Top Banner

of 51

r.c Bridge Design for Natai

Apr 09, 2018

Download

Documents

encikeddy
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/8/2019 r.c Bridge Design for Natai

    1/75

    BRIDGE DESIGN

    PROJECT : MENGGANTIKAN JAMBATAN NO.

    BRIDGE SPAN IS LESS THAN 50M SKEW = 30.000 DEGREES

    DATE: 13/10/2000

    REF: BS5400 AND JKR SPECIFICATION FOR BRIDGE LIVE LOADS

    TYPE 1 IF JALAN LUAR BANDAR 0 Span

    LOADINGS 9.45012.500

    1 DEAD LOAD = 2766 KN 14.930

    Span of bridge = 16.60 m o.k Proceed La 16.760

    Width of bridge = 22.90 m 18.900

    No. Beam = 30.000

    2 SUPERIMPOSED DEAD LOAD = 548kN

    Thickness of premix = 60 mm

    Width of premix = 22.000 m

    3 LIVE LOAD = 2175 KN

    Width of Carriageway = 22.000 m

    No. of notional lanes = 6.77

    Actual no. of notional lanes = 6

    4 FORCES DUE TO S,T,C .

    Alpha(t) = 0.0000055 /degre F / unit length

    Alpha(c) = 0.0005550 / unit length

    Alpha(s) = 0.0002000 / unit length

    Elastomeric bearing size adopted :-

    Width = 200 mm Distance of centre of bearing

    Breadth = 350 mm to the edge of ballast wall = 0.250

    Thickness = 39 mm

    Temperature Difference = 20.000 degree F

    Shear Modulus , G = 1.060 N/mm^2

    5 SELF WEIGHT AND BACKFILL .

    S1 = 2.50%

    S2 = 2.50%

    A1 = 0.94m

    A2 = 0.50m

    A2a = 0.30m

    A2b = 2.57m

    A3 = 0.50m 0.577

    A4 = 0.50m 0.577

    A5 = 0.70m 0.808

    A6 = 0.50m

    A7 = 3.00m 3.464 3.000 0.808

    A8 = 1.81m

    A9 = 0.55m

    A10 = 0.20m

    A11 = 0.65m 1.810 0.935

    C1 = 0.30m

    C2 = 0.30m

    D1 = 0.45m 0.500

    L1 = 22.90m 26.443

    A12 = 1.20m 1.386 0.300

    A13 = 0.00m 0.000 3.565

    A14 = 1.00m 1.155

    A15 = 0.80m 0.924

    A16 = 1.20m 2.565

    1.200

    1.000 0.800

    Height Of Abutment : 5.5 meter

    RETAING WALL TYPE OF ABUTMENT(5.5m height)

    A7 A5 =A7

    A4

    A8 =

    A12

    A3

    A6 =

    A2a =

    A2

    A2b =

    A16 =

    A1 =

    A

    A10

    =

    A14A15

    AS2

    AS8

    AS5

    B1

    =

    B2

    A7 =

    A

    ASection A-A

  • 8/8/2019 r.c Bridge Design for Natai

    2/75

    Parapet

    Area1 = 0.18sq.m

    Area2 = 0.10sq.m

    Approach Slab

    AS1 = 3.00m

    AS2 = 0.20m

    AS3 = 22.00m 25.403 12.702

    AS4 = 3.00m

    AS5 = 0.06m

    AS6 = 22.00m 25.403 12.702

    AS7 = 3.00m

    AS8 = 0.74m

    AS9 = 22.00m 25.403 12.702

    BACKFILL

    B1 = 3.57m

    B2 = 1.35m

    6. WIND LOADS

    Mean hourly wind speed , V = 120.800 Km/hourOr = 33.556 m/sec

    Adopt = 34.000 m/sec

    Wind Coef. related to return period, K1 = 1

    K1 = 1 for highway, railway and foot/cycle track

    for a return period of 120 years .

    K1 = 0.85 for return period of 10 yeqrs .

    Ref: Cl.5.3.2.1.2 BS 5400:Pt 2

    Funnelling Factor , S1 = 1

    S1 = 1.0 in general .

    S1 = 1.1 - in valley, bridge sited to the lee of a range of hills .

    Ref: Cl.5.3.2.1.3 BS 5400 : Pt 2

    Gust Factor , S2 = 1.470

    Refer to Table 2 BS5400 : Pt 2

    Max. wind gust speed on bridge without L.L , Vc = 49.980 m/sec

    Vc must be less than 35m/sec.

    Hourly Speed Factor , K2 = 0.890

    Refer to Table 2 and Cl.5.3.2.1.5 BS5400 : Pt 2

    Minimum wind gust speed on relieving areas of bridge without L.L

    35 x K2/S2 m/s = 21.190 m/sec

    Vc' = the lesser

    V K1 K2 m/s = 30.260 m/sec

    Adopt Vc' = 21.190 m/sec

    d1 = m

    d2 = 1.810 m Refer to Table 4 , BS5400 : Pt 2

    d3 = 3.500 m

    dL = 2.500 m

    Cd [ Without Live Load ] = 1.100

    b/d = 12.652

    Refer to Figure 5 , BS 5400 : Pt2

    Cd [ with Live Load ] = 1.300

    b/d = 6.543

    Lift Coefficient , CL = 0.400

    Refer to Figure 6 .

    7. APPROACH SLAB , SURCHARGE , EARTH PRESSURE AND CONCRETE

    Weight of Concrete = 25.000 KN/m

    c1

    c2

    AS1,AS4,AS7

    AS3,AS6,AS9

    L1

  • 8/8/2019 r.c Bridge Design for Natai

    3/75

    8. PILE CALCULATION

    Nominal Load

    L.C V x-BAR H y-BAR

    (KN) (m) (KN) (m)

    1 14180.741 1.757 2833.875 2.078

    2 14036.340 1.760 2846.527 2.089 Vmax = 14

    3 13803.501 1.765 3368.410 2.472 Hmax = 3

    4.1 13803.501 1.765 3166.675 2.339

    4.2 13803.501 1.765 3083.875 2.279

    5 13803.501 1.765 2833.875 2.078

    PileSize/type of pile adopted = spun pile

    Diameter/Breadth = 500 mm

    Working Load = 1000.000

    7.000 NOTES:

    Raked adopted = 9.462 [Deg.] Raked1:4

    Nos. of Raked piles required = 20.490 No. 1:5

    Nos. of Raked piles provided = 13 No. Vertical

    Inc. 1:4

    Nos. of Vertical piles required = 1.376 No.

    Nos. of Vertical piles provided = 4 No.

    Piles arrangement

    Type Number Degree of xi

    Rake (m)

    188655.522 175683.797 Pni ? ...O.K

    1 15 9.462 0.600 12971.725 Hi ?....O.K

    2 7 9.462 2.400 O.K3 7 0.000 2.400

    4 0 0.000 0.000 3540.146 2675.364

    5 864.782

    6 O.K

    7

    Ni V x-BAR H y-BAR Mo

    (m) (m) (KN) (m) (KNm)

    1 14180.741 1.757 2833.875 2.078 1799.860

    2 14036.340 1.760 2846.527 2.089 1859.508

    3 13803.501 1.765 3368.410 2.472 4244.948

    4 13803.501 1.765 3166.675 2.339 3324.028

    4 13803.501 1.765 3083.875 2.279 2946.046

    5 13803.501 1.765 2833.875 2.078 1804.796

    Piles Reactions

    L.C Type No. of Piles Degree Pni(KN) Hi (KN)

    1 15 9.462 568.73 125.52

    2 7 9.462 428.74 102.50

    3 7 0.000 417.57 33.37

    1 4 0 0.000 0.00 0.00 NOTE

    5 0 0.000 0.00 0.00 Pni< 1

    6 0 0.000 0.00 0.00 Hi 5 mm

    Therefore, provide size of stirrup = 16mm

    Spacing < 240 mm

    Say,

    spacing = 300mm

    Required Asv > 299.850 mm^2/m

    Provide Y 16 at c/c 300 mm

    Area provided = 670.206 mm^2/m

    O.K

    CHECKING FOR FLEXURE SHEAR

    Shear Capacity of Critical Section,

    Vcu = 188655.522 KN

    Actual Shear Force = 12971.725 KN

    O.K

    PUNCHING SHEAR

    Shear Capacity of Critical Section,

    Vcu = 3540.146 KN

    Actual Shear , V = 864.782 KN

    O.K

    WING WALL

    Cover = 65mm

    fy = 460KN/sq.mm fcu = 40mm

    Main ReinforcementDia. of main reinforcement = 20mm

    Area of reinforcement required = 1765 mm^2/mMin. area required = 563 mm^2/m

    Provide Y 20 at c/c 150mm

    Area provided = 2094.395 mm^2/m

    O.K

    Secondary Reinfocement

  • 8/8/2019 r.c Bridge Design for Natai

    7/75

    PAG

    48663720.xls

    Provide Y 16 at c/c 150mm

    Area provided = 1340.413 mm^2/m

    O.K

    BALLAST WALL

    NOTE

    Main Reinforcement of retaining wall = 20mm

    Spacing = 150 mm

    Cover = 50mmfy = 460KN/sq.mm

    fcu = 40KN/sq.mm

    MAIN REINFORCEMENT

    For Ballast wall , provide reinforcement size = 20mm

    Area of reinforcement required = 142.5 mm^2/m

    Min. area required = 776.025 mm^2/m

    Provide Y 20 at c/c 150mm

    Area provided = 2094.395 mm^2/m

    O.K

    SECONDARY REINFORCEMENT

    Provide reinforcement size = 16mm

    Min Area of Reinforcement Required = 621 mm^2/m

    Provide Y 16 at c/c 300mm

    Area provided = 670.206 mm^2/m

    O.K

    ABUTMENT WALL

    INPUT DATA :Dia. of Main Reinforcement = 25mmDia. of Link , Y 16mm

    b/h = 22.04Vult = 17099.18 kN 0.1fcuAc = 126924.68 kNSlender ratio , le/h = 5.61

    SINCE b/h > 4 , AND 0.1fcuAc > Vult - DESIGN AS CANTILEVER SLAB

    Min. Area of Reinforcement Required = 1248 mm^2Area of Reinforcement Required = 353 mm^2

    Provide Y 25 @ 150 mm at c/c

    Area = 3272.49 mm^2/layers (177nos.) O.K

    Secondary reinforcementMin. Area of Reinforcement Required = 1248 mm^2

    Provide Y 20 @ 300 mm at c/cArea = 1636.25 mm^2/layers (5nos.) O.K

    SHEAR

    As required > 980.55 sq.mm

    Provide Y 16 at c/c 225 mmAs = 1787.22 sq.mm with 26 legs O.K

    CHECKING FOR SLS REQUIREMENT

    Es = 200 KN/mm^2Ec = 31 KN/mm^2

    Modular Ratio , Es = 6.45Ec

    Maximum Axial Load Capacity , Ns = 28557.33 KN

  • 8/8/2019 r.c Bridge Design for Natai

    8/75

    PAGE 8

    48663720.xls

    Vertical Load at ULS, Nu = 646.65 KN

    SINCE Ns IS GREATER THAN Nu , O .K

    Allowable concrete stress = 20 N/mm^2Maximum concrete stress = 0.0 N/mm^2

    SINCE MAXIMUM STRESS < ALLOWABLE STRESS , IS O.K

    Allowable steel stress = 368 N/mm^2Maximum steel stress = 4.4 N/mm^2

    SINCE MAXIMUM STRESS < ALLOWABLE STRESS , IS O.K

    CRACKSTable 1 , BS 5400 : Part 4 ,

    Alowable crack width = 0.30mmCalculated crack width = 0.01mm THEREFORE IT IS OK

    BEAM SEAT

    MAIN REINFORCEMENT

    fyv = 460 N/sq.mmSpacing required < 300 mmProvide spacing, Sv = 150 mmAs required = 299.9 sq.mm

    Provide Y 16 @ 300 mm at c/cAs = 1340.41 sq.mm

    O.K

    SECONDARY REINFORCEMENT

    fyv = 460 N/sq.mmSpacing required < 300 mmProvide spacing, Sv = 150 mmAs required = 947.5 sq.mm

    Provide Y 16 @ 300 mm at c/cAs = 1340.41 sq.mm

    O.K

  • 8/8/2019 r.c Bridge Design for Natai

    9/75

    BILL OF QUANTITY

    Description Qty Unit

    50 mm thick Grade 15P/20 lean concrete 110.952 m2

    Grade 40/20 concrete at Abutments, Wingwalls,

    Curtainwalls and Approach Slabs 256.903 m3

    Formwork at Abutments, Wingwalls,

    Curtainwalls and Approach Slabs 471.161 m2

    50 mm thick Grade 15P/20 lean concrete

    Pile cap : 44.952 m2

    App.Slab : 66.000 m2

    Total : 110.952 m2

    Grade 40/20 concrete at Abutments, Wingwalls,

    Curtainwalls and Approach Slabs

    Abutment : 243.703 m3

    App. Slab : 13.200 m3

    Total : 256.903 m2

    Formwork at Abutments, Wingwalls,

    Curtainwalls and Approach Slabs

    Item Area (m2)

    1 23.321

    2 12.471

    3 13.221

    4 75.758

    5 24.724

    6 0.661

    7 1.940

    8 1.218

    9 1.629

    10 2.206

    11 0.808

    12 1.657

    13 0.577

    14 10.659

    15 8.453

    16 1.447

    17 67.825

    18 1.005

    19 7.108

    20 183.200

    Parapet

    (a) adopted from taking off 19.910

    Slab 11.361

    Total 471.161

  • 8/8/2019 r.c Bridge Design for Natai

    10/75

    PAGE 10

    48663720.xls

  • 8/8/2019 r.c Bridge Design for Natai

    11/75

    PAGE 11

    48663720.xls

  • 8/8/2019 r.c Bridge Design for Natai

    12/75

    PAGE 12

    48663720.xls

  • 8/8/2019 r.c Bridge Design for Natai

    13/75

    PAGE 13

    48663720.xls

  • 8/8/2019 r.c Bridge Design for Natai

    14/75

    PAGE 14

    48663720.xls

  • 8/8/2019 r.c Bridge Design for Natai

    15/75

    PAGE 15

    48663720.xls

  • 8/8/2019 r.c Bridge Design for Natai

    16/75

    PAGE 16

    48663720.xls

  • 8/8/2019 r.c Bridge Design for Natai

    17/75

    PAGE 17

    48663720.xls

  • 8/8/2019 r.c Bridge Design for Natai

    18/75

    PAGE 18

    48663720.xls

  • 8/8/2019 r.c Bridge Design for Natai

    19/75

    PAGE 19

    48663720.xls

  • 8/8/2019 r.c Bridge Design for Natai

    20/75

    PAGE 20

    48663720.xls

  • 8/8/2019 r.c Bridge Design for Natai

    21/75

    CALCULATION

    1. DEAD LOADS

    1/1 BEAM ( 16.600 m long )

    X-sectional area = = m^2

    Weight per beam = = x 25.000 x 16.6

    = #VALUE! KN

    Nos. of beams = 0

    Therefore ,

    Total Weight of Beams = #VALUE! x 0 =

    1/2. DECK SLAB

    Thickness = #REF! mm

    Width = #REF! m

    Length = 16.600 m

    Therefore ,

    Weight of Deck Slab = #REF! x 16.6 x 25.000 x

    = #REF! KN

    1/3. DIAPHRAGMS

    END DIAPHRAGMS

    Number = #REF!X-sectonal area = #REF! m^2

    Thickness = #REF! mm

    Weight = #REF! x #REF! x #REF! x 25.000 =

    1000

    INTERMEDIATE DIAPHRAGMS

    Number = #REF!

