] isin 119875

[minus11] (53)

Function 119891 has the Taylor series expansion

119891 (119911) = sum

119899 is odd119886119899119911119899 119886119899= int

1

minus1

119880119899minus1

(119905) 119889] (119905) (54)

The following inequalities are obvious

minus (119899 + 1)2le 1198672(119899) le 0 for even 119899

1198672(119899) le (119899 + 1)

2minus 1 for odd 119899

(55)

equalities hold for 119891(119911) = 119911(1 + 1199112)(1 minus 119911

2)2

For a given class 119860 sub A let us denote by Ψ119899(119860) 119899 ge 1

the set (119886119899 119886119899+2

) 119891 isin 119860 From (53) it follows that Ψ119899(119879) is

the closed convex hull of the curve

120582 [minus1 1] ni 119905 997888rarr (119880119899minus1

(119905) 119880119899+1

(119905)) (56)

FromTheorem 13 and from the equivalence

(119886119899 119886119899+2

) isin Ψ119899(119879) lArrrArr (119886

119899 119886119899+2

) isin Ψ119899(119879(2)) (57)

we get

min 119886119899119886119899+2

119891 isin 119879(2) = minus1 (58)

Hence for odd 119899 we know that

min 1198672(119899) 119891 isin 119879

(2) ge minus1 (59)

The equality holds for functions (48) or (49) providing that120572119896

= 120572119899+1minus119896

Then connecting the components of theseformulae in pairs we obtain

120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112

+ 120572119899+1minus119896

119911

1 minus 2119911 cos ((119899 + 1 minus 119896) 120587 (119899 + 1)) + 1199112

= 2120572119896

119911 (1 + 1199112)

(1 + 1199112)2

minus 41199112cos2 (119896120587 (119899 + 1))

(60)

With help of the argument given in the proof of Theorem 13we eventually obtain the odd functions for which 119886

119899119886119899+2

=

minus1

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 7

References

[1] C Pommerenke ldquoOn the coefficients and Hankel determinantsof univalent functionsrdquo Journal of the London MathematicalSociety vol 41 pp 111ndash122 1966

[2] C Pommerenke ldquoOn the Hankel determinants of univalentfunctionsrdquoMathematika vol 14 pp 108ndash112 1967

[3] A Janteng S A Halim and M Darus ldquoCoefficient inequalityfor a function whose derivative has a positive real partrdquo Journalof Inequalities in Pure and Applied Mathematics vol 7 no 2article 50 2006

[4] A Janteng S A Halim andMDarus ldquoHankel determinant forstarlike and convex functionsrdquo International Journal of Mathe-matical Analysis vol 1 no 13 pp 619ndash625 2007

[5] S K Lee V Ravichandran and S Supramaniam ldquoBounds forthe second Hankel determinant of certain univalent functionsrdquoJournal of Inequalities and Applications vol 2013 article 2812013

[6] D Vamshee Krishna andT Ramreddy ldquoHankel determinant forstarlike and convex functions of order alphardquo Tbilisi Mathemat-ical Journal vol 5 no 1 pp 65ndash76 2012

[7] C Selvaraj and T R K Kumar ldquoSecond Hankel determinantfor certain classes of analytic functionsrdquo International Journalof Applied Mathematics vol 28 no 1 pp 37ndash50 2015

[8] W Ma and D Minda ldquoA unified treatment of some specialclasses of univalent functionsrdquo in Proceedings of the Conferenceon Complex Analysis Conference Proceedings and LectureNotes in Analysis Vol 1 pp 157ndash169 International PressTianjin China 1992

[9] J Sokoł and J Stankiewicz ldquoRadius of convexity of some sub-classes of strongly starlike functionsrdquoZeszytyNaukowe Politech-niki Rzeszowskiej Matematyka vol 19 pp 101ndash105 1996

[10] M-S Liu J-F Xu and M Yang ldquoUpper bound of second Han-kel determinant for certain subclasses of analytic functionsrdquoAbstract and Applied Analysis vol 2014 Article ID 603180 10pages 2014

[11] A K Mishra and P Gochhayat ldquoSecond Hankel determinantfor a class of analytic functions defined by fractional deriva-tiverdquo International Journal of Mathematics and MathematicalSciences vol 2008 Article ID 153280 10 pages 2008

[12] J W Noonan and D K Thomas ldquoOn the Hankel determinantsof areally mean 119901-valent functionsrdquo Proceedings of the LondonMathematical Society vol 25 pp 503ndash524 1972

