Top Banner
Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35
35

Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Sep 09, 2018

Download

Documents

trantu
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Quantum Electrodynamics

Ling-Fong Li

(Institute) Slide_06 QED 1 / 35

Page 2: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Quantum ElectrodynamicsLagrangian density for QED ,

L = ψ (x ) γµ(i∂µ − eAµ

)ψ (x )−mψ (x )ψ (x )− 1

4FµνF µν

Equations of motion are(iγµ∂µ −m

)ψ (x ) = eAµγµψ non-linear coupled equations

∂υF µν = eψγµψ

QuantizationWrite L= L0 + Lint

L0 = ψ(iγµ∂µ −m

)ψ− 1

4FµνF µν

Lint = −eψγµψAµ

where L0 ,free field Lagrangian, Lint is interaction part.Conjugate momenta for fermion

∂L∂ (∂0ψα)

= iψ†α (x )

For em fields choose the gauge−→∇ · −→A = 0

Conjugate mometa

(Institute) Slide_06 QED 2 / 35

Page 3: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

πi =∂L

∂ (∂0Ai )= −F 0i = E i

From equation of motion

∂νF 0ν = eψ†ψ =⇒ −∇2A0 = eψ†ψ

A0 is not an independent field ,

A0 = e∫d 3x

′ ψ† (x ′, t)ψ (x ′, t)

4π|−→x ′ −−→x |

= e∫ d 3x

′ρ (x ′, t)

|−→x −−→x ′ |

Commutation relations

ψα (−→x , t) ,ψ†

β

(−→x ′ , t

) = δαβδ3

(−→x −−→x ′ ) ψα (−→x , t) ,ψβ

(−→x ′ , t

) = ... = 0[

Ai (−→x , t) ,Aj

(−→x ′ , t

)]= iδtrij

(−→x −−→x ′ )where

δtrij (~x −~y ) =∫ d 3k(2π)3

e i~k ·(~x−~y )(δij −ki kjk 2)

Commutators involving A0

[A0 (−→x , t) ,ψα

(−→x ′ , t

)]= e

∫ d 3x′′

4π|−→x −−→x ′′ |

[ψ†(−→x ′′ , t

)ψ(−→x ′′ , t

),ψα

(−→x ′ , t

)]= − e

ψα

(−→x ′ , t

)|−→x −

−→x ′ |

Hamiltonian density

(Institute) Slide_06 QED 3 / 35

Page 4: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

H =∂L

∂ (∂0ψα)ψα +

∂L∂ (∂0Ak )

Ak −L

= ψ†(−i−→α · −→∇ + βm

)ψ+

12

(−→E 2 +

−→B 2)+−→E · −→∇A0 + eψγµψAµ

and

H =∫d 3xH =

∫d 3xψ†

[−→α · (−i−→∇ − e−→A ) + βm]

ψ+12

(−→E 2 +

−→B 2)

A0 does not appear in the interaction,But if we write

−→E =

−→El +

−→Et where

−→El = −

−→∇A0 ,−→Et = −

∂−→A

∂t

Then

12

∫d 3x

(−→E 2 +

−→B 2)=12

∫d 3x−→El 2 +

∫d 3x

(−→Et 2 +

−→B 2)

longitudinal part is

12

∫d 3x−→El 2 =

e4π

∫d 3xd 3y

ρ (−→x , t) ρ (−→y , t)|−→x −−→y | Coulomb interaction

Without classical solutions, can not do mode expansion to get creation and annihilation operators We can onlydo perturbation theory.