    X-sectonal area = #REF! m^2

    Thickness = #REF! mm

    Weight = #REF! x #REF! x #REF! x 25.000 =

    Therefore , 1000

    Weight of Diaphragms = #REF! KN

    1/4. PARAPETS [ NEW JERSEY ]

    Number = 2

    Length = 16.600 m

    X-sectonal area = #REF! m^2

    Therefore ,

    Weight of Parapet = 2 x 16.6 x #REF! x

    = #REF! KN

    2. SUPERIMPOSED DEAD LOADS

    2/1. PREMIX

    Length = 16.600 m

    Thickness = 60 mm

    Width = 22.000 mTherefore ,

    Weight of Premix = 25.000 x 16.6 x 0.060 x

    = 547.800 KN

    2/2. WATER MAIN + WATER

    Number = #REF!

    Assume 380mm dia. water main is used .

    Weight per meter run (+water) = 2.082 KN/m

    Length = 16.600 m

    Therefore ,

    Weight of Water Main = #REF! x 2.08 x 16.600 x

    =

    Note : Weight including 10% of L brackets .

    3. LIVE LOAD ( LTAL LOAD )

    Length = 16.600 m

    Road Standard = R5

    Width of Carriegway = 22.000 m

    Width per notional lane = 3.250 m

    No. of notional lanes = 6.769

  • 8/8/2019 r.c Bridge Design for Natai

    22/75

  • 8/8/2019 r.c Bridge Design for Natai

    23/75

    Delta(t) = 20 x 0 x 16.600 x

    = 1.826 mm

    [2]. Creep

    Alpha(c) = 0.001 / unit length

    Therefore ,

    Delta(c) = 0 x 16.600 x 1000

    9.213 mm

    [3]. Shrinkage .

    Alpha(s) = 0.00020 /unit length

    Therefore ,Delta(s) = 0.00020 x 16.600 x 1000 =

    Assuming 1/2 creep and 2/3 shrinkage have taken place at time of

    placement of beams .

    Therefore ,

    Effective Shortening , Delta(stc) = 9.21 + 3.320 =

    Therefore , 2 3

    Total Movement , Delta(t) = 1.83 + 5.713 =

    Elastomeric Bearing Size Adopted :

    Width = 200.000 mm

    Breadth = 350.000 mm

    Thickness = 39.000 mm

    1.SHEAR FORCE DUE TO TEMPERATURE ONLY .

    Shear Strain of Bearing ,

    eb = Delta(t) / t = 1.83 = 0.047

    39.000

    Shear Force per Beam ,

    St = eb Ao G = 0.05 x 200.000 x 350.000 x

    = 3.474 KN

    Therefore ,

    Total Shear Force = 30 x 3.47 =

    2. SHEAR FORCE DUE TO S,T,C .

    eb = Delta(stc)/t = 7.54 = 0.193

    Therefore , 39.000

    Shear Force Per Beam ,

    Sstc = 0.19 x 1.060 x 200.000 x

    = 14.344

    Therefore ,

    Total Shear Force = 30 x 14.34 =

    7. SELF WEIGHT OF ABUTMENT

    ITEM NO. VOL. WT X WT X(M^3) (KN) (m) (KNm)

    1 7.63 190.83 2.598 495.800

    2 21.91 547.69 2.021 1106.735

    3 10.69 267.17 1.328 354.772

    4 2.19 54.63 2.021 110.384

    5 2.90 72.62 4.041 293.475

    6 2.52 63.11 4.041 255.066

    7 1.91 47.70 4.041 192.761

    8 3.00 74.95 3.464 259.637

    9 0.08 2.10 2.409 5.069

    10 0.30 7.57 2.887 21.856

    11 0.19 4.85 1.328 6.440

    12 13.28 332.05 1.617 536.786

    13 81.39 2034.76 1.617 3289.356

    14 95.19 2379.84 1.732 4122.000

    Parapet

    0.36 8.94 2.597 23.226

    0.15 3.76 2.001 7.515

    243.70 6092.57 11080.88

  • 8/8/2019 r.c Bridge Design for Natai

    24/75

    30.008 600.153 2.887 1732.492

    28.56 571.161 0.462 263.808

    9. WIND LOAD

    WIND GUST SPEED

    Clause 5.3.2.1 BS 5400 : Pt 2

    Maximum wind gust speed on bridges without live load ,

    Vc = V K1 S1 S2

    where ,

    V = mean hourly wind speed

    = 34.000 m/sec

    K1 = wind coefficient related to return period

    = 1.000

    S1 = funelling factor

    = 1.000

    S2 = gust factor [ Table 2 ]

    = 1.470

    Therefore ,

    Maximum wind gust speed on bridge without live load ,

    Vc = 34 x 1 x 1.000 x= 49.980 m/sec < 35 m/sec , O.K

    Clause 5.3.2.2 BS 5400 : Pt 2 ,

    Minimum wind gust speed on relieving areas of bridge without live load ,

    Vc' = V K1 K2

    where ,

    K2 = hourly speed factor given in Table 2 modified where

    appropriate, in accordance with Clause 5.3.2.1.5 .

    = 0.890

    Therefore ,

    Vc' = 34 x 1.000 x 0.890 =

    Clause 5.3.2.2 , BS 5400 : Pt2 ,

    Minimum wind gust speed on relieving areas with live load ,

    35 K2/S2 m/sec = 35 x 0.89 = 21.190 m/sec

    Vc' = the lesser of 1.47

    V K1 K2 m/sec = 34 x 1.000 x

    = 30.260 m/sec

    Therefore ,

    Vc' = 21.190 m/sec

    NOMINAL TRANSVERSE WIND LOAD

    Clause 5.3.2.2 , BS 5400 : Pt 2 ,

    The niminal transverse wind load ,

    Pt = q A1 Cd N

    where ,

    q = dynamic pressure head

    = 0.613 Vc^2 inN/m^2 with Vc in m/sec

    A1 = solid area ( in m^2 ) - Clause 5.3.3.1

    Cd = drag coefficient - Clause 5.3.3.2.1 to Clause 5.3.3

    Clause 5.3.3.1.2(a) , BS 5400 : Pt 2 ,

    Superstructure with solid parapet without live load ,From Table 4 ,

    d = d2 = 1.810 m

    Therefore ,

    A1 = 1.81 x 16.600 = 30.046 m^2

    Clause 5.3.3.1.2(b) , BS 5400 : Pt 2 ,

    Superstructure with solid parapet with live load ,

    From Table 4 ,

    d = d3 = 3.500 m

  • 8/8/2019 r.c Bridge Design for Natai

    25/75

    b/d = 22.9 = 12.652

    From Figure 5 , 1.810

    Cd = 1.100

    [b]. With live load ,

    b/d = 22.9 = 6.543

    From Figure 5 , 3.500

    Cd = 1.300

    Therefore ,

    [1]. Nominal transverse wind load without live load ,

    Pt(w/o) = 0.613 x 49.98 x 49.980 x 30.046 x

    = 50.610 KN [ windward ]

    [2]. Nominal transverse wind load with live load ,

    Pt(w) = 0.613 x 49.98 x 49.980 x 58.100 x

    = 115.657 KN [ windward ]

    NOMINAL LONGITUDINAL WIND LOAD

    Clause 5.3.4.1 , BS 5400 : Pt2 ,

    Nominal longitudinal wind load on the superstructure alone ,

    Pls = 0.25 q A1 Cd

    = 0.25 x 0.613 x 49.980 x

    30.05 x 1.100

    1000

    = 12.652 KN

    Clause 5.3.4.3 , BS 5400 : Pt 2 ,

    Nominal longitudinal wind load on the live load ,

    Pll = 0.5 q A1 Cd

    = 0.25 x 0.613 x 49.980 x

    58.1 x 1.300

    1000

    = 57.829 KN

    NOMINAL VERTICAL WIND LOAD

    Clause 5.3.5 , BS 5400 : Pt 2 ,

    Nominal Vertical Wind Load ,

    Pv = q A3 C1

    where ,

    A3 = Area in plan

    = 16.6 x 22.900 = 380.140 m^2

    C1 = Lift coefficient as derived from Figure 6 for superstructures

    where the angle of superelevation < 1 degree .

    For superelevation 1 to 5 degrees , C1 = 0.400

    Therefore ,Pv = 0.61 x 49.98 x 49.980 x 380.140 x

    = 232.839 KN

    SUMMARY :

    [A]. Nominal transverse wind load without live load ,

    Pt(w/o) = 50.610 KN (windward)

    [B]. Nominal transverse wind load with live load ,

    Pt(w) = 115.657 KN (windward)

    [C]. Nominal longitudinal wind load on the superstructure alone ,Pls = 12.652 KN

    [D]. Nominal longitudinal wind load on the live load ,

    Pll = 57.829 KN

    [E]. nominal Vertical Wind Load ,

    Pv = 232.839 KN

  • 8/8/2019 r.c Bridge Design for Natai

    26/75

    Weight = 13.2 x 25.000 = 330.000 KN

    PREMIX

    Breadth = 3.000 m

    Length = 22.000 m

    Thickness = 0.060 m

    Therefore ,

    Volume = 3 x 22.000 x 0.060 =

    Weight = 3.96 x 25.000 = 99.000 KN

    CRUSHER RUN

    Breadth = 3.000 m

    Length = 22.000 m

    Thickness = 0.735 m

    Therefore ,

    Volume = 3 x 22.000 x 0.735 =

    Weight = 48.51 x 20.000 = 970.2 KN

    Therefore ,

    Total Weight = 1399.2 KNAssume that 1/2 of the approach slab acts on the abutment

    and the other 1/2 on the backfill .

    Weight Acting on Pile cap = 699.600 KN

    x - Bar = 2.598 m

    11. SURCHARGE .

    Surcharge due to Live Load = 20.000 KN/m^2

    Therefore ,

    Total surcharge = 1320.000 KN

    Assume that 1/2 of the surcharge acts on the abutment

    and the other 1/2 on the backfill .

    Therefore ,

    Surcharge acts on the Abutment = 660.000 KN

    x -Bar = 2.598 m

    12. EARTH PRESSURE .

    Bulk Density Of Soil , w = 20.000 KN/m^3

    H = 5.500 m

    h' = 1.000 m

    K = 0.300

    P = w H^2 [ 1 + 2h'/H ] k

    2

    = 20 x 5.5 x 5.500 x [ 1 + ( 2 x

    2

    0.3 x 22.9

    = 2833.875 KN

    yo = H/3 [ 1 + h'/(H + 2h')]

    = 5.500 [ 1 + 1.000 ]

    3 ( 5.5 + ( 2 x 1.000 ) )

    = 2.078 m

  • 8/8/2019 r.c Bridge Design for Natai

    27/75

    SUMMARY OF LOADING [ NOMINAL ]

    TYPE OF LOADING WEIGHT

    (KN) (m) (m)

    DEAD LOADS 2571.300 1.482 -

    SUPERIMPOSED DEAD LOADS 547.100 1.482 -

    LIVE LOAD -- HA+HB 1886.200 1.482 -

    LOAD DUE TO LONG. BRAKING 332.800 - 4.565

    ACCIDENTAL LOAD DUE TO SKIDDING 250.000 - 4.565

    FORCES DUE TO S,T,C 430.312 - 4.565

    SHEAR FORCE DUE TO TEMP. ONLY 104.222 - 4.565

    SELF WEIGHT OF ABUTMENT 6092.567 1.819 -

    BACKFILL 600.153 2.887

    571.161 0.462

    WIND LOADS

    Nom. trans. wind load without L.L 50.610 - -

    Nom. trans. wind load with L.L 115.657 - -

    Nom. long. wind load on the superstruct. 12.652 - 4.565

    Nom. long. wind load on the L.L 57.829 - -Nom. Vertical Wind Load 232.839 1.482 -

    APPROACH SLAB

    On Cobel 699.600 2.598 -

    SURCHARGE

    On Cobel 660.000 2.598 -

    EARTH PRESSURE 2833.875 - 2.078

    PILE DESIGN

    LOAD COMBINATION : 1

    VERTICAL LOAD @ S.L.S

    Load Nominal Gam.fl Gam.f3 Design x Mo

    Weight Weight (m)

    (KN) (KN)