[13] G Singh ldquoHankel determinant for a new subclass of analyticfunctionsrdquo Scientia Magna vol 8 no 4 pp 61ndash65 2012

[14] G Singh ldquoHankel determinant for analytic functions withrespect to other pointsrdquo Engineering Mathematics Letters vol2 no 2 pp 115ndash123 2013

[15] T Hayami and S Owa ldquoGeneralized hankel determinant forcertain classesrdquo International Journal of Mathematical Analysisvol 4 no 52 pp 2573ndash2585 2010

[16] K O Babalola ldquoOnH3(1) Hankel determinants for some classes

of univalent functionsrdquo in Inequality Theory and Applicationsvol 6 17 Nova Science Publishers New York NY USA 2010

[17] G Shanmugam B Adolf Stephen and K O Babalola ldquoThirdHankel determinant for 120572-starlike functionsrdquo Gulf Journal ofMathematics vol 2 no 2 pp 107ndash113 2014

[18] P T Mocanu ldquoUne proprit de convexit gnralise dans la thoriede la representation conformerdquoMathematica (Cluj) vol 11 no34 pp 127ndash133 1969

[19] M S Robertson ldquoOn the coefficients of a typically-real func-tionrdquo Bulletin of the American Mathematical Society vol 41 no8 pp 565ndash572 1935

[20] D J Hallenbeck and T H MacGregor Linear Problems andConvexity Techniques in Geometric Function Theory Mono-graphs and Studies in Mathematics 22 Pitman AdavancedPublishing Program Boston Mass USA 1984

[21] W Ma ldquoGeneralized Zalcman conjecture for starlike and typ-ically real functionsrdquo Journal of Mathematical Analysis andApplications vol 234 no 1 pp 328ndash339 1999

[22] W Szapiel Extremal problems for convex sets Applications toholomorphic functions [Dissertation XXXVII] UMCS PressLublin Poland reviewer J Krzyz 1986 (Polish)

[23] W Szapiel ldquoExtreme points of convex sets (II) Inuence of nor-malization on integral representationrdquo Bulletin de lrsquoAcademiePolonaise des Sciences Serie des SciencesMathematiques vol 29pp 535ndash544 1981

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 6: Research Article Second Hankel Determinants for the Class ...downloads.hindawi.com/journals/aaa/2016/3792367.pdf · Research Article Second Hankel Determinants for the Class of Typically

6 Abstract and Applied Analysis

Table 1 The bounds of the Hankel determinants for functions defined by (51)

Bounds of1198672(119899) Equality in the lower bound for Equality in the upper bound for

minus9 le 1198672(2) le 1 119905 = 1 119905 = 0

minus351 le 1198672(3) le 15 119905 = 0 40 119905 = 1

minus25 le 1198672(4) le 446 119905 = 1 119905 = 061

minus784 le 1198672(5) le 35 119905 = 0 72 119905 = 1

minus49 le 1198672(6) le 967 119905 = 1 119905 = 079

or

119891 (119911) =

119899

sum

119896=1119896 is even120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112 (49)

Itmeans that for even 119899 the support of ] consists of 1198992 pointsand for even 119899 the number of points of the support of ] is equalto (119899 + 1)2 or (119899 minus 1)2

Taking into account |119886119899+1

| le 119899 + 1 and Theorem 13 weobtain the following

Theorem 14 For 119879 one has

1198672(119899) ge minus (119899 + 1)

2minus 1 (50)

Unfortunately this bound is not sharp However thefollowing can be conjectured

Conjecture 15 For any positive integer 119899 the following esti-mate 119867

2(119899) ge minus(119899 + 1)

2 holds Moreover this bound is sharpfor even 119899

This conjecture is supported by the facts that in thetheorems concerning119867

2(2) and119867

2(3) the extremal functions

are of the form

119891 (119911) =1

2[

119911

(1 + 119911)2+

119911

1 minus 2119911119905 + 1199112]

119891 (119911) =1

2[

119911

(1 minus 119911)2+

119911

1 minus 2119911119905 + 1199112]

(51)

for appropriately taken 119905 isin [minus1 1] The exact bounds ofthe Hankel determinants for these functions are collected inTable 1 They were obtained numerically

6 Remarks Concerning 1198672(119899) in 119879

(2)

In class 119879 we discuss subclass 119879(2) consisting of the functionswhich are odd The definition of this class is

119879(2)