(Institute) Slide_06 QED 4 / 35

Page 5: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Recall that the free field part−→A 0 satisfy massless Klein-Gordon equation

−→A (0) = 0

The solution is

→A(0)(~x , t) =

∫ d 3k√2ω(2π)3

∑λ

→ε (k ,λ)[a(k ,λ)e−ikx + a+(k ,λ)e ikx ] w = k0 = |

−→k |

~ε(k ,λ), λ = 1, 2 with ~k ·~ε(k ,λ) = 0

Standard choice

~ε(k ,λ) ·~ε(k ,λ′) = δλλ′ , ~ε(−k , 1) = −~ε(k , 1), ~ε(−k , 2) =~ε(−k , 2)

It is convienent to write the mode expansion as,

Aµ(~x , t) =∫ d 3k√

2ω(2π)3∑λ

εµ(k ,λ)[a(k ,λ)e−ikx + a+(k ,λ)e ikx ]

whereεµ(k ,λ) = (0,~ε(k ,λ))

(Institute) Slide_06 QED 5 / 35

Page 6: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Photon PropagatorFeynman propagatpr for photon is

iDµν (x , x ′) =⟨0∣∣T (Aµ (x )Aν (x ′)

)∣∣ 0⟩= θ (t − t ′)

⟨0∣∣Aµ (x )Aν (x ′)

∣∣ 0⟩+ θ (t ′ − t)⟨0∣∣Aν (x ′)Aµ (x )

∣∣ 0⟩From mode expansion,

⟨0∣∣Aµ (x )Aν (x ′)

∣∣ 0⟩ =∫ d 3kd 3k ′

(2π)3√2ωk 2ωk ′

∑λ,λ′

εµ(k ,λ)εν(k ′,λ′)⟨0∣∣∣[a(k ,λ)e−ikx ]a+(k ′,λ′)e ik ′x ′ ∣∣∣ 0⟩

=∫ d 3kd 3k ′

(2π)32ωk∑λ,λ′

εµ(k ,λ)εν(k ′,λ′) δ3 (k − k ′) e−ikx+ik ′x ′

=∫ d 3k(2π)32ωk

∑λ,λ′

εµ(k ,λ)εν(k ,λ′)e−ik (x−x

′ )

Note that12π

∫ dk0k 20 −ω2 + i ε

e−ik0(t−t′) =

−i 12ω e

−iω(t−t ′) for t > t ′

−i 12ω eiω(t−t ′) for t ′ > t

We then get

∫ d 4k

(2π)4e−ik ·(x

′−x)

k 2 + i ε= −i

∫ d 3k(2π)32ωk

[θ(t − t ′)e−ik (x−x ′ ) + θ(t − t ′)e ik (x−x ′ )

]

(Institute) Slide_06 QED 6 / 35

Page 7: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

and

⟨0∣∣T (Aµ (x )Aν (x ′)

)∣∣ 0⟩ =∫ d 3k(2π)32ωk

∑λ,λ′

εµ(k ,λ)εν(k ,λ′)[θ(t − t ′)e−ik (x−x ′ ) + θ(t − t ′)e ik (x−x ′ ) ]

= i∫ d 4k

(2π)4e−ik ·(x

′−x)

k 2 + i ε

2

∑λ=1

εν(k ,λ)εµ(k ,λ) = iDµν (x , x ′)

Or

Dµν (x , x ′) =∫ d 4k

(2π)4e−ik ·(x

′−x)

k 2 + i ε

2

∑λ=1

εν(k ,λ)εµ(k ,λ)

polarization vectors εµ(k ,λ), λ = 1, 2 are perpendicular to each other. Add 2 more unit vectors to form acomplete set

ηµ = (1, 0, 0, 0) , kµ =kµ − (k · η) ηµ√(k · η)2 − k 2

completeness relation is then,

2

∑λ=1

εν(k ,λ)εµ(k ,λ) = −gµν − ηµην − kµ kν

= −gµν −kµkν

(k · η)2 − k 2+(k · η)

(kµην + ηµkν

)(k · η)2 − k 2

−k 2ηµην

(k · η)2 − k 2

(Institute) Slide_06 QED 7 / 35

Page 8: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

If we define propagator in momentum space as

Dµν (x , x ′) =∫ d 4k

(2π)4e−ik ·(x

′−x)Dµν (k )

then

Dµν (k ) =1

k 2 + i ε

−gµν −kµkν

(k · η)2 − k 2+(k · η)

(kµην + ηµkν

)(k · η)2 − k 2

−k 2ηµην

(k · η)2 − k 2

terms proportional to kµ will not contribute to physical processes and the last term is of the form δµ0 δν0 willbe cancelled by the Coulom interaction..