    Live - HA+HB 1886.200 1.200 1.000 2263.440 1.482

    2263.440 1.482

    Dead Load 2571.300 1.000 1.000 2571.300 1.482

    Superimposed Dead 547.100 1.200 1.000 656.520 1.482

    Load

    Self Wt. Of Abutment 6092.567 1.000 1.000 6092.567 1.819

  • 8/8/2019 r.c Bridge Design for Natai

    28/75

    14180.741

    Ver.Load = 14180.741 KN

    x - bar = 1.757 m

    HORIZONTAL LOAD @ S.L.S

    Load Nominal Gam.fl Gam.f3 Design y Mo

    Weight Weight (m)

    (KN) (KN)

    Earth Pressure 2833.875 1.000 1.000 2833.875 2.078

    2833.875

    Hor.Load = 2833.875 KN

    y - bar = 2.078 m

    LOAD COMBINATION : 2

    VERTICAL LOAD @ S.L.S

    Load Nominal Gam.fl Gam.f3 Design x Mo

    Weight Weight (m)

    (KN) (KN)

    Live - HA+HB 1886.200 1.000 1.000 1886.200 1.482

    1886.200 1.482

    Dead Load 2571.300 1.000 1.000 2571.300 1.482

    Superimposed Dead 547.100 1.200 1.000 656.520 1.482

    Load

    Self Wt. Of Abutment 6092.567 1.000 1.000 6092.567 1.819

    Backfill 600.153 1.000 1.000 600.153 2.887

    571.161 1.000 1.000 571.161 0.462

    Wind Load

    Vertical Wind Load 232.839 1.000 1.000 232.839 1.482

    Approach Slab

    On Cobel 699.600 1.000 1.000 699.600 2.598

    Surcharge

    On Cobel 660.000 1.100 1.000 726.000 2.598

    14036.340

    Ver.Load = 14036.340 KN

    x - bar = 1.760 m

    HORIZONTAL LOAD @ S.L.S

    Load Nominal Gam.fl Gam.f3 Design y Mo

    Weight Weight (m)(KN) (KN)

    Earth Pressure 2833.875 1.000 1.000 2833.875 2.078

    Wind Load

    Long. Load on the

    Superstructure 12.652 1.000 1.000 12.652 4.565

    2846.527

  • 8/8/2019 r.c Bridge Design for Natai

    29/75

    LOAD COMBINATION : 3

    VERTICAL LOAD @ S.L.S

    Load Nominal Gam.fl Gam.f3 Design x Mo

    Weight Weight (m)

    (KN) (KN)

    Live - HA+HB 1886.200 1.000 1.000 1886.200 1.482

    1886.200 1.482

    Dead Load 2571.300 1.000 1.000 2571.300 1.482 Superimposed Dead

    Load 547.100 1.200 1.000 656.520 1.482

    Self Wt. Of Abutment 6092.567 1.000 1.000 6092.567 1.819

    Backfill 600.153 1.000 1.000 600.153 2.887

    571.161 1.000 1.000 571.161 0.462

    Approach Slab

    On Cobel 699.600 1.000 1.000 699.600 2.598

    Surcharge

    On Cobel 660.000 1.100 1.000 726.000 2.598

    13803.501

    Ver.Load = 13803.501 KN

    x - bar = 1.765 m

    HORIZONTAL LOAD @ S.L.S

    Load Nominal Gam.fl Gam.f3 Design y Mo

    Weight Weight (m)

    (KN) (KN)

    Earth Pressure 2833.875 1.000 1.000 2833.875 2.078

    Force Due To Temp. 104.222 1.000 1.000 104.222 4.565

    Forces Due To S,T,C 430.312 1.000 1.000 430.312 4.565

    3368.410

    Hor.Load = 3368.410 KN

    y - bar = 2.472 m

    LOAD COMBINATION : 4.1

    VERTICAL LOAD @ S.L.S

    Load Nominal Gam.fl Gam.f3 Design x Mo

    Weight Weight (m)

    (KN) (KN)

    Live - HA+HB 1886.200 1.000 1.000 1886.200 1.482

    1886.200 1.482

    Dead Load 2571.300 1.000 1.000 2571.300 1.482

    Superimposed Dead

  • 8/8/2019 r.c Bridge Design for Natai

    30/75

    Surcharge

    On Cobel 660.000 1.100 1.000 726.000 2.598

    13803.501

    Ver.Load = 13803.501 KN

    x - bar = 1.765 m

    HORIZONTAL LOAD @ S.L.S

    Load Nominal Gam.fl Gam.f3 Design y Mo

    Weight Weight (m)

    (KN) (KN)

    Earth Pressure 2833.875 1.000 1.000 2833.875 2.078

    Load Due To

    Long. Braking 332.800 1.000 1.000 332.800 4.565

    3166.675

    Hor.Load = 3166.675 KN

    y - bar = 2.339 m

    LOAD COMBINATION : 4.2

    VERTICAL LOAD @ S.L.S

    Load Nominal Gam.fl Gam.f3 Design x Mo

    Weight Weight (m)

    (KN) (KN)

    Live - HA+HB 1886.200 1.000 1.000 1886.200 1.482

    1886.200 1.482

    Dead Load 2571.300 1.000 1.000 2571.300 1.482

    Superimposed Dead 547.100 1.200 1.000 656.520 1.482

    Load

    Self Wt. Of Abutment 6092.567 1.000 1.000 6092.567 1.819

    Backfill 600.153 1.000 1.000 600.153 2.887

    571.161 1.000 1.000 571.161 0.462

    Approach SlabOn Cobel 699.600 1.000 1.000 699.600 2.598

    Surcharge

    On Cobel 660.000 1.100 1.000 726.000 2.598

    13803.501

    Ver.Load = 13803.501 KN

    x - bar = 1.765 m

    HORIZONTAL LOAD @ S.L.S

    Load Nominal Gam.fl Gam.f3 Design y Mo

    Weight Weight (m)

    (KN) (KN)

    Earth Pressure 2833.875 1.000 1.000 2833.875 2.078

    Load Due To

    Skidding 250.000 1.000 1.000 250.000 4.565

  • 8/8/2019 r.c Bridge Design for Natai

    31/75

    Load Nominal Gam.fl Gam.f3 Design x Mo

    Weight Weight (m)

    (KN) (KN)

    Live - HA+HB 1886.200 1.000 1.000 1886.200 1.482

    1886.200 1.482

    Dead Load 2571.300 1.000 1.000 2571.300 1.482

    Superimposed Dead 547.100 1.200 1.000 656.520 1.482

    LoadSelf Wt. Of Abutment 6092.567 1.000 1.000 6092.567 1.819

    Backfill 600.153 1.000 1.000 600.153 2.887

    571.161 1.000 1.000 571.161 0.462

    Approach Slab

    On Cobel 699.600 1.000 1.000 699.600 2.598

    Surcharge

    On Cobel 660.000 1.100 1.000 726.000 2.598

    13803.501 Ver. Load = 13803.501 KN

    x - bar = 1.765 m

    HORIZONTAL LOAD @ S.L.S

    Load Nominal Gam.fl Gam.f3 Design y Mo

    Weight Weight (m)

    (KN) (KN)

    Earth Pressure 2833.875 1.000 1.000 2833.875 2.078

    2833.875 Hor. Load = 2833.875 KN

    y - bar = 2.078 m

    SUMMARY

    LOAD COMB. VER.LOAD x HOR.LOAD y

    (KN) BAR (KN) BAR

    1 14180.741 1.757 2833.875 2.078

    2 14036.340 1.760 2846.527 2.089

    3 13803.501 1.765 3368.410 2.472

    4.1 13803.501 1.765 3166.675 2.339

    4.2 13803.501 1.765 3083.875 2.279

    5 13803.501 1.765 2833.875 2.078

    Adopt : spun pile

    Diameter/breadth of pile = 500.000 mm

    Working Load = 1000.000 KN

    Number of Piles Required

    Assume that the total horizontal loads will be

    taken by the horizontal component of the raked piles .

    From Table above ,

    Maximum Horizontal Component ,

  • 8/8/2019 r.c Bridge Design for Natai

    32/75

    Therefore ,

    Vertical Component of 13 raked piles = 12823.133 KN

    Maximum Vertical Component = 14180.741 KN

    Therefore ,

    Nos. of vertical piles required = 1.376

    Provide 4 nos. of vertical piles

    Type Nos. Rake xi

    (m)

    1 15 9.462 0.600

    2 7 9.462 2.400

    3 7 0.000 2.400 Piles arrangement

    4 0 0.000 0.000

    5 0 0.000 0.000

    6 0 0.000 0.000

    7 0 0.000 0.000

    Ni xi Ni xi xi-xbar Ni(xi-xbar)^2

    15 0.600 9.000 -0.869 11.327

    7 2.400 16.800 0.931 6.068

    7 2.400 16.800 0.931 6.068

    0 0.000 0.000 0.000 0.000

    0 0.000 0.000 0.000 0.000

    0 0.000 0.000 0.000 0.000

    0 0.000 0.000 0.000 0.000

    29 42.600 23.462

    xbar = 1.469 m

    Iyy = 23.462

    L.C V x-BAR H y-BAR

    (KN) (m) (KN) (m)

    1 14180.74 1.757 2833.875 2.078

    2 14036.340 1.760 2846.527 2.089

    3 13803.501 1.765 3368.410 2.472

    4.1 13803.501 1.765 3166.675 2.339

    4.2 13803.501 1.765 3083.875 2.279

    5 13803.501 1.765 2833.875 2.078

    LOAD COMBINATION : 1

    VER. LOAD , V 14180.74 KN

    X - BAR 1.757 m

    HOR. LOAD , H 2833.875 KN

    Y - BAR 2.078 m

    Mo 1800 KNm

    Type 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0

    xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000

    xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29

    Mo 1800 1800 1799.9 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 66.661 -71.423 -71.4 0.000 0.000 0.000 0.000

    Ni=V/n + M 555.653 4 17.568 417.568 0.000 0.000 0.000 0.000

    SUM [ Ni ] = 14180.74 KN

    Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000

    Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000

    SUM [Cos delta] = 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

  • 8/8/2019 r.c Bridge Design for Natai

    33/75

    Ny = -Ni Sin delta -91.346 -68.645 0.000 0.000 0.000 0.000 0.000

    Hy = Hi Cos delta 123.811 101.110 33.367 0.000 0.000 0.000 0.000

    Phi = Hy + Ny 32.465 32.465 33.367 0.000 0.000 0.000 0.000

    LOAD COMBINATION : 2

    VER. LOAD , V 14036.340 KN

    X - BAR 1.760 m

    HOR. LOAD , H 2846.527 KN

    Y - BAR 2.089 m

    Mo 1860 KNm

    Type 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0

    xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29

    Mo 1860 1860 1859.5 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 68.871 -73.790 -73.8 0.000 0.000 0.000 0.000

    Ni=V/n + M 552.882 4 10.222 410.222 0.000 0.000 0.000 0.000

    SUM [ Ni ] = 14036.340 KN

    Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000

    Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000

    SUM [Cos delta] = 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

    Ni Sin delta 90.890 67.438 0.000 0.000 0.000 0.000 0.000

    A = Ni Tan delta 92.144 68.368 0.000 0.000 0.000 0.000 0.000

    SUM [Ni Tan delta ] = 1860.733 KN

    He = [H-Sum[Ni Tan delta ]]/[Sum Cos delta ] = 34.347

    B = He Cos delta 33.880 33.880 34.347 0.000 0.000 0.000 0.000

    Hi = A + B 126.024 102.248 34.347 0.000 0.000 0.000 0.000

    SUM [Hi] = 2846.527 KN

    Nx = Ni Cos delta 545.360 404.641 410.222 0.000 0.000 0.000 0.000

    Hx = Hi Sin delta 20.718 16.809 0.000 0.000 0.000 0.000 0.000

    Pni = Nx + Hx 566.078 421.450 410.222 0.000 0.000 0.000 0.000

    Ny = -Ni Sin delta -90.890 -67.438 0.000 0.000 0.000 0.000 0.000

    Hy = Hi Cos delta 124.309 100.857 34.347 0.000 0.000 0.000 0.000

    Phi = Hy + Ny 33.419 33.419 34.347 0.000 0.000 0.000 0.000

    LOAD COMBINATION : 3

    VER. LOAD , V 13803.501 KN

    X - BAR 1.765 m

    HOR. LOAD , H 3368.410 KN

    Y - BAR 2.472 m

    Mo 4245 KNm

    Type 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0

    xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000

    xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29

    Mo 4245 4245 4244.948 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 157.220 -168.450 -168.45 0.000 0.000 0.000 0.000

    Ni=V/n + M 633.203 3 07.532 307.532 0.000 0.000 0.000 0.000

    SUM [ Ni ] = 13803.501

    Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000

    Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000

    SUM[Cos delta] = 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

    Ni Sin delta 104.094 50.556 0.000 0.000 0.000 0.000 0.000

  • 8/8/2019 r.c Bridge Design for Natai

    34/75

    Ny = -Ni Sin delta -104.094 -50.556 0.000 0.000 0.000 0.000 0.000

    Hy = Hi Cos delta 152.460 98.922 49.709 0.000 0.000 0.000 0.000

    Phi = Hy + Ny 48.366 48.366 49.709 0.000 0.000 0.000 0.000

    LOAD COMBINATION : 4.1

    VER. LOAD , V 13803.501 KN

    X - BAR 1.765 m

    HOR. LOAD , H 3166.675 KN

    Y - BAR 2.339 mMo 3324 KNm

    Type 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0

    xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000

    xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29

    Mo 3324 3324 3324.028 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 123.112 -131.906 -131.91 0.000 0.000 0.000 0.000

    Ni=V/n + M 599.095 3 44.077 344.077 0.000 0.000 0.000 0.000

    SUM [ Ni ] = 13803.501

    Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000

    Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000SUM[Cos delta] = 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