= 119891 isin 119879 119891 (minus119911) = minus119891 (119911) 119911 isin Δ (52)

For 119891 isin 119879(2) the representation formula similar to (2) is

valid Namely

119891 (119911) = int

1

minus1

119911 (1 + 1199112)

(1 + 1199112)2

minus 411991121199052119889] (119905) ] isin 119875

[minus11] (53)

Function 119891 has the Taylor series expansion

119891 (119911) = sum

119899 is odd119886119899119911119899 119886119899= int

1

minus1

119880119899minus1

(119905) 119889] (119905) (54)

The following inequalities are obvious

minus (119899 + 1)2le 1198672(119899) le 0 for even 119899

1198672(119899) le (119899 + 1)

2minus 1 for odd 119899

(55)

equalities hold for 119891(119911) = 119911(1 + 1199112)(1 minus 119911

2)2

For a given class 119860 sub A let us denote by Ψ119899(119860) 119899 ge 1

the set (119886119899 119886119899+2

) 119891 isin 119860 From (53) it follows that Ψ119899(119879) is

the closed convex hull of the curve

120582 [minus1 1] ni 119905 997888rarr (119880119899minus1

(119905) 119880119899+1

(119905)) (56)

FromTheorem 13 and from the equivalence

(119886119899 119886119899+2

) isin Ψ119899(119879) lArrrArr (119886

119899 119886119899+2

) isin Ψ119899(119879(2)) (57)

we get

min 119886119899119886119899+2

119891 isin 119879(2) = minus1 (58)

Hence for odd 119899 we know that

min 1198672(119899) 119891 isin 119879

(2) ge minus1 (59)

The equality holds for functions (48) or (49) providing that120572119896

= 120572119899+1minus119896

Then connecting the components of theseformulae in pairs we obtain

120572119896

119911

1 minus 2119911 cos (119896120587 (119899 + 1)) + 1199112

+ 120572119899+1minus119896

119911

1 minus 2119911 cos ((119899 + 1 minus 119896) 120587 (119899 + 1)) + 1199112

= 2120572119896

119911 (1 + 1199112)

(1 + 1199112)2

minus 41199112cos2 (119896120587 (119899 + 1))

(60)

With help of the argument given in the proof of Theorem 13we eventually obtain the odd functions for which 119886

119899119886119899+2

=

minus1

Conflict of Interests

The author declares that there is no conflict of interestsregarding the publication of this paper

Abstract and Applied Analysis 7

References

[1] C Pommerenke ldquoOn the coefficients and Hankel determinantsof univalent functionsrdquo Journal of the London MathematicalSociety vol 41 pp 111ndash122 1966

[2] C Pommerenke ldquoOn the Hankel determinants of univalentfunctionsrdquoMathematika vol 14 pp 108ndash112 1967

[3] A Janteng S A Halim and M Darus ldquoCoefficient inequalityfor a function whose derivative has a positive real partrdquo Journalof Inequalities in Pure and Applied Mathematics vol 7 no 2article 50 2006

[4] A Janteng S A Halim andMDarus ldquoHankel determinant forstarlike and convex functionsrdquo International Journal of Mathe-matical Analysis vol 1 no 13 pp 619ndash625 2007

[5] S K Lee V Ravichandran and S Supramaniam ldquoBounds forthe second Hankel determinant of certain univalent functionsrdquoJournal of Inequalities and Applications vol 2013 article 2812013

[6] D Vamshee Krishna andT Ramreddy ldquoHankel determinant forstarlike and convex functions of order alphardquo Tbilisi Mathemat-ical Journal vol 5 no 1 pp 65ndash76 2012

[7] C Selvaraj and T R K Kumar ldquoSecond Hankel determinantfor certain classes of analytic functionsrdquo International Journalof Applied Mathematics vol 28 no 1 pp 37ndash50 2015

[8] W Ma and D Minda ldquoA unified treatment of some specialclasses of univalent functionsrdquo in Proceedings of the Conferenceon Complex Analysis Conference Proceedings and LectureNotes in Analysis Vol 1 pp 157ndash169 International PressTianjin China 1992

[9] J Sokoł and J Stankiewicz ldquoRadius of convexity of some sub-classes of strongly starlike functionsrdquoZeszytyNaukowe Politech-niki Rzeszowskiej Matematyka vol 19 pp 101ndash105 1996

[10] M-S Liu J-F Xu and M Yang ldquoUpper bound of second Han-kel determinant for certain subclasses of analytic functionsrdquoAbstract and Applied Analysis vol 2014 Article ID 603180 10pages 2014

