Top Banner
Pourbaix diagrams Plots of E vs pH We will, as an example, derive the Pourbaix diagram for iron Two Latimer diagrams pertain In acid ([H+] = 1 M): Fe 3+ Fe(OH) 2 Fe 0.77 V -0.44 V In alkali ([OH - ] = 1 M) Fe 3+ Fe(OH) 2 Fe -0.56 V -0.887 V Pourbaix diagrams: •correlate Latimer diagrams at pH 0 and pH 14 •take into account speciation or oxidation state of the element
27

Redox Student POURBAIX

Dec 26, 2015

Download

Documents

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Redox Student POURBAIX

Pourbaix diagrams

Plots of E vs pH

We will, as an example, derive the Pourbaix diagram for iron

Two Latimer diagrams pertain

In acid ([H+] = 1 M):

Fe3+ Fe(OH)2 Fe0.77 V -0.44 V

In alkali ([OH-] = 1 M)

Fe3+ Fe(OH)2 Fe-0.56 V -0.887 V

Pourbaix diagrams:•correlate Latimer diagrams at pH 0 and pH 14•take into account speciation or oxidation state of the element

Page 2: Redox Student POURBAIX
Page 3: Redox Student POURBAIX

The half reaction

Fe3+ + e → Fe2+ Eo = 0.77 V

does not involve a proton so Eo is independent of pH

Fe3+ Fe(OH)2 Fe0.77 V -0.44 V

Page 4: Redox Student POURBAIX

Fe3+ + e → Fe2+

Page 5: Redox Student POURBAIX

Fe3+ will precipitate out of solution as pH is increased. We can calculate the pH at which this will occur from the KSP for Fe(OH)3.

Fe(OH)3(s) Ý Fe3+ + 3OH– KSP = 4.11 x 10-37 M4

At what pH will [Fe3+] = 1.00 M?

KSP = 4.11 x 10-37 M4 = [Fe3+][OH–]3

[OH–] = (4.11 x 10-37/1)0.333

= 7.43 x 10-13 M

So [H+] = 10-14/7.43 x 10-13 = 1.35 x 10-2 M

hence pH = 1.87

Page 6: Redox Student POURBAIX

Fe(OH)3Ý Fe3+ + 3OH-

Vertical lines in a Pourbaixdiagram indicate where two species of an element in the same oxidation state are in

equilibrium

Page 7: Redox Student POURBAIX

To calculate the Fe(OH)3|Fe2+

line...

Page 8: Redox Student POURBAIX

Fe3+ + e → Fe2+ Eo = 0.77 V ∆Go = -74.3 kJ mol-1

3OH- + 3H+→ 3H2O -239.7 kJ mol-1

∆Go = -nFEo

= -1 x 96485 x 0.77

Fe(OH)3 → Fe3+ + 3OH- 207.6 kJ mol-1

∆Go = -RT ln KSP

= -8.315 x 298 x ln (4.11 x 10-37)

Fe(OH)3 + 3H+ + e → Fe2+ + 3H2O -106.4 kJ mol-1

= 106400/1 x 96485= 1.10 V

∆Go = -nFEo

Eo = -∆Go /nF

Page 9: Redox Student POURBAIX

Fe(OH)3 + 3H+ + e → Fe2+ + 3H2O Eo = 1.10 V

E = Eo – RT/nF ln Q

E = 1.10 – 3 x 0.0592 x pH

This must cross the Fe3+/Fe(OH)3 line when

0.77 = 1.10 – 3(0.0592)pHor pH = 1.87

which confirms the result we got from the KSP calclation

Fe3+ Fe(OH)2 Fe0.77 V -0.44 V

Page 10: Redox Student POURBAIX

1.1

Fe(OH)3 + 3H+ + e → Fe2+ + 3H2O

Page 11: Redox Student POURBAIX

1.1

Fe(OH)3 + 3H+ + e → Fe2+ + 3H2O

Page 12: Redox Student POURBAIX

From the KSP for Fe(OH)2

Fe(OH)2 Ý Fe2+ + 2OH– KSP = 1.61 x 10-15 M3

At what pH will [Fe2+] = 1.00 M?