    Ni Sin delta 98.487 56.564 0.000 0.000 0.000 0.000 0.000

    A = Ni Tan delta 99.846 57.344 0.000 0.000 0.000 0.000 0.000

    SUM[Ni Tan delta ] = 1899.095

    He = [H-SUM[Ni Tan delta]]/[SUM [Cos delta]] = 44.166

    B = He Cos delta 43.565 43.565 44.166 0.000 0.000 0.000 0.000

    Hi = A + B 143.410 100.909 44.166 0.000 0.000 0.000 0.000

    SUM [Hi] = 3166.675 KN

    Nx = Ni Cos delta 590.944 339.396 344.077 0.000 0.000 0.000 0.000

    Hx = Hi Sin delta 23.576 16.589 0.000 0.000 0.000 0.000 0.000

    Pni = Nx + Hx 614.520 355.984 344.077 0.000 0.000 0.000 0.000

    Ny = -Ni Sin delta -98.487 -56.564 0.000 0.000 0.000 0.000 0.000

    Hy = Hi Cos delta 141.459 99.536 44.166 0.000 0.000 0.000 0.000

    Phi = Hy + Ny 42.972 42.972 44.166 0.000 0.000 0.000 0.000

    LOAD COMBINATION : 4.2

    VER. LOAD , V 13803.501 KN

    X - BAR 1.765 m

    HOR. LOAD , H 3083.875 KN

    Y - BAR 2.279 m

    Mo 2946 KNm

    Type 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000

    xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29

    Mo 2946 2946 2946.046 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 109.113 -116.907 -116.91 0.000 0.000 0.000 0.000

    Ni=V/n + M 585.096 3 59.076 359.076 0.000 0.000 0.000 0.000

    SUM [ Ni ] = 13803.501

    Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000

    Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000

    SUM[Cos delta] = 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

    Ni Sin delta 96.186 59.030 0.000 0.000 0.000 0.000 0.000

    A = Ni Tan delta 97.513 59.844 0.000 0.000 0.000 0.000 0.000

    SUM[Ni Tan delta ] = 1881.596

    He = [H-SUM[Ni Tan delta]]/[SUM [Cos delta]] = 41.890

    B = He Cos delta 41.320 41.320 41.890 0.000 0.000 0.000 0.000

    Hi = A + B 138.833 101.164 41.890 0.000 0.000 0.000 0.000

    SUM [Hi] = 3083.875 KN

    Nx = Ni Cos delta 577.135 354.191 359.076 0.000 0.000 0.000 0.000

    Hx = Hi Sin delta 22.823 16.631 0.000 0.000 0.000 0.000 0.000

    Pni = Nx + Hx 599.959 370.822 359.076 0.000 0.000 0.000 0.000

  • 8/8/2019 r.c Bridge Design for Natai

    35/75

    HOR. LOAD , H 2833.875 KN

    Y - BAR 2.078 m

    Mo 1805 KNm

    Type 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0

    xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000

    xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29

    Mo 1805 1805 1804.796 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 66.844 -71.619 -71.619 0.000 0.000 0.000 0.000

    Ni=V/n + M 542.827 4 04.364 404.364 0.000 0.000 0.000 0.000

    SUM [ Ni ] = 13803.501Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000

    Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000

    SUM[Cos delta] = 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

    Ni Sin delta 89.237 66.475 0.000 0.000 0.000 0.000 0.000

    A = Ni Tan delta 90.468 67.392 0.000 0.000 0.000 0.000 0.000

    SUM[Ni Tan delta ] = 1828.762

    He = [H-SUM[Ni Tan delta]]/[SUM [Cos delta]] = 35.021

    B = He Cos delta 34.544 34.544 35.021 0.000 0.000 0.000 0.000

    Hi = A + B 125.012 101.936 35.021 0.000 0.000 0.000 0.000

    SUM [Hi] = 2833.875 KN

    Nx = Ni Cos delta 535.442 398.862 404.364 0.000 0.000 0.000 0.000Hx = Hi Sin delta 20.551 16.758 0.000 0.000 0.000 0.000 0.000

    Pni = Nx + Hx 555.993 415.620 404.364 0.000 0.000 0.000 0.000

    Ny = -Ni Sin delta -89.237 -66.475 0.000 0.000 0.000 0.000 0.000

    Hy = Hi Cos delta 123.311 100.549 35.021 0.000 0.000 0.000 0.000

    Phi = Hy + Ny 34.074 34.074 35.021 0.000 0.000 0.000 0.000

    SUMMARY OF LOADING [ NOMINAL ]

    TYPE OF LOADING WEIGHT x-BAR y-BAR

    (KN) (m) (m)

    DEAD LOADS 2571.300 1.482 -

    SUPERIMPOSED DEAD LOADS 547.100 1.482 -

    LIVE LOAD -- HA+HB 1886.200 1.482 -

    LOAD DUE TO LONG. BRAKING 332.800 - 4.565

    ACCIDENTAL LOAD DUE TO SKIDDING 250.000 - 4.565

    FORCES DUE TO S,T,C 430.312 - 4.565

    SHEAR FORCE DUE TO TEMP. ONLY 104.222 - 4.565

    SELF WEIGHT OF ABUTMENT 6092.567 1.819 -

    BACKFILL 600.153 2.887 0.000

    WIND LOADS

    Nom. trans. wind load without L.L 50.610 - -

    Nom. trans. wind load with L.L 115.657 - -

    Nom. long. wind load on the superstruct. 12.652 - 4.565

    Nom. long. wind load on the L.L 57.829 - -

    Nom. Vertical Wind Load 232.839 1.482 -

    APPROACH SLAB

    On Cobel 699.600 2.598 -

    SURCHARGE

    On Cobel 660.000 2.598 -

    EARTH PRESSURE 2833.875 - 2.078

  • 8/8/2019 r.c Bridge Design for Natai

    36/75

    Load Nominal Gam.fl Gam.f3 Design x Moment

    Weight Weight (m) (KNm)

    (KN) (KN)

    Live -HA+HB 1886.200 1.500 1.100 3112.230 1.482 4612.483

    3112.230 1.482 4612.483

    Dead Load 2571.300 1.150 1.100 3252.695 1.482 4820.659

    Superimposed Dead 547.100 1.750 1.100 1053.168 1.482 1560.848

    Load

    Self Wt. Of Abutment 6092.567 1.150 1.100 7707.097 1.819 14017.310

    Backfill 600.153 1.150 1.100 759.193 2.887 2191.602

    Approach Slab

    On Cobel 699.600 1.150 1.100 884.994 2.598 2299.282

    Surcharge

    On Cobel 660.000 1.500 1.100 1089.000 2.598 2829.305

    17858.376 32331.489

    Ver.Load = 17858.376 KN

    x - bar = 1.810 m

    HORIZONTAL LOAD @ U.L.S

    Load Nominal Gam.fl Gam.f3 Design y Moment

    Weight Weight (m) (KNm)

    (KN) (KN)

    Earth Pressure 2833.875 1.500 1.100 4675.894 2.078 9715.468

    4675.894 9715.468

    Hor.Load = 4675.894 KN

    x - bar = 2.078 m

    LOAD COMBINATION : 2

    VERTICAL LOAD @ U.L.S

    Load Nominal Gam.fl Gam.f3 Design x Moment

    Weight Weight (m) (KNm)

    (KN) (KN)

    Live -HA+HB 1886.200 1.250 1.100 2593.525 1.482 3843.736

    2593.525 1.482 3843.736

    Dead Load 2571.300 1.150 1.100 3252.695 1.482 4820.659

    Superimposed Dead 547.100 1.750 1.100 1053.168 1.482 1560.848

    Load

    Self Wt. Of Abutment 6092.567 1.150 1.100 7707.097 1.819 14017.310

    Backfill 600.153 1.150 1.100 759.193 2.887 2191.602

    Wind Load

    Vertical Wind Load 232.839 1.100 1.100 281.736 1.482 417.547

    Approach Slab

    On Cobel 699.600 1.150 1.100 884.994 2.598 2299.282

    Surcharge

    On Cobel 660.000 1.500 1.100 1089.000 2.598 2829.305

  • 8/8/2019 r.c Bridge Design for Natai

    37/75

    Weight Weight (m) (KNm)

    (KN) (KN)

    Earth Pressure 2833.875 1.500 1.100 4675.894 2.078 9715.468

    Wind Load

    Long. Load on the

    Superstructure 12.652 1.100 1.100 15.309 4.565 69.887

    4691.203 9785.355

    Hor.Load = 4691.203 KN

    y - bar = 2.086 m

    LOAD COMBINATION : 3

    VERTICAL LOAD @ U.L.S

    Load Nominal Gam.fl Gam.f3 Design x-bar Moment

    Weight Weight (m) (KNm)

    (KN) (KN)

    Live - HA+HB 1886.200 1.250 1.100 2593.525 1.482 3843.736

    2593.525 1.482 3843.736

    Dead Load 2571.300 1.150 1.100 3252.695 1.482 4820.659

    Superimposed Dead

    Load 547.100 1.750 1.100 1053.168 1.482 1560.848

    Self Wt. Of Abutment 6092.567 1.150 1.100 7707.097 1.819 14017.310

    Backfill 600.153 1.150 1.100 759.193 2.887 2191.602

    Approach Slab

    On Cobel 699.600 1.150 1.100 884.994 2.598 2299.282

    SurchargeOn Cobel 660.000 1.500 1.100 1089.000 2.598 2829.305

    17339.671 31562.741

    Ver.Load = 17339.671 KN

    x - bar = 1.820 m

    HORIZONTAL LOAD @ U.L.S

    Load Nominal Gam.fl Gam.f3 Design y-bar Moment

    Weight Weight (m) (KNm)

    (KN) (KN)

    Earth Pressure 2833.875 1.500 1.100 4675.894 2.078 9715.468

    Force Due To Temp. 104.222 1.300 1.100 149.038 4.565 680.359

    Forces Due To S,T,C 430.312 1.000 1.100 473.344 4.565 2160.814

    5298.276 12556.641

    Hor.Load = 5298.276 KN

    y - bar = 2.370 m

    LOAD COMBINATION : 4.1

    VERTICAL LOAD @ U.L.S

    Load Nominal Gam.fl Gam.f3 Design x Moment

    Weight Weight (m) (KNm)

    (KN) (KN)

    Live - LTAL 1886.200 1.250 1.100 2593.525 1.482 3843.736

    2593.525 1.482 3843.736

  • 8/8/2019 r.c Bridge Design for Natai

    38/75

  • 8/8/2019 r.c Bridge Design for Natai

    39/75

    Load Nominal Gam.fl Gam.f3 Design x Moment

    Weight Weight (m) (KNm)

    (KN) (KN)

    Live - HA+HB+C18 1886.200 1.250 1.100 2593.525 1.482 3843.736

    2593.525 1.482 3843.736

    Dead Load 2571.300 1.150 1.100 3252.695 1.482 4820.659

    Superimposed Dead 547.100 1.750 1.100 1053.168 1.482 1560.848

    Load

    Self Wt. Of Abutment 6092.567 1.150 1.100 7707.097 1.819 14017.310

    Backfill 600.153 1.150 1.100 759.193 2.887 2191.602

    Approach Slab

    On Cobel 699.600 1.150 1.100 884.994 2.598 2299.282

    Surcharge

    On Cobel 660.000 1.500 1.100 1089.000 2.598 2829.305

    17339.671 31562.741

    Ver. Load = 17339.671 KNx - bar = 1.820 m

    HORIZONTAL LOAD @ U.L.S

    Load Nominal Gam.fl Gam.f3 Design y Moment

    Weight Weight (m) (KNm)

    (KN) (KN)

    Earth Pressure 2833.875 1.500 1.100 4675.894 2.078 9715.468

    4675.894 9715.468

    Hor. Load = 4675.894 KNy - bar = 2.078 m

    SUMMARY

    LOAD COMB. VER.LOAD x HOR.LOAD y

    (KN) BAR (KN) BAR

    1 17858.38 1.810 4675.894 2.078

    2 17621.41 1.815 4691.203 2.086

    3 17339.67 1.820 5298.276 2.370

    4.1 17339.67 1.820 5133.494 2.299

    4.2 17339.67 1.820 5019.644 2.248

    5 17339.67 1.820 4675.894 2.078

    Type Nos. Rake xi

    (m)

    1 15 9.462 0.6002 7 9.462 2.400

    3 7 0.000 2.400 Piles arrangement

    4 0 0.000 0.000

    5 0 0.000 0.000

    6 0 0.000 0.000

    7 0 0.000 0.000

    Ni xi Ni xi (KNm) xi-xbar Ni(xi-xbar)^2

    15 0 600 9 000 -0 869 11 327

  • 8/8/2019 r.c Bridge Design for Natai

    40/75

    Iyy = 23.462

    L.C V x-BAR H y-BAR Mo

    (KN) (m) (KN) (m) (KNm)

    1 17858.4 1.810 4675.894 2.078 3617

    2 17621.4 1.815 4691.203 2.086 3690

    3 17339.7 1.820 5298.276 2.370 6465

    4.1 17339.7 1.820 5133.494 2.299 5713

    4.2 17339.7 1.820 5019.644 2.248 5193

    5 17339.7 1.820 4675.894 2.078 3624

    LOAD COMBINATION : 1

    VER. LOAD , V 17858.376 KN

    X - BAR 1.810 m

    HOR. LOAD , H 4675.894 KN

    Y - BAR 2.078 m

    Mo 3617 KNm

    Type 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000

    xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29

    Mo 3617 3617 3617.318 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 133.975 -143.544 -143.544 0.000 0.000 0.000 0.000