[11] A K Mishra and P Gochhayat ldquoSecond Hankel determinantfor a class of analytic functions defined by fractional deriva-tiverdquo International Journal of Mathematics and MathematicalSciences vol 2008 Article ID 153280 10 pages 2008

[12] J W Noonan and D K Thomas ldquoOn the Hankel determinantsof areally mean 119901-valent functionsrdquo Proceedings of the LondonMathematical Society vol 25 pp 503ndash524 1972

[13] G Singh ldquoHankel determinant for a new subclass of analyticfunctionsrdquo Scientia Magna vol 8 no 4 pp 61ndash65 2012

[14] G Singh ldquoHankel determinant for analytic functions withrespect to other pointsrdquo Engineering Mathematics Letters vol2 no 2 pp 115ndash123 2013

[15] T Hayami and S Owa ldquoGeneralized hankel determinant forcertain classesrdquo International Journal of Mathematical Analysisvol 4 no 52 pp 2573ndash2585 2010

[16] K O Babalola ldquoOnH3(1) Hankel determinants for some classes

of univalent functionsrdquo in Inequality Theory and Applicationsvol 6 17 Nova Science Publishers New York NY USA 2010

[17] G Shanmugam B Adolf Stephen and K O Babalola ldquoThirdHankel determinant for 120572-starlike functionsrdquo Gulf Journal ofMathematics vol 2 no 2 pp 107ndash113 2014

[18] P T Mocanu ldquoUne proprit de convexit gnralise dans la thoriede la representation conformerdquoMathematica (Cluj) vol 11 no34 pp 127ndash133 1969

[19] M S Robertson ldquoOn the coefficients of a typically-real func-tionrdquo Bulletin of the American Mathematical Society vol 41 no8 pp 565ndash572 1935

[20] D J Hallenbeck and T H MacGregor Linear Problems andConvexity Techniques in Geometric Function Theory Mono-graphs and Studies in Mathematics 22 Pitman AdavancedPublishing Program Boston Mass USA 1984

[21] W Ma ldquoGeneralized Zalcman conjecture for starlike and typ-ically real functionsrdquo Journal of Mathematical Analysis andApplications vol 234 no 1 pp 328ndash339 1999

[22] W Szapiel Extremal problems for convex sets Applications toholomorphic functions [Dissertation XXXVII] UMCS PressLublin Poland reviewer J Krzyz 1986 (Polish)

[23] W Szapiel ldquoExtreme points of convex sets (II) Inuence of nor-malization on integral representationrdquo Bulletin de lrsquoAcademiePolonaise des Sciences Serie des SciencesMathematiques vol 29pp 535ndash544 1981

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 7: Research Article Second Hankel Determinants for the Class ...downloads.hindawi.com/journals/aaa/2016/3792367.pdf · Research Article Second Hankel Determinants for the Class of Typically

Abstract and Applied Analysis 7

References

[1] C Pommerenke ldquoOn the coefficients and Hankel determinantsof univalent functionsrdquo Journal of the London MathematicalSociety vol 41 pp 111ndash122 1966

[2] C Pommerenke ldquoOn the Hankel determinants of univalentfunctionsrdquoMathematika vol 14 pp 108ndash112 1967

[3] A Janteng S A Halim and M Darus ldquoCoefficient inequalityfor a function whose derivative has a positive real partrdquo Journalof Inequalities in Pure and Applied Mathematics vol 7 no 2article 50 2006

[4] A Janteng S A Halim andMDarus ldquoHankel determinant forstarlike and convex functionsrdquo International Journal of Mathe-matical Analysis vol 1 no 13 pp 619ndash625 2007

[5] S K Lee V Ravichandran and S Supramaniam ldquoBounds forthe second Hankel determinant of certain univalent functionsrdquoJournal of Inequalities and Applications vol 2013 article 2812013

[6] D Vamshee Krishna andT Ramreddy ldquoHankel determinant forstarlike and convex functions of order alphardquo Tbilisi Mathemat-ical Journal vol 5 no 1 pp 65ndash76 2012

[7] C Selvaraj and T R K Kumar ldquoSecond Hankel determinantfor certain classes of analytic functionsrdquo International Journalof Applied Mathematics vol 28 no 1 pp 37ndash50 2015