KSP = 1.61 x 10-15 M3 = [Fe2+][OH–]2

[OH–] = (1.61 x 10-15/1)0.5

= 4.01 x 10-8 M

So [H+] = 10-14/4.01 x 10-8 = 2.49 x 10-7 M

hence pH = 6.61

Page 13: Redox Student POURBAIX

1.1

Fe(OH)2Ý Fe2+ + 2OH-

Page 14: Redox Student POURBAIX

The half reaction

Fe2+ + 2e → Fe Eo = -0.44 V

does not involve a proton so Eo is independent of pH

1.1

Fe2+ + 2e → Fe

Page 15: Redox Student POURBAIX

An expression for the potential for the Fe(OH)3|Fe(OH)2 couple can be derived from the following data

Fe(OH)3 + 3H+ + e → Fe2+ + 2H2O Eo 1.10 V ∆Go -106.4 kJ mol-1

3H2O → 3H+ + 3OH- 239.7 kJ mol-1

Fe2+ + 2OH-→ Fe(OH)2 -84.4 kJ mol-1

Fe(OH)3 + e → Fe(OH)2 + OH- Eo -0.51 V ∆Go 48.9 kJ mol-1

E = Eo – RT/nF ln Q

E = -0.51 + 0.0592 x pOH

E = -0.51 + 0.0592 x (14 – pH)

E = 0.316 – 0.0592 x pH

Page 16: Redox Student POURBAIX

1.1

0.316

Fe(OH)3 + e → Fe(OH)2 + OH-

Page 17: Redox Student POURBAIX

...and finally the value of Fe(OH)2|Fe couple can be found by similar considerations, and the Nernst equation applied.

E = -0.060 – 0.0592 x pH

Page 18: Redox Student POURBAIX
Page 19: Redox Student POURBAIX

Overlaying Pourbaix diagrams

The feasibility of a reaction can be predicted by overlaying the relevant Pourbaix diagrams

Page 20: Redox Student POURBAIX

stability field for As(V)

stability field for As(III)

Page 21: Redox Student POURBAIX

95.5

At pH < 5.5 and at pH > 9, Fe3+ has the potential to oxidise As3+ to As5+

Page 22: Redox Student POURBAIX

For example

2

0.65

0.45

Fe(OH)3 + e + 3H+→ Fe2+ + 3H2O E = 0.65

As3+→ As5+ + 2e E = -0.45

As3+ + 2Fe(OH)3 + 6H+→ 2Fe2+ + 6H2O + As5+ E = 0.20 V

Page 23: Redox Student POURBAIX

For 5.5 < pH < 9 As5+ will oxidise Fe2+

to Fe3+

Page 24: Redox Student POURBAIX

The effect of complex formation on Eo values

The Eo value of a metal ion is very dependent on the ligands of the ion

Example, for the Fe3+|Fe2+ couple

Ligand Eo /Vphenanthroline 1.14H2O 0.77CN- 0.36

Page 25: Redox Student POURBAIX

N N

Fe

N

N N

N

N

N

N N

Fe

π back bonding frommetal to phen ligandstabilises Fe(II)

Ligand Eo /V

phenanthroline 1.14

H2O 0.77

CN- 0.36

Page 26: Redox Student POURBAIX

Ligand Eo /V

phenanthroline 1.14

H2O 0.77

CN- 0.36

Fe-NC

-NC CN-

CN-

CN-

CN-

Negatively charged ligands favour the higher positive charge of Fe(III)

Page 27: Redox Student POURBAIX

Co

H3N

H3N NH3

NH3

NH3

NH3

Co

H2O

H2O OH2

OH2

OH2

OH2

Co3+|Co2+

0.11 V

1.84 V

NH3 is a better σdonor ligand than H2O and so stablisesCo(III)