    Ni=V/n + M 749.781 4 72.262 472.262 0.000 0.000 0.000 0.000

    SUM [ Ni ] = 17858.376 KN

    Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000

    Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000

    SUM [Cos delta] = 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

    Ni Sin delta 123.259 77.637 0.000 0.000 0.000 0.000 0.000

    A = Ni Tan delta 124.959 78.708 0.000 0.000 0.000 0.000 0.000

    SUM [Ni Tan delta ] = 2425.340 KN

    He = [H-Sum[Ni Tan delta ]]/[Sum Cos delta ] = 78.415

    B = He Cos delta 77.348 77.348 78.415 0.000 0.000 0.000 0.000

    Hi = A + B 202.307 156.055 78.415 0.000 0.000 0.000 0.000

    SUM [Hi] = 4675.894 KN

    Nx = Ni Cos delta 739.580 465.837 472.262 0.000 0.000 0.000 0.000

    Hx = Hi Sin delta 33.258 25.654 0.000 0.000 0.000 0.000 0.000

    Pni = Nx + Hx 772.838 491.491 472.262 0.000 0.000 0.000 0.000

    Ny = -Ni Sin delta -123.259 -77.637 0.000 0.000 0.000 0.000 0.000

    Hy = Hi Cos delta 199.555 153.932 78.415 0.000 0.000 0.000 0.000

    Phi = Hy + Ny 76.295 76.295 78.415 0.000 0.000 0.000 0.000

    LOAD COMBINATION : 2

    VER. LOAD , V 17621.407 KN

    X - BAR 1.815 m

    HOR. LOAD , H 4691.203 KN

    Y - BAR 2.086 m

    Mo 3690 KNm

    Type 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0

    xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000

    xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29Mo 3690 3690 3690.307 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 136.678 -146.441 -146.441 0.000 0.000 0.000 0.000

    Ni=V/n + M 744.313 4 61.194 461.194 0.000 0.000 0.000 0.000

    SUM [ Ni ] = 17621.407 KN

    Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000

    Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000

    SUM [Cos delta 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

  • 8/8/2019 r.c Bridge Design for Natai

    41/75

    Pni = Nx + Hx 767.531 480.507 461.194 0.000 0.000 0.000 0.000

    Ny = -Ni Sin delta -122.360 -75.817 0.000 0.000 0.000 0.000 0.000

    Hy = Hi Cos delta 200.076 153.533 79.874 0.000 0.000 0.000 0.000

    Phi = Hy + Ny 77.716 77.716 79.874 0.000 0.000 0.000 0.000

    LOAD COMBINATION : 3

    VER. LOAD , V 17339.671 KN

    X - BAR 1.820 m

    HOR. LOAD , H 5298.276 KNY - BAR 2.370 m

    Mo 6465 KNm

    Type 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0

    xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000

    xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29

    Mo 6465 6465 6465.279 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 239.455 -256.559 -256.559 0.000 0.000 0.000 0.000

    Ni=V/n + M 837.374 3 41.361 341.361 0.000 0.000 0.000 0.000

    SUM [ Ni ] = 17339.671

    Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000

    SUM[Cos delta] = 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

    Ni Sin delta 137.659 56.118 0.000 0.000 0.000 0.000 0.000

    A = Ni Tan delta 139.558 56.892 0.000 0.000 0.000 0.000 0.000

    SUM[Ni Tan delta ] = 2491.604

    He = [H-SUM[Ni Tan delta]]/[SUM [Cos delta]] = 97.791

    B = He Cos delta 96.461 96.461 97.791 0.000 0.000 0.000 0.000

    Hi = A + B 236.018 153.352 97.791 0.000 0.000 0.000 0.000

    SUM [Hi] = 5298.276 KN

    Nx = Ni Cos delta 825.982 336.717 341.361 0.000 0.000 0.000 0.000

    Hx = Hi Sin delta 38.800 25.210 0.000 0.000 0.000 0.000 0.000

    Pni = Nx + Hx 864.782 361.927 341.361 0.000 0.000 0.000 0.000

    Ny = -Ni Sin delta -137.659 -56.118 0.000 0.000 0.000 0.000 0.000

    Hy = Hi Cos delta 232.807 151.266 97.791 0.000 0.000 0.000 0.000

    Phi = Hy + Ny 95.148 95.148 97.791 0.000 0.000 0.000 0.000

    LOAD COMBINATION : 4.1

    VER. LOAD , V 17339.671 KN

    X - BAR 1.820 m

    HOR. LOAD , H 5133.494 KN

    Y - BAR 2.299 m

    Mo 5713 KNmType 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0

    xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000

    xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29

    Mo 5713 5713 5713.050 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 211.594 -226.708 -226.708 0.000 0.000 0.000 0.000

    Ni=V/n + M 809.514 3 71.211 371.211 0.000 0.000 0.000 0.000

    SUM [ Ni ] = 17339.671

    Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000

    Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000

    SUM[Cos delta] = 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

    Ni Sin delta 133.079 61.025 0.000 0.000 0.000 0.000 0.000

    A = Ni Tan delta 134.914 61.866 0.000 0.000 0.000 0.000 0.000

    SUM[Ni Tan delta ] = 2456.780

    He = [H-SUM[Ni Tan delta]]/[SUM [Cos delta]] = 93.263

    B = He Cos delta 91.994 91.994 93.263 0.000 0.000 0.000 0.000

    Hi = A + B 226.909 153.861 93.263 0.000 0.000 0.000 0.000

    SUM [Hi] = 5133.494 KN

    Nx = Ni Cos delta 798.501 366.161 371.211 0.000 0.000 0.000 0.000

  • 8/8/2019 r.c Bridge Design for Natai

    42/75

    LOAD COMBINATION : 4.2

    VER. LOAD , V 17339.671 KN

    X - BAR 1.820 m

    HOR. LOAD , H 5019.644 KN

    Y - BAR 2.248 m

    Mo 5193 KNm

    Type 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0

    xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000

    xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29Mo 5193 5193 5193.325 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 192.345 -206.084 -206.084 0.000 0.000 0.000 0.000

    Ni=V/n + M 790.265 3 91.835 391.835 0.000 0.000 0.000 0.000

    SUM [ Ni ] = 17339.671

    Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000

    Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000

    SUM[Cos delta] = 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

    Ni Sin delta 129.914 64.415 0.000 0.000 0.000 0.000 0.000

    A = Ni Tan delta 131.706 65.304 0.000 0.000 0.000 0.000 0.000

    SUM[Ni Tan delta ] = 2432.720

    He = [H-SUM[Ni Tan delta]]/[SUM [Cos delta]] = 90.135B = He Cos delta 88.908 88.908 90.135 0.000 0.000 0.000 0.000

    Hi = A + B 220.615 154.212 90.135 0.000 0.000 0.000 0.000

    SUM [Hi] = 5019.644 KN

    Nx = Ni Cos delta 779.513 386.504 391.835 0.000 0.000 0.000 0.000

    Hx = Hi Sin delta 36.268 25.351 0.000 0.000 0.000 0.000 0.000

    Pni = Nx + Hx 815.781 411.856 391.835 0.000 0.000 0.000 0.000

    Ny = -Ni Sin delta -129.914 -64.415 0.000 0.000 0.000 0.000 0.000

    Hy = Hi Cos delta 217.613 152.114 90.135 0.000 0.000 0.000 0.000

    Phi = Hy + Ny 87.699 87.699 90.135 0.000 0.000 0.000 0.000

    LOAD COMBINATION : 5

    VER. LOAD , V 17339.671 KN

    X - BAR 1.820 m

    HOR. LOAD , H 4675.894 KN

    Y - BAR 2.078 m

    Mo 3624 KNm

    Row of Pile 1 2 3 4 5 6 7

    Nos. of piles 15 7 7 0 0 0 0

    xi 0.869 -0.931 -0.931 0.000 0.000 0.000 0.000

    xi^2 0.755 0.867 0.867 0.000 0.000 0.000 0.000

    SUM(x^2) = 23.462 n = 29

    Mo 3624 3624 3624.106 0.000 0.000 0.000 0.000

    M=Mo x/[Sum(xi^2)] 134.226 -143.814 -143.814 0.000 0.000 0.000 0.000

    Ni=V/n + M 732.146 4 54.106 454.106 0.000 0.000 0.000 0.000SUM [ Ni ] = 17339.671

    Delta 9.462 9.462 0.000 0.000 0.000 0.000 0.000

    Sin delta 0.164 0.164 0.000 0.000 0.000 0.000 0.000

    Cos delta 0.986 0.986 1.000 0.000 0.000 0.000 0.000

    SUM[Cos delta] = 28.701

    Tan delta 0.167 0.167 0.000 0.000 0.000 0.000 0.000

    Ni Sin delta 120.360 74.652 0.000 0.000 0.000 0.000 0.000

    A = Ni Tan delta 122.020 75.682 0.000 0.000 0.000 0.000 0.000

    SUM[Ni Tan delta ] = 2360.073

    He = [H-SUM[Ni Tan delta]]/[SUM [Cos delta]] = 80.689

    B = He Cos delta 79.591 79.591 80.689 0.000 0.000 0.000 0.000

    Hi = A + B 201.611 155.273 80.689 0.000 0.000 0.000 0.000

    SUM [Hi] = 4675.894 KN

    Nx = Ni Cos delta 722.185 447.928 454.106 0.000 0.000 0.000 0.000

    Hx = Hi Sin delta 33.144 25.526 0.000 0.000 0.000 0.000 0.000

    Pni = Nx + Hx 755.328 473.454 454.106 0.000 0.000 0.000 0.000

    Ny = -Ni Sin delta -120.360 -74.652 0.000 0.000 0.000 0.000 0.000

    Hy = Hi Cos delta 198.868 153.160 80.689 0.000 0.000 0.000 0.000

    Phi = Hy + Ny 78.508 78.508 80.689 0.000 0.000 0.000 0.000

  • 8/8/2019 r.c Bridge Design for Natai

    43/75

  • 8/8/2019 r.c Bridge Design for Natai

    44/75

    STIRRUP

    Size of stirrup > 1/4 x largest compression bar

    > 20

    4

    > 5 mm

    Spacing < 12 x smallest compression bar

    12 x 20

    240 mm

    Table 7 : BS5400:Pt4Asv > 0.4 b sv

    0.87 fyv

    Say,

    spac 300 mm

    and fy 460 N/mm^2

    Therefore,

    Asv = 0.4x1000x 300

    0.87 x 460

    = 299.850 mm^2/m

    Provide Y 16 at c/c 300 mm

    [ As = 670.206 mm^2/m ]

    CHECKING FOR FLEXURE SHEAR

    Nos. of pile (Front Row) = 15

    Diameter of pile , dp = 500 mm

    Max. force on pile = 864.782 KN

    Height of pile cap = 1200 mm

    For Top and Bottom ,

    100 As = 100 x 2 x 2094.4

    b d 1000 x 1050

    = 0.399

    From Table 8; BS 5400 : Pt4

    Vc = 0.544 N/mm^2

    The stress may be enhanced by [2d/av] for those parts of the critical section,

    where,

    av = x + 0.2d

    and x = 0.8 - 0.600 - 500 x 0.5

    1000

    = -0.050 m

    Therefore,

    av = -0.050 + 0.2 x 500

    1000

    = 0.050 m

    Enhancement Factor = 2d = 2 x 1050 = 42.000

    av 0.050 x 1000

    Therefore,

    Enhanced Vc = 0.54 x 42.000

    = 22.840 N/mm^2

    Shear Capacity of critical section,

    Vcu = [(Area covered by piles x Enhanced Vc) + Vc(b-area covered by piles)]h

    where,

    Area covered by piles = Nos. of piles x dia. of piles

    Therefore,

    Vcu = 1200 [ ( 15 x 500 x 22.840 ) +

    10000.54 x ( 22900 - ( 15 x 500 ) ) } ]

    188656 KN

    Actual Shear Force , V = Nos. of piles x Reaction

    Therefore ,

    V = 15 x 864.78

    = 12971 725 < Vcu Therefore O K

  • 8/8/2019 r.c Bridge Design for Natai

    45/75

    av=d/2 = 1050 = 525 mm

    2

    Therefore,

    2d/av = 2 x 1050 = 4.000

    525

    Therefore,

    Enhanced Vc = 2d/av(Vc)= 4 x 0.544

    = 2.175 N/mm^2

    Therefore,

    Shear capacity of the critical section,V = 1050 x 1550.000 x 2.175

    1000

    = 3540 KN

    Therefore,

    Actual Shear = 865 KN < 3540 KN Therefore O.K

    WING WALL

    Force

    P (h1) = Ws k h1 + Wh1^2 k/2 @ ULS

    Therefore,

    1.810 ) = 1.5 x 1.1 x [ 20 x 0.5 x 1.810

    + 18.9 x 1.81 ^2 x 0.5 ]

    2

    = 55.406 KN/m^2

    Bending Moment

    At Sec 1.810 )

    Bending Moment = M (h1) = 0.5(h1) l1^2Therefore ,

    1.810 )= 0.5 x 55.41 x 3.000 2

    = 249.328 KNm

    Reinforcement

    [1]. Main Reinforcement

    Cover 65 mm

    Diameter of reinforcement = 20 mm

    Therefore ,

    d = 0.45 x 1000 - 65 - 20

    2

    = 375 mm

    M = 249.328 KNm

    z = 352.923 mm

    Max. allowable z = 356.250 mm

    Therefore ,

    z = 352.923 mm

    As = M = 249.33 x 1000000

    0.87 fy z 0.87 x 460 x 352.923

    = 1765.284 mm^2/m

    Min. As required = 0.15 x 375 x 1000100

    = 562.500 mm^2/m

    Provide Y 20 at c/c 150 mm

    [ Area = 2094.395 mm^2/m] O.K

    [2]. Secondary Reinforcement

    Mi i f d i f t i d 0 12% f

  • 8/8/2019 r.c Bridge Design for Natai

    46/75

    LOADINGS.