[8] W Ma and D Minda ldquoA unified treatment of some specialclasses of univalent functionsrdquo in Proceedings of the Conferenceon Complex Analysis Conference Proceedings and LectureNotes in Analysis Vol 1 pp 157ndash169 International PressTianjin China 1992

[9] J Sokoł and J Stankiewicz ldquoRadius of convexity of some sub-classes of strongly starlike functionsrdquoZeszytyNaukowe Politech-niki Rzeszowskiej Matematyka vol 19 pp 101ndash105 1996

[10] M-S Liu J-F Xu and M Yang ldquoUpper bound of second Han-kel determinant for certain subclasses of analytic functionsrdquoAbstract and Applied Analysis vol 2014 Article ID 603180 10pages 2014

[11] A K Mishra and P Gochhayat ldquoSecond Hankel determinantfor a class of analytic functions defined by fractional deriva-tiverdquo International Journal of Mathematics and MathematicalSciences vol 2008 Article ID 153280 10 pages 2008

[12] J W Noonan and D K Thomas ldquoOn the Hankel determinantsof areally mean 119901-valent functionsrdquo Proceedings of the LondonMathematical Society vol 25 pp 503ndash524 1972

[13] G Singh ldquoHankel determinant for a new subclass of analyticfunctionsrdquo Scientia Magna vol 8 no 4 pp 61ndash65 2012

[14] G Singh ldquoHankel determinant for analytic functions withrespect to other pointsrdquo Engineering Mathematics Letters vol2 no 2 pp 115ndash123 2013

[15] T Hayami and S Owa ldquoGeneralized hankel determinant forcertain classesrdquo International Journal of Mathematical Analysisvol 4 no 52 pp 2573ndash2585 2010

[16] K O Babalola ldquoOnH3(1) Hankel determinants for some classes

of univalent functionsrdquo in Inequality Theory and Applicationsvol 6 17 Nova Science Publishers New York NY USA 2010

[17] G Shanmugam B Adolf Stephen and K O Babalola ldquoThirdHankel determinant for 120572-starlike functionsrdquo Gulf Journal ofMathematics vol 2 no 2 pp 107ndash113 2014

[18] P T Mocanu ldquoUne proprit de convexit gnralise dans la thoriede la representation conformerdquoMathematica (Cluj) vol 11 no34 pp 127ndash133 1969

[19] M S Robertson ldquoOn the coefficients of a typically-real func-tionrdquo Bulletin of the American Mathematical Society vol 41 no8 pp 565ndash572 1935

[20] D J Hallenbeck and T H MacGregor Linear Problems andConvexity Techniques in Geometric Function Theory Mono-graphs and Studies in Mathematics 22 Pitman AdavancedPublishing Program Boston Mass USA 1984

[21] W Ma ldquoGeneralized Zalcman conjecture for starlike and typ-ically real functionsrdquo Journal of Mathematical Analysis andApplications vol 234 no 1 pp 328ndash339 1999

[22] W Szapiel Extremal problems for convex sets Applications toholomorphic functions [Dissertation XXXVII] UMCS PressLublin Poland reviewer J Krzyz 1986 (Polish)

[23] W Szapiel ldquoExtreme points of convex sets (II) Inuence of nor-malization on integral representationrdquo Bulletin de lrsquoAcademiePolonaise des Sciences Serie des SciencesMathematiques vol 29pp 535ndash544 1981

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of

Page 8: Research Article Second Hankel Determinants for the Class ...downloads.hindawi.com/journals/aaa/2016/3792367.pdf · Research Article Second Hankel Determinants for the Class of Typically

Submit your manuscripts athttpwwwhindawicom

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical Problems in Engineering

Hindawi Publishing Corporationhttpwwwhindawicom

Differential EquationsInternational Journal of

Volume 2014

Applied MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Probability and StatisticsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Mathematical PhysicsAdvances in

Complex AnalysisJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

OptimizationJournal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

CombinatoricsHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Operations ResearchAdvances in

Journal of

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Function Spaces

Abstract and Applied AnalysisHindawi Publishing Corporationhttpwwwhindawicom Volume 2014

International Journal of Mathematics and Mathematical Sciences

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

The Scientific World JournalHindawi Publishing Corporation httpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Algebra

Discrete Dynamics in Nature and Society

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Decision SciencesAdvances in

Discrete MathematicsJournal of

Hindawi Publishing Corporationhttpwwwhindawicom

Volume 2014 Hindawi Publishing Corporationhttpwwwhindawicom Volume 2014

Stochastic AnalysisInternational Journal of