(Institute) Slide_06 QED 8 / 35

Page 9: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Feynman rule in QEDThe interaction Hamiltonian is ,

Hint = e∫d 3x

_ψγµψAµ

The Feynman propagators, vertices and external wave functions are given below.

(Institute) Slide_06 QED 9 / 35

Page 10: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

p

p p

p

(Institute) Slide_06 QED 10 / 35

Page 11: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

e+e−→ µ+µ−

Total Cross Sectionmomenta for this reaction

e+ (p ′) + e− (p)→ µ+ (k ′) + µ− (k )

Use Feynman rule to write the matrix element as

M (e+e− → µ+µ−) =_v (p ′, s ′) (−ieγµ) u (p, s)

(−igµν

q2

)_u(k ′, r ′) (−ieγν) v (k , r )

=ie2

q2_v (p ′, s ′)γµu (p, s)

_u(k ′, r ′)γµv (k , r )

where q = p + p ′. Notet that electron vertex have property,

_v (p ′)γµu (p) = (p + p ′)µ

_v (p ′)γµu (p) =

_v (p ′)

(/p + /p ′

)u (p) = 0

(Institute) Slide_06 QED 11 / 35

Page 12: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

This shows the term proportional to photon momentum qµ will not contribute in the physical processes.For cross section, we need M ∗ which contains factor

(_vγµu

)∗(_vγµu

)∗= u† (γµ)† (γ0)

† v = u†γ0γµv =_uγµv

More generally, (_vΓu

)∗=

_u_Γv , with

_Γ = γ0Γ†γ0

It is easy to see _γµ = γµ

γµγ5 = −γµγ5

/a /b · · · /p = /p · · · /b /a

unpolarized cross section which requires the spin sum,

∑suα (p, s)

_uβ (p, s) = ( /p +m)αβ

∑svα (p, s)

_v β (p, s) = ( /p −m)αβ

This can be seen as follows.

∑suα (p, s)

_uβ (p, s) = (E +m)

(1~σ·~pE+m

)∑s

χsχ†s

(1 − ~σ·~p

E+m

)= (E +m)

(1 − ~σ·~p

E+m~σ·~pE+m

−~p2(E+m)2

)

=

(E +m −~σ ·~p~σ ·~p −E +m

)= /p +m

(Institute) Slide_06 QED 12 / 35

Page 13: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Similarly for the v−spinor,

∑svα (p, s)

_v β (p, s) = (E +m)

(~σ·~pE+m1

)χsχ

†s

(~σ·~pE+m −1

)= (E +m)

(~p2

(E+m)2− ~σ·~pE+m

~σ·~pE+m −1

)

=

(E −m −~σ ·~p~σ ·~p − (E +m)

)= /p −m

(Institute) Slide_06 QED 13 / 35

Page 14: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

A typical calculation is,

∑s ,s ′

_v α(p ′, s ′) (γµ)αβ uβ (p, s)

_uρ(p, s) (γν)ρσ vσ (p, s)

= ∑s ′

_v α(p ′, s ′) (γµ)αβ ( /p +m)βρ (γ

ν)ρσ vσ (p, s)

= (γµ)αβ ( /p +m)βρ (γν)ρσ ( /p −m)σα

= Tr [γµ ( /p +m) γν ( /p −m)]

trace of product of γ matrices.Tr (γµ) = 0

Tr (γµγν) = 4g µν

Tr(

γµγνγαγβ)= 4

(g µνg αβ − g µαg νβ + g µβg να

)

Tr ( /a1 /a2 · · · /an)= (a1 · a2)Tr ( /a3 · · · /an)− (a1 · a3)Tr ( /a2 · · · /an) + · · ·+ (a1 · an)Tr

(/a2 /a3 · · · /an−1

), n even

= 0 n odd

With these tools

14 ∑spin

∣∣M (e+e− → µ+µ−)∣∣2 = e4

q4Tr[(/p ′ −me

)γµ ( /p +me ) γν

]Tr[(/k ′ +mµ

)γµ

(/k +mµ

)γν]

(Institute) Slide_06 QED 14 / 35

Page 15: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

for energies mµ.