    Load Due To Traction @U 457.600 = 19.983 KN

    22.9

    Load Due To Longitudinal Braking @ULS 343.75 = 15.011 KN

    22.900

    Therefore ,

    Shear at the base @ULS ,

    V = Ws k + W H k + Traction/Long. Braking

    = 1.5 x 1.1 [ 20 x 0.5 x 0.935 +

    ( 18.9 x { 0.94 2 x 0.5 } ) ] + 19.98

    2

    = 42.226 KN/m

    Moment at base @ULS,

    M = 1.5 x 1.1 [ 20 x 0.5 x 0.935 2 +

    2

    ( 18.9 x { 0.94 ^3 x 0.5 } ) ] +

    6

    19.98 x 0.94

    = 28.020 KNm/m

    MAIN REINFORCEMENT

    Cov 50 mm

    Dia. of rei 20 mm

    Therefore ,

    d = 0.58 x 1000 - 50 - 20

    2

    517.350 mm

    M = 28.020 KNm/m

    z = 510.624 mm

    But,

    Max. Allo 491.483 mm

    Therefore ,

    z = 491.483 mm

    s = M = 28.02 x 1000000

    0.87 fy z 0.87 x 460.000 x 491.483

    = 142.46 mm^2/m

    Min. As re 0.15 x 517.35 x 1000

    100

    = 776.025 mm^2/m

    Provi 20 at c/c 150 mm[ Area = 2094.395 mm^2/m]

    SECONDARY REINFORCEMENT

    Min. Area of Secondary Reinforcement = 0.12% 0f area

    = 0.12 x 517.35 x 1000

    100

    = 620.820 mm^2/m

    Provi 16 at c/c 300 mm

    [ Area = 670.206 mm^2/m]

    WALL DESIGN

    Concrete Grade , fcu = 40 N/mm^2

    Height , he = 3.37 m

    Breadth , b = 26.44 m

    Depth , h = 1.2 m

    Cover c = 140 mm

  • 8/8/2019 r.c Bridge Design for Natai

    47/75

    Since b/h = 22.04 > 4 - Design as wall

    Therefore ,

    Effective height , le = 2.0 x 3.37 = 6.73 m

    Slender Ratio = le/h = 6.73 = 5.61 < 12 DESIGN AS SHORT WALL

    1.2

    DESIGN AS SHORT WALL

    LOAD COMB. VER.LOAD x HOR.LOAD y

    (KN) BAR (KN) BAR (KNm) (KNm)

    1 17099.18 1.81 4675.89 1.08 -3314.81 5039

    2 16862.21 1.81 4691.20 1.09 -3343.33 5094

    3 16580.48 1.82 5298.28 1.37 -3377.13 7258

    4.1 16580.48 1.82 5133.49 1.30 -3377.13 6670

    4.2 16580.48 1.82 5019.64 1.25 -3377.13 6265

    5 16580.48 1.82 4675.89 1.08 -3377.13 5039

    x' = 1.62 m

    146.78 KNm/m

    Vertivcal Load , N = 17099.18 KN

    Horizontal Load , H = 5298.28 KN

    d = 1.2 x 1000 - 20 / 2 - 140

    = 1040 mm

    Ultimate Axial Load, Vult = 17099 kN

    0.1fcuAc = 0.1 x 40 x 31.731

    = 126924.68 kN

    Since < 0.1fcuAc - DESIGN AS CANTILEVER SLAB

    MAIN REINFORCEMENT

    Lever arm, z = 0.5d[1=(1-5Mu)^0.5]/[fcubd^2]

    = 1039.99 mm

    As = Mu/(0.87fyz) = 352.66 sq.mm

    cl. 5.BS5400 : Part 4

    As min = 0.12%bd = 1248 sq.mm

    Provide Y 25 @ 150 mm at c/c

    As = 3272.49 sq.mm / layers O.K

    SECONDARY REINFORCEMENT

    Cl. 5.8.4.2 BS5400 Part 4,

    As min = 0.12%bd = 1248 sq.mm

    Provide Y 20 @ 300 mm

    As = 1636.25 sq.mm

    M1

    M2

    Moment , M =

  • 8/8/2019 r.c Bridge Design for Natai

    48/75

    Therefore,

    Asv = 980.55 mm

    Provide Y 16 @ 225 mm at c/c

    As = 1787.22 sq.mm with 26 legs

    CHECK FOR SLS REQUIREMENT

    LOAD COMB. VER.LOAD x HOR.LOAD y Mx My

    (KN) BAR (KN) BAR (KNm) (KNm)

    1 10629.59 1.76 2833.88 0.88 5222.14 2487

    2 10485.19 1.76 2846.53 0.89 5257.25 2530

    3 10252.35 1.76 3368.41 1.27 7000.91 4286

    4.1 10252.35 1.76 3166.68 1.14 6322.07 3607

    4.2 10252.35 1.76 3083.88 1.08 6043.45 3328

    5 10252.35 1.76 2833.88 0.88 5202.20 2487

    x' = 1.5 My = 4286.222 (KNm)

    CALCULATION

    ALLOWABLE STRESSES

    Allowable compressive stress in concrete , fc' = 0.5fcu

    fc' = 0.5 x 40 = 20 N/mm^2

    Allowable reinforcement stress , fy' = 0.8fy

    fy' = 0.8 x 460 = 368 N/mm^2

    AXLE LOAD CAPACITIES

    Ns = 0.5fcuAc+[0.5fcuEs/Ec]As

    = [(0.5 x 40 x 1385641 )

    + (0.5 x 40 x 6.45 x 6544.98 ]/1000

    = 28557.33 > Nu = 646.65

    Therefore O.K

    CRACKS WIDTH - FOR LONG TERM STRAINS DUE TO SERVICE LOADING.

    p' = As'/bd = 1636.25

    1040.00 x 1000.0

    = 0

    p = As/bd = 0 since As = As'

    Es/0.5Ec = 12.90

  • 8/8/2019 r.c Bridge Design for Natai

    49/75

    A. FIRST SPAN (Shorter Span)

    1. MAIN REINFORCEMENT.

    Consider Load Combination 1 for the calc. of Vertical Load.

    Therefore,

    Vertical load, V = Live Load + Dead Load + Superinposed Dead Load.

    V = 2571.3 + 1886.2 + 547.1

    = 5004.6 kN

    Or,

    V= 5004.6 = 189.26 kN/m

    26.44

    Assume both bracking and skidding acting together in calculating for horizontal loads.

    Therefore,

    Horizontal Load, T = 332.8 + 250 = 582.8 kN/m

    Or,

    T = 582.8 = 22.04 kN/m

    26.44

    shearing surface, d = ( 0.81 - 0.25 ) x 2^0.5 x 1000

    = 789.54 mm

    Therefore shearing force, Vbar = (T+V) x 2^0.5 100As/bd = 0.41

    = 298.83 kN/m vc = 0.55 N/sq.mm/m

    v = Vbar/bd = 298.83 x 1000 = 0.38 N/sq.mm/m

    789.54 x 1000

    Ep'svc = 0.49 N/sq.mm/m

    Since v > Ep'svc, therefore shear reinforcement in required.

    spacing = 300

    Asv > 299.85 sq.mm

    Provide Y 16 @ 300 mm at c/c

    As = 1340.41 sq.mm

    2. SECONDARY REINFORCEMENT.

    Minimum Secondary reinforcement,

    Ass = 0.12%bd

    = 0.12 / 100 x 1000 x 789.54

    = 947.45 sq.mm

    Provide Y 16 @ 300 mm at c/c

    As = 1340.41 sq.mm

  • 8/8/2019 r.c Bridge Design for Natai

    50/75

  • 8/8/2019 r.c Bridge Design for Natai

    51/75

    48663720.xls 51 RCSS

    X))

    HB

    -7.8

    51.0

    113.3

    242.9

    265.0

    199.4

    47.0

    22.5

    29.3

    -26.6

    936.0

    X))

    HB

    -14.4

    40.7

    45.6

    157.7

    266.3

    259.0

    142.3

    33.9

    29.9

    -25.0

    936.0

    X))

    HB

    -11.4

    41.6

    51.0

    166.9

    273.7

    258.5

    134.7

    26.5

    18.8

    -24.2

    936.1

  • 8/8/2019 r.c Bridge Design for Natai

    52/75

    48663720.xls 52 PRHS 16

    Reaction for PRHS-16-R5-0

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 82.8 41.2 5.0 143.8 217.8 315.1 47.7 77.4

    G2 91.8 2.7 8.1 79.8 125.4 165.6 73.2 82.4

    G3 91.8 11.1 8.5 96.1 145.0 196.0 69.8 82.9

    G4 91.8 9.3 9.4 83.7 156.9 210.5 73.7 81.4

    G5 91.8 10.5 8.7 80.6 144.6 182.5 84.9 73.7

    G6 91.8 11.3 8.6 75.6 87.7 78.4 108.5 57.9

    G7 91.8 12.1 8.6 71.2 58.9 33.8 111.0 111.4

    G8 91.8 12.9 8.6 66.6 55.1 28.5 112.6 135.3

    G9 91.8 13.8 8.6 59.0 48.9 24.1 111.0 153.4

    G10 91.8 13.8 8.6 37.9 32.2 20.4 93.4 153.4

    G11 91.8 12.9 8.6 30.7 26.2 17.4 90.6 135.3

    G12 91.8 12.1 8.6 26.5 22.6 14.9 89.9 111.4

    G13 91.8 11.3 8.6 22.9 19.4 12.7 88.0 57.9

    G14 91.8 10.5 8.7 18.7 15.6 9.7 79.3 73.7

    G15 91.8 9.3 9.4 16.3 13.5 8.4 74.2 81.4G16 91.8 11.1 8.5 2.8 0.6 -4.4 68.3 82.9

    G17 91.8 2.7 8.1 21.1 18.3 14.4 72.8 82.4

    G18 82.8 41.2 5.0 -61.8 -61.4 -68.1 40.4 77.4

    TOTAL 1634.4 249.8 148.2 871.5 1127.3 1259.9 1489.3 1711.6

    Reaction for PRHS-16-R5-15

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 83.0 55.2 8.5 236.8 325.7 459.8 61.3 54.5

    G2 92.0 -9.5 7.4 28.7 22.1 12.8 68.5 79.0

    G3 92.0 13.9 9.3 103.1 129.3 167.7 71.2 76.1

    G4 92.0 7.9 9.5 74.9 99.1 121.7 73.2 79.6

    G5 92.0 10.7 8.7 68.0 87.3 101.6 86.0 81.5

    G6 92.0 11.3 8.6 48.6 55.2 52.2 110.2 84.1

    G7 92.0 12.3 8.6 45.1 44.5 37.2 112.2 84.5

    G8 92.0 13.1 8.6 39.7 38.9 30.5 114.1 109.2

    G9 92.0 13.9 8.6 34.6 32.6 24.3 112.5 184.3

    G10 92.0 13.7 8.6 29.1 27.1 20.0 94.7 165.4

    G11 92.0 12.8 8.6 25.2 23.1 16.8 91.5 147.6

    G12 92.0 12.0 8.6 21.7 19.7 14.2 90.3 151.1

    G13 92.0 11.4 8.5 18.5 16.6 11.9 87.3 159.0

    G14 92.0 10.4 8.6 15.0 13.2 9.1 78.8 81.6

    G15 92.0 10.7 9.2 10.7 8.9 4.9 74.8 93.9

    G16 92.0 8.3 7.7 3.4 1.6 -2.0 66.6 85.4

    G17 92.0 13.9 8.0 -5.3 -8.6 -14.1 77.1 103.4

    G18 83.0 28.2 2.2 -27.6 -30.0 -33.4 24.2 42.7

    TOTAL 1638.0 250.2 147.8 770.2 906.3 1035.2 1494.5 1862.9

  • 8/8/2019 r.c Bridge Design for Natai

    53/75

    48663720.xls 53 PRHS 16

    Reaction for PRHS-16-R5-30

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 83.8 68.5 12.3 322.0 431.3 601.9 88.8 79.9

    G2 92.8 -20.6 6.2 -18.9 -40.6 -75.7 61.3 74.6

    G3 92.8 15.9 10.0 108.6 138.7 178.9 76.5 81.7

    G4 92.8 6.6 9.5 66.1 91.2 110.0 74.7 81.7

    G5 92.8 10.8 8.8 59.7 77.1 88.0 88.8 84.3

    G6 92.8 11.3 8.7 38.2 41.8 36.7 112.7 86.7

    G7 92.8 12.5 8.7 35.4 34.9 28.4 114.5 86.7

    G8 92.8 13.3 8.7 29.3 29.7 23.7 116.7 115.3

    G9 92.8 14.1 8.7 24.9 24.1 18.4 115.0 188.2

    G10 92.8 13.7 8.7 21.2 20.2 15.2 96.8 164.2

    G11 92.8 12.6 8.7 18.0 16.9 12.7 92.5 147.9

    G12 92.8 11.9 8.6 15.3 14.3 10.7 90.0 153.3

    G13 92.8 11.4 8.5 12.7 11.8 8.7 85.1 156.7

    G14 92.8 10.2 8.6 10.2 9.3 6.7 74.9 77.6

    G15 92.8 11.6 8.9 5.8 4.7 2.1 69.8 91.8G16 92.8 6.2 6.9 3.0 2.1 0.1 58.7 76.2

    G17 92.8 22.1 7.1 -18.2 -21.5 -26.3 68.0 98.1

    G18 83.8 18.0 0.2 -5.8 -5.6 -5.2 3.8 9.1

    TOTAL 1652.4 250.1 147.8 727.5 880.4 1035.0 1488.6 1854.0

  • 8/8/2019 r.c Bridge Design for Natai

    54/75

    48663720.xls 54 PRHS 16

    X))

    HB

    -18.1

    32.6

    22.8

    32.6

    35.8

    40.1

    125.7

    164.8

    193.6

    193.6

    164.8

    125.7

    40.1

    35.8

    32.622.8

    32.6

    -18.1

    1259.8

    X))

    HB

    -54.9

    49.7

    17.9

    33.3

    35.0

    39.7

    42.7

    81.6

    200.9

    191.7

    164.5

    167.8

    172.5

    29.7

    36.0

    25.5

    27.9

    -1.5

    1260.0

  • 8/8/2019 r.c Bridge Design for Natai

    55/75

  • 8/8/2019 r.c Bridge Design for Natai

    56/75

    48663720.xls 56 PRSS

    Reaction for PRSS-10-R5-0

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 59.8 33.9 2.1 104.8 140.1 210.1 32.8 36.1

    G2 64.3 -2.2 5.2 56.0 91.7 137.6 64.6 60.0

    G3 64.3 5.8 5.4 71.0 102.9 154.4 59.1 56.7

    G4 64.3 4.0 6.2 59.7 119.5 179.3 63.3 59.4

    G5 64.3 5.4 5.6 46.8 102.9 154.4 74.3 119.4

    G6 64.3 6.4 5.5 22.5 39.6 59.3 98.3 114.9

    G7 64.3 7.4 5.4 15.2 11.7 17.5 100.8 116.7

    G8 64.3 8.3 5.4 10.1 8.2 12.3 102.7 146.4

    G9 64.3 9.2 5.4 6.4 5.5 8.3 101.7 117.4

    G10 64.3 9.2 5.4 3.9 3.6 5.4 84.9 94.1

    G11 64.3 8.3 5.4 2.3 2.3 3.4 82.6 60.5

    G12 64.3 7.4 5.4 1.3 1.4 2.1 81.7 60.0

    G13 64.3 6.4 5.5 0.9 1.0 1.4 78.9 59.5

    G14 64.3 5.4 5.6 0.6 0.6 1.0 68.2 57.2

    G15 64.3 4.0 6.2 0.9 0.8 1.2 61.9 56.0G16 64.3 5.8 5.4 -1.0 -0.7 -1.0 54.9 53.8

    G17 64.3 -2.2 5.2 4.0 3.3 4.9 61.7 56.5

    G18 59.8 33.9 2.1 -13.2 -10.4 -15.6 22.2 36.7

    TOTAL 1148.4 156.4 92.4 392.2 624.0 936.0 1294.6 1361.3

    Reaction for PRSS-10-R5-15

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 59.8 43.5 4.3 155.3 178.7 267.0 61.7 64.1

    G2 64.3 -11.3 4.8 37.9 74.8 104.1 58.4 51.6

    G3 64.3 7.8 5.9 81.1 111.8 160.9 65.1 59.8

    G4 64.3 3.1 6.2 62.0 122.6 176.0 65.2 61.4

    G5 64.3 5.7 5.5 48.7 103.3 146.9 77.1 121.0

    G6 64.3 6.6 5.4 24.7 39.1 50.6 100.1 112.9

    G7 64.3 7.7 5.4 19.5 14.1 13.4 102.0 118.8

    G8 64.3 8.6 5.4 14.1 10.9 9.4 104.1 146.7

    G9 64.3 9.3 5.4 10.5 7.9 5.9 103.1 116.5

    G10 64.3 9.0 5.4 7.7 5.8 3.7 85.9 93.3

    G11 64.3 8.0 5.4 5.7 4.3 2.3 82.8 59.5

    G12 64.3 7.0 5.5 4.3 3.2 1.6 81.1 60.6

    G13 64.3 6.1 5.5 3.4 2.5 1.2 76.7 59.3

    G14 64.3 5.0 5.6 2.7 2.0 0.9 65.0 56.6

    G15 64.3 4.9 6.2 2.4 1.7 0.9 59.5 55.9

    G16 64.3 3.9 5.0 0.2 0.2 -0.3 50.1 50.1

    G17 64.3 6.8 5.3 2.4 1.7 1.0 62.7 61.8

    G18 59.8 24.5 0.2 -13.6 -10.0 -9.6 0.5 11.4

    TOTAL 1148.4 156.2 92.4 469.0 674.6 935.9 1301.1 1361.3

  • 8/8/2019 r.c Bridge Design for Natai

    57/75

    48663720.xls 57 PRSS

    Reaction for PRSS-10-R5-30

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 59.8 51.4 6.2 197.3 210.4 311.8 86.1 68.8

    G2 64.3 -18.7 4.3 20.4 61.7 79.8 50.5 44.2

    G3 64.3 9.0 6.3 85.8 118.1 165.9 68.6 55.5

    G4 64.3 2.4 6.2 59.8 124.3 173.9 65.5 58.6

    G5 64.3 6.1 5.5 45.7 102.2 140.9 78.6 119.1

    G6 64.3 6.9 5.4 22.0 36.6 43.3 101.4 110.7

    G7 64.3 8.1 5.4 18.2 13.2 9.5 103.3 120.4

    G8 64.3 8.9 5.4 12.6 10.1 6.6 106.0 148.4

    G9 64.3 9.4 5.4 9.1 6.9 3.6 105.3 118.4

    G10 64.3 8.9 5.4 6.4 4.8 2.2 87.9 96.7

    G11 64.3 7.6 5.5 4.6 3.4 1.3 83.9 64.5

    G12 64.3 6.6 5.5 3.4 2.5 0.9 81.4 69.4

    G13 64.3 5.8 5.5 2.7 1.9 0.7 73.6 68.2

    G14 64.3 4.7 5.7 2.1 1.5 0.6 51.5 57.1

    G15 64.3 5.6 6.1 1.7 1.2 0.5 43.5 54.6G16 64.3 2.7 4.6 0.4 0.3 0.0 32.7 44.6

    G17 64.3 14.0 5.0 -0.8 -0.6 -0.9 44.0 64.9

    G18 59.8 16.9 -1.2 -8.2 -6.0 -4.8 -19.9 -10.2

    TOTAL 1148.4 156.3 92.2 483.2 692.5 935.8 1243.9 1353.9

  • 8/8/2019 r.c Bridge Design for Natai

    58/75

    48663720.xls 58 PRSS

    X))

    HB

    -11.2

    23.7

    17.1

    25.2

    127.1

    142.7

    147.7

    191.2

    140.5

    79.5

    20.2

    15.2

    11.3

    8.3

    6.92.0

    10.6

    -21.9

    936.1

    X))

    HB

    -5.9

    27.5

    19.4

    32.3

    134.6

    143.2

    150.7

    190.4

    133.8

    72.3

    14.9

    12.5

    8.5

    6.3

    5.0

    1.6

    4.2

    -15.4

    935.9

  • 8/8/2019 r.c Bridge Design for Natai

    59/75

    48663720.xls 59 PRSS

    X))

    HB

    -2.9

    30.4

    21.8

    38.8

    141.6

    145.0

    153.8

    190.0

    128.3

    65.7

    9.7

    9.5

    5.7

    4.3

    3.11.1

    -0.3

    -9.5

    936.1

  • 8/8/2019 r.c Bridge Design for Natai

    60/75

    48663720.xls 60 PRHS20

    Reaction for PRHS-20-R5-0

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 121.8 43.6 7.2 165.0 241.8 338.1 60.0 41.7

    G2 136.1 7.0 10.0 87.6 139.3 184.1 79.2 81.5

    G3 136.1 14.6 10.5 102.5 156.5 208.7 77.4 75.9

    G4 136.1 13.0 11.4 86.9 165.2 220.6 80.5 82.2

    G5 136.1 14.1 10.7 82.7 150.6 190.7 91.2 150.8

    G6 136.1 14.8 10.6 77.0 91.1 85.8 113.8 152.3

    G7 136.1 15.5 10.7 72.5 61.8 40.7 116.0 155.3

    G8 136.1 16.3 10.7 68.0 57.8 35.3 117.4 188.1

    G9 136.1 17.2 10.7 61.3 52.1 30.8 115.5 156.2

    G10 136.1 17.2 10.7 43.0 37.4 26.9 97.6 127.1

    G11 136.1 16.3 10.7 36.6 31.8 23.7 94.7 90.3

    G12 136.1 15.5 10.7 32.7 28.2 20.7 94.0 90.5

    G13 136.1 14.8 10.6 28.9 24.8 17.9 92.3 90.7

    G14 136.1 14.1 10.7 24.0 20.1 13.6 84.7 93.9

    G15 136.1 13.0 11.4 20.5 16.8 10.7 79.9 95.3G16 136.1 14.6 10.5 4.4 1.2 -5.9 74.8 96.6

    G17 136.1 7.0 10.0 20.4 16.8 11.6 77.2 94.7

    G18 121.8 43.6 7.2 -71.0 -72.2 -86.0 51.1 95.1

    TOTAL 2421.2 312.2 185.0 943.0 1221.1 1368.0 1597.3 1958.2

    Reaction for PRHS-20-R5-15

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 122.2 59.0 11.5 276.3 384.6 531.6 69.8 58.6

    G2 136.5 -5.6 9.2 23.1 15.7 4.1 76.9 86.4

    G3 136.5 17.1 11.5 109.6 140.1 179.5 79.5 80.9

    G4 136.5 11.6 11.6 75.8 97.9 117.6 81.2 89.5

    G5 136.5 14.3 10.8 77.1 94.3 102.2 93.0 157.1

    G6 136.5 14.8 10.7 70.6 75.6 60.3 115.9 152.6

    G7 136.5 15.7 10.7 66.7 65.2 46.4 117.5 159.9

    G8 136.5 16.5 10.7 62.3 59.5 38.9 119.0 189.9

    G9 136.5 17.3 10.7 53.9 50.5 32.5 117.0 154.8

    G10 136.5 17.1 10.7 35.6 34.8 27.8 98.9 125.7

    G11 136.5 16.2 10.7 31.0 29.9 24.0 95.4 89.4

    G12 136.5 15.5 10.6 27.2 25.9 20.7 94.2 91.5

    G13 136.5 14.9 10.5 23.4 22.0 17.2 91.3 90.9

    G14 136.5 13.9 10.6 19.2 17.5 12.9 83.7 93.2

    G15 136.5 14.3 11.1 12.8 10.4 5.4 79.8 94.3

    G16 136.5 11.5 9.5 5.5 2.7 -2.6 72.6 88.6

    G17 136.5 17.9 9.6 -16.0 -23.0 -33.3 80.0 103.0

    G18 122.2 30.1 4.1 -21.7 -26.4 -33.3 37.2 51.9

    TOTAL 2428.4 312.1 184.8 932.4 1077.2 1151.9 1602.9 1958.2

  • 8/8/2019 r.c Bridge Design for Natai

    61/75

    48663720.xls 61 PRHS20

    Reaction for PRHS-20-R5-30

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 123.6 74.9 16.7 392.5 529.2 719.5 98.6 81.1

    G2 137.9 -18.0 7.6 -43.3 -71.2 -115.8 70.8 85.8

    G3 137.9 19.9 12.5 117.7 151.7 191.4 85.8 86.9

    G4 137.9 10.0 11.6 65.2 86.3 99.4 83.5 95.7

    G5 137.9 14.3 11.0 63.8 80.0 87.3 96.4 163.0

    G6 137.9 14.7 10.9 44.6 50.2 43.7 118.8 154.0

    G7 137.9 15.9 10.9 42.1 43.4 35.7 120.2 164.4

    G8 137.9 16.8 10.8 36.4 37.6 30.1 121.8 192.2

    G9 137.9 17.5 10.8 31.5 31.5 24.6 119.6 154.4

    G10 137.9 17.2 10.8 26.7 26.5 21.0 100.9 124.9

    G11 137.9 16.2 10.7 23.3 22.8 17.9 96.2 88.6

    G12 137.9 15.4 10.6 20.1 19.5 15.2 93.4 91.6

    G13 137.9 14.9 10.4 16.9 16.0 12.1 88.5 89.8

    G14 137.9 13.6 10.4 13.7 12.6 9.0 79.0 90.6

    G15 137.9 14.9 10.6 7.0 5.2 1.1 73.5 89.4G16 137.9 9.2 8.6 5.7 4.3 1.0 63.7 79.0

    G17 137.9 25.4 8.2 -32.1 -40.1 -50.3 66.9 93.8

    G18 123.6 19.6 2.0 7.0 8.3 9.2 18.3 22.4

    TOTAL 2453.6 312.4 185.1 838.8 1013.8 1152.1 1595.9 1947.6

  • 8/8/2019 r.c Bridge Design for Natai

    62/75

    48663720.xls 62 PRHS20

    X))

    HB

    46.0

    46.9

    48.1

    49.7

    157.6

    171.2

    174.9

    222.2

    168.9

    105.6

    43.9

    40.1

    36.2

    31.3

    27.514.6

    25.8

    -42.3

    1368.2

    X))

    HB

    78.0

    39.0

    53.9

    57.9

    167.2

    170.6

    178.6

    221.0

    159.7

    95.6

    36.2

    35.2

    29.9

    25.6

    19.8

    13.0

    -1.7

    -11.3

    1368.2

  • 8/8/2019 r.c Bridge Design for Natai

    63/75

    48663720.xls 63 PRHS20

    X))

    HB

    104.5

    32.3

    60.5

    66.3

    176.8

    172.3

    182.4

    220.2

    152.1

    86.7

    28.5

    29.5

    23.4

    19.7

    13.310.7

    -18.3

    7.0

    1367.9

  • 8/8/2019 r.c Bridge Design for Natai

    64/75

    48663720.xls 64 PRT

    Reaction for PRT-22-R5-0

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 221.0 61.5 12.0 178.9 275.7 380.4 98.8 121.3

    G2 235.2 13.1 19.7 195.9 294.1 402.3 127.3 147.9

    G3 236.6 19.8 21.2 191.3 281.7 366.9 139.4 137.4

    G4 237.0 27.2 19.7 147.5 190.1 181.3 186.0 133.5

    G5 237.2 32.5 19.3 128.3 113.3 58.1 194.9 264.2

    G6 237.3 35.7 19.4 86.7 71.7 34.4 194.9 277.6

    G7 237.2 32.5 19.3 44.5 36.1 21.6 193.7 264.2

    G8 237.0 27.2 19.7 28.8 22.2 10.7 182.7 133.5

    G9 236.6 19.8 21.2 14.3 8.7 -3.4 131.8 137.4

    G10 235.2 13.1 19.7 14.0 8.4 -3.8 119.0 147.9

    G11 221.0 61.5 12.0 -27.8 -30.2 -41.1 87.9 121.3

    TOTAL 2571.3 343.9 203.2 1002.4 1271.8 1407.4 1656.4 1886.2

    Reaction for PRT-22-R5-15

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 224.6 65.3 12.1 190.7 289.9 402.0 88.4 126.5