14 ∑spin′

∣∣M (e+e− → µ+µ−)∣∣2 = 8 e4

q4

[(p · k )

(p ′ · k ′

)+ (p ′ · k )

(p · k ′

)]

In center of mass,pµ = (E , 0, 0,E ) , p ′µ = (E , 0, 0,−E )

kµ =

(E ,→k), k ′µ =

(E ,−

→k), with

→k · z = E cos θ

If we set mµ = 0, E =

∣∣∣∣→k ∣∣∣∣ andq2 = (p + p ′)2 = 4E 2 , p · k = p ′ · k ′ = E 2 (1− cos θ) ,

p ′ · k = p · k ′ = E 2 (1+ cos θ)

Then

14 ∑spin′|M |2 =

8e4

16E 4

[E 4 (1− cos θ)2 + E 4 (1+ cos θ)2

]= e4

(1+ cos2 θ

)Note that under the parity θ → π − θ. this matrix element conserves the parity

(Institute) Slide_06 QED 15 / 35

Page 16: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

The cross section is

dσ =1I12E

12E(2π)4δ4(p + p ′ − k − k ′) 1

4 ∑spin′|M |2 d 3k

(2π)32ω

d 3k ′

(2π)32ω′

use the δ−function to carry out integrations . introduce the quantity ρ, called the phase space, given by

ρ =∫(2π)4δ4(p + p ′ − k − k ′) d 3k

(2π)32ω

d 3k ′

(2π)32ω′

=dΩ32π2

The flux factor is

I =1

E1E2

√(p1 · p2)2 −m2

1m22 =

1E 22E 2 = 2

The differential crossection is then

dσ =1214E 2

(14 ∑spin′|M |2

)dΩ32π2

Ordσ

dΩ=

α2

16E 2(1+ cos2 θ

)where α =

e2

4πis the fine structure constant. The total cross section is

σ(e+e− → µ+µ−

)=

α2π

3E 2

(Institute) Slide_06 QED 16 / 35

Page 17: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Or

σ(e+e− → µ+µ−

)=4α2π

3swith s = (p1 + p2)

2 = 4E 2

(Institute) Slide_06 QED 17 / 35

Page 18: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

e+e−→ hadronsOne of the interesting procesess in e+e− collider is the reaction

e+e− → hadrons

According to QCD, theory of strong interaciton, this processes will go through

e+e− → q_q

and then q_q trun into hadrons. Since coupling of γ to q

_q differs from the coupling to µ+µ− only in their

charges cross section for q_q as

σ(e+e− → q

_q)= 3

(Q 2q

) 4α2π

3s= 3

(Q 2q

)σ(e+e− → µ+µ−

)Qq is electric charge of quark q. The factor of 3 because each quark has 3 colors. Then

σ (e+e− → hadrons)σ (e+e− → µ+µ−)

= 3

(∑i

Q 2i

)

Summation is over quarks which are allowed by the avaliable energies. e. g., for energy below the the charmquark only u, d , and s quarks should be included,

σ (e+e− → hadrons)σ (e+e− → µ+µ−)

= 3

[(23

)2+

(13

)2+

(13

)2]= 2

which is not far from the reality.