    G2 234.9 7.7 20.3 171.2 284.0 387.0 121.2 146.5

    G3 237.7 22.1 21.1 176.3 283.1 366.6 132.0 134.9

    G4 237.6 27.1 19.6 149.0 187.8 174.3 183.9 134.2

    G5 238.0 32.6 19.4 128.7 112.0 56.7 193.9 267.8

    G6 238.0 35.5 19.5 84.6 70.3 34.8 195.3 277.5

    G7 237.9 32.1 19.3 44.0 35.7 21.8 195.4 261.0

    G8 237.8 27.1 19.8 28.5 21.8 9.9 165.7 131.7

    G9 237.0 17.6 21.4 15.2 10.0 -1.9 139.2 140.6

    G10 236.9 18.0 19.1 2.5 -1.2 -13.0 125.6 146.9

    G11 217.9 58.7 11.8 -20.9 -21.2 -30.9 95.7 116.7

    TOTAL 2578.3 343.8 203.4 969.8 1272.2 1407.3 1636.3 1884.3

    Reaction for PRT-22-R5-30

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 229.3 70.7 12.0 200.6 302.2 424.7 87.5 133.7

    G2 236.1 1.2 20.9 165.4 275.8 372.9 123.5 144.4

    G3 240.5 24.6 21.0 177.6 285.1 367.7 132.4 132.7

    G4 240.0 26.7 19.6 148.3 185.9 166.2 186.0 133.2

    G5 240.5 32.5 19.6 129.4 110.6 53.5 195.0 271.7

    G6 240.5 35.2 19.6 82.4 68.6 33.7 196.5 277.2

    G7 240.3 31.3 19.4 42.5 34.4 20.5 196.7 258.5

    G8 240.4 27.0 19.9 27.8 21.2 8.7 185.8 128.3

    G9 238.9 15.6 21.7 15.5 10.5 -1.1 139.1 144.7

    G10 240.4 22.5 18.3 -6.9 -8.9 -18.7 122.8 150.1

    G11 215.0 56.7 11.3 -12.6 -13.3 -20.8 91.1 111.9

  • 8/8/2019 r.c Bridge Design for Natai

    65/75

    48663720.xls 65 PRT

    TOTAL 2601.9 344.0 203.3 970.0 1272.1 1407.3 1656.4 1886.4

  • 8/8/2019 r.c Bridge Design for Natai

    66/75

    48663720.xls 66 PRT

    X))

    HB

    18.4

    40.0

    43.1

    105.1

    323.9

    346.3

    323.9

    105.1

    43.1

    40.0

    18.4

    1407.3

    X))

    HB

    13.3

    44.1

    41.6

    111.1

    330.0

    347.3

    320.4

    99.5

    44.2

    35.7

    20.2

    1407.4

    X))

    HB

    2.8

    50.0

    39.5

    117.7

    339.6

    350.9

    320.4

    93.6

    45.1

    28.7

    19.0

  • 8/8/2019 r.c Bridge Design for Natai

    67/75

    48663720.xls 67 PRT

    1407.3

  • 8/8/2019 r.c Bridge Design for Natai

    68/75

    48663720.xls 68 PTT28

    Reaction for PTT-28-R5-0

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 464.8 88.0 25.4 306.3 441.1 584.7 174.3 201.8

    G2 504.5 34.2 44.1 349.3 536.5 648.0 244.6 238.9

    G3 506.8 58.7 40.2 283.7 332.3 225.5 330.5 332.4

    G4 507.7 75.7 39.6 231.5 247.7 50.7 345.3 502.9

    G5 506.8 58.7 40.2 169.3 214.8 20.8 327.4 332.4

    G6 504.5 34.2 44.1 97.4 120.9 6.6 236.8 238.9

    G7 464.8 88.0 25.4 12.1 37.6 -44.9 163.3 201.8

    TOTAL 3459.9 437.5 259.0 1449.6 1930.9 1491.4 1822.2 2049.1

    Reaction for PTT-28-R5-15

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(MHA HA+HB HB HA HA+HB

    G1 468.7 91.2 25.5 317.7 451.4 606.9 164.1 206.7

    G2 506.2 29.8 44.8 337.5 523.3 629.6 240.0 235.2

    G3 508.4 61.5 39.9 274.9 311.8 218.2 328.3 336.6

    G4 509.4 75.5 39.7 167.2 150.3 51.0 345.9 503.6

    G5 508.3 56.0 40.7 81.2 76.3 24.3 330.9 326.8

    G6 506.0 37.9 43.4 53.1 59.8 -4.2 242.2 242.5

    G7 461.7 85.7 24.9 11.8 27.2 -34.3 170.8 197.8

    TOTAL 3468.7 437.6 258.9 1243.4 1600.1 1491.5 1822.2 2049.2

    Reaction for PTT-28-R5-30

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 474.0 96.0 25.3 328.1 462.0 628.7 162.5 214.4

    G2 511.6 24.1 45.9 305.3 485.3 615.6 244.2 229.6

    G3 514.1 64.1 39.6 254.6 281.3 207.4 330.9 339.0

    G4 515.1 74.9 40.1 144.2 123.3 50.4 348.0 505.9

    G5 513.7 53.2 41.3 63.2 51.3 25.8 332.7 319.4

    G6 511.1 41.2 42.8 13.0 9.1 -12.5 238.8 247.3

    G7 459.2 84.1 24.0 -8.8 -8.8 -23.9 165.1 193.6

    TOTAL 3498.8 437.6 259.0 1099.6 1403.5 1491.5 1822.2 2049.2

  • 8/8/2019 r.c Bridge Design for Natai

    69/75

    48663720.xls 69 PTT28

    X))

    HB

    33.8

    66.9

    333.1

    623.8

    333.1

    66.9

    33.8

    1491.4

    X))HB

    27.8

    71.0

    344.2

    626.3

    322.4

    62.3

    37.3

    1491.3

    X))

    HB

    17.9

    75.8

    356.3

    635.1

    312.7

    55.7

    37.9

    1491.4

  • 8/8/2019 r.c Bridge Design for Natai

    70/75

    48663720.xls 70 PTT32

    Reaction for PTT-32-R5-0

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 561.6 99.1 29.6 330.7 463.0 599.4 185.8 208.6

    G2 605.0 40.1 50.1 366.7 561.8 669.1 257.3 248.7

    G3 607.3 67.5 45.8 299.4 352.1 230.7 346.8 350.3

    G4 608.0 86.9 44.9 242.2 260.9 47.8 362.6 527.9

    G5 607.3 67.5 45.8 175.7 224.9 19.0 344.6 350.3

    G6 605.0 40.1 50.1 104.3 130.7 8.0 252.0 248.7

    G7 561.6 99.1 29.6 13.9 49.0 -44.0 178.1 208.6

    TOTAL 4155.8 500.3 295.9 1532.9 2042.4 1530.0 1927.2 2143.1

    Reaction for PTT-32-R5-15

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(MHA HA+HB HB HA HA+HB

    G1 566.2 102.5 29.9 344.7 473.7 621.7 179.4 213.2

    G2 606.7 35.1 50.9 355.5 555.4 650.9 254.9 245.1

    G3 609.0 70.9 45.3 300.1 346.5 222.1 345.5 355.1

    G4 609.9 86.8 45.0 236.7 256.9 48.6 363.0 528.8

    G5 609.1 64.2 46.4 173.1 220.2 23.2 347.1 343.9

    G6 606.9 44.2 49.4 84.5 112.8 -3.6 254.9 252.0

    G7 558.1 96.5 29.1 23.8 53.9 -32.9 182.4 205.1

    TOTAL 4165.9 500.2 296.0 1518.4 2019.4 1530.0 1927.2 2143.2

    Reaction for PTT-32-R5-30

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 572.3 107.5 29.8 356.8 482.6 642.7 178.9 220.9

    G2 612.7 28.7 52.0 315.0 506.9 638.0 258.4 239.1

    G3 615.3 74.2 44.9 270.4 297.9 209.8 347.9 358.2

    G4 616.2 86.3 45.3 152.0 130.6 49.2 364.7 531.6

    G5 615.1 60.9 47.0 68.5 55.0 25.8 348.7 335.3

    G6 612.8 47.8 48.7 13.3 11.9 -13.0 251.4 256.7

    G7 555.4 94.6 28.1 -6.9 -4.2 -22.4 177.1 201.3

    TOTAL 4199.8 500.0 295.8 1169.1 1480.7 1530.1 1927.1 2143.1

  • 8/8/2019 r.c Bridge Design for Natai

    71/75

    48663720.xls 71 PTT32

    X))

    HB

    32.9

    63.6

    344.6

    648.0

    344.6

    63.6

    32.9

    1530.2

    X))HB

    27.2

    66.6

    357.2

    650.3

    332.0

    59.7

    37.1

    1530.1

    X))

    HB

    19.4

    69.1

    370.0

    658.5

    319.4

    54.2

    39.3

    1529.9

  • 8/8/2019 r.c Bridge Design for Natai

    72/75

    48663720.xls 72 PTT35

    Reaction for PTT-35-R5-0

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 658.6 98.6 35.6 368.9 496.0 607.6 203.1 222.2

    G2 707.5 53.0 52.9 374.8 567.5 655.3 264.8 263.9

    G3 709.2 76.3 49.0 298.7 357.5 240.1 351.8 361.2

    G4 709.9 91.1 48.7 239.2 263.1 73.7 366.4 533.7

    G5 709.2 76.3 49.0 178.8 224.6 31.9 353.2 361.2

    G6 707.5 53.0 52.9 117.7 141.8 8.3 268.0 263.9

    G7 658.6 98.6 35.6 19.1 62.3 -63.8 208.3 222.2

    TOTAL 4860.5 546.9 323.7 1597.2 2112.8 1553.1 2015.6 2228.3

    Reaction for PTT-35-R5-15

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(MHA HA+HB HB HA HA+HB

    G1 663.9 101.1 36.1 385.2 508.5 628.7 205.6 225.5

    G2 709.5 50.4 53.3 359.2 556.7 635.5 266.1 262.1

    G3 712.1 78.0 48.8 301.2 355.8 238.2 352.7 364.3

    G4 712.4 91.0 48.7 236.3 261.8 72.1 366.7 534.5

    G5 711.4 74.7 49.2 181.2 225.6 35.1 352.9 357.9

    G6 710.3 55.1 52.6 98.9 128.0 -5.8 267.2 265.4

    G7 655.4 96.7 34.9 29.1 66.5 -50.7 204.4 218.5

    TOTAL 4875.0 547.0 323.6 1591.1 2102.9 1553.1 2015.6 2228.2

    Reaction for PTT-35-R5-30

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 671.9 104.7 36.3 400.7 521.3 650.4 207.0 229.5

    G2 717.2 47.0 53.8 339.4 533.4 618.4 267.9 259.5

    G3 721.0 79.5 48.8 293.2 334.1 233.7 354.6 367.2

    G4 721.1 90.5 49.0 184.7 177.3 69.1 368.0 536.8

    G5 719.7 72.9 49.5 111.9 107.4 36.0 353.5 354.5

    G6 718.7 57.2 52.3 58.2 72.3 -17.1 265.8 267.1

    G7 653.8 95.2 33.9 25.4 45.7 -37.4 198.8 213.7

    TOTAL 4923.4 547.0 323.6 1413.5 1791.5 1553.1 2015.6 2228.3

  • 8/8/2019 r.c Bridge Design for Natai

    73/75

  • 8/8/2019 r.c Bridge Design for Natai

    74/75

    48663720.xls 74 PTT45

    Reaction for PTT-45-R5-0

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 960.5 125.3 46.5 413.5 536.6 624.3 230.2 241.4

    G2 1020.8 69.0 67.7 406.6 622.9 699.0 293.1 282.8

    G3 1022.7 98.4 62.8 330.6 393.7 241.5 383.6 395.8

    G4 1023.1 117.7 62.1 263.0 288.9 63.6 398.3 590.0

    G5 1022.7 98.4 62.8 195.6 249.3 28.4 383.6 395.8

    G6 1020.8 69.0 67.7 134.7 164.9 9.8 293.1 282.8

    G7 960.5 125.3 46.5 22.2 84.7 -58.6 230.2 241.4

    TOTAL 7031.1 703.1 416.1 1766.2 2341.0 1608.0 2212.1 2430.0

    Reaction for PTT-45-R5-15

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(MHA HA+HB HB HA HA+HB

    G1 966.9 128.0 47.1 434.8 551.4 644.0 235.9 248.9

    G2 1023.0 65.9 68.1 385.4 590.0 680.9 296.6 285.5

    G3 1026.2 100.8 62.5 334.6 370.9 237.7 385.2 401.1

    G4 1026.2 117.6 62.1 258.8 237.5 63.7 398.3 590.8

    G5 1025.5 96.2 63.0 198.5 181.4 32.3 383.0 390.9

    G6 1024.5 71.6 67.4 111.0 105.0 -5.2 292.2 284.6

    G7 956.8 123.1 45.7 37.1 47.4 -45.5 226.8 238.1

    TOTAL 7049.1 703.2 415.9 1760.2 2083.6 1607.9 2218.0 2439.9

    Reaction for PTT-45-R5-30

    D SD1 SD2 Live Load (G edge(MAX)) Live Load G mid(M

    HA HA+HB HB HA HA+HB

    G1 977.3 131.8 47.7 453.7 565.8 663.2 238.9 253.3

    G2 1032.5 62.0 68.6 365.7 577.5 666.1 297.4 282.6

    G3 1037.4 103.2 62.3 337.0 368.0 231.3 386.6 404.2

    G4 1037.0 117.3 62.3 255.5 235.7 63.2 398.9 593.4

    G5 1035.7 94.0 63.3 201.3 183.2 34.6 383.2 385.4

    G6 1035.5 73.9 67.1 87.6 88.2 -17.6 290.9 287.0

    G7 955.8 121.0 44.7 47.3 53.2 -32.9 222.1 233.9

    TOTAL 7111.2 703.2 416.0 1748.1 2071.6 1607.9 2218.0 2439.8

  • 8/8/2019 r.c Bridge Design for Natai

    75/75

    X))

    HB

    53.0

    72.0

    348.4

    661.2

    348.4

    72.0

    53.0

    1608.0

    X))HB

    49.9

    72.7

    356.5

    662.9

    340.7

    71.0

    54.4

    1608.1

    X))

    HB

    44.3

    74.0

    364.8

    668.7

    333.7

    68.8

    53.7

    1608.0