(Institute) Slide_06 QED 18 / 35

Page 19: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

(Institute) Slide_06 QED 19 / 35

Page 20: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

ep → ep,e (k ) + p (p) −→ e (k ′) + p (p ′)

Proton has strong interaction. First consider proton has no strong interaction and include strong interactionlater. The lowest order contribution is ,

M (e + p → e + p) =_u(p ′, s ′) (−ieγµ) u (p, s)

(−igµν

q2

)_u(k ′, r ′) (−ieγν) u (k , r )

=ie2

q2_u(p ′, s ′)γµu (p, s)

_u(k ′, r ′)γµu (k , r )

(Institute) Slide_06 QED 20 / 35

Page 21: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

where q = k − k ′. For unploarized cross section, sum over the spins ,

14 ∑spin|M (e + p → e + p)|2 = e4

q4Tr[(/p ′ +M

)γµ ( /p +M ) γν

]Tr[(/k ′ +me

)γµ ( /k +me ) γν

]

Again neglect me . Compute the traces

Tr[/k ′γµ /kγν

]= 4 [k ′µk ν − g µν (k · k ′) + kµk ′ν ]

Tr[(/p ′ +M

)γµ ( /p +M ) γν

]= 4 [p ′µpν − g µν (p · p ′) + pµp ′ν ] + 4M 2g µν

Then14 ∑spin|M (e + p → e + p)|2 = e4

q4

8[(p · k )

(p ′ · k ′

)+ (p ′ · k )

(p · k ′

)]− 8M 2 (k · k ′)

(Institute) Slide_06 QED 21 / 35

Page 22: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Use laboratoy frame

pµ = (M , 0, 0, 0) , kµ =

(E ,→k), k ′µ =

(E ′,

→k ′)

Thenp · k = ME , p.k ′ = ME ′, k · k ′ = EE ′ (1− cos θ)

p ′ · k ′ = (p + k − k ′) .k ′ = p.k ′ + k · k ′, p ′ · k = (p + k − k ′) .k = p.k − k · k ′

q2 = (k − k ′)2 = −2k · k ′ = −2EE ′ (1− cos θ)

Differential cross section is

dσ =1I12p0

12k0

(2π)4δ4(p + k − p ′ − k ′) 14 ∑spin′|M |2 d 3p ′

(2π)32p ′0

d 3k ′

(2π)32k ′0

The phase space is

ρ =∫(2π)4δ4(p + k − p ′ − k ′) d 3p ′

(2π)32p ′0

d 3k ′

(2π)32k ′0(1)

=14π2

∫δ (p0 + k0 − p ′0 − k ′0)

d 3k ′

2p ′02k′0

where

p ′0 =

√M 2 +

(→p +

→k −

→k ′)2=

√M 2 +

(→k −

→k ′)2

(Institute) Slide_06 QED 22 / 35

Page 23: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Use the momenta in lab frame,

ρ =14π2

∫δ (M + E − p ′0 − E ′)

k ′2dk ′dΩ2p ′02E ′

=14π2

∫δ (M + E − p ′0 − E ′)

dΩE ′dE ′

p ′0

Letx = −E + p ′0 + E ′

Then

dx = dE ′(1+dp ′0dE ′

) = dE ′(p ′0 + E

′ − E cos θ

p ′0

)and

ρ =14π2

∫δ (x −M ) dΩE ′dx

(p ′0 + E ′ − E cos θ)=

14π2

dΩE ′

M + E (1− cos θ)

From the argument of the δ−function we get the relation, M = x = −E + p ′0 + E ′From momentum conservation

p ′20 = M2 +

(→k −

→k ′)2= M 2 + E 2 + E ′2 − 2EE ′ cos θ

and from energy conservation

p ′20 = (M + E − E ′)2 = M 2 + E 2 + E ′2 − 2EE ′ + 2ME − 2ME ′

(Institute) Slide_06 QED 23 / 35

Page 24: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Comparing these 2 equations we can solve for E ′,

E ′ =ME

E (1− cos θ) +M=

E

1+(2EM

)sin2

θ

2

The phase space is then

ρ =dΩ4π2

ME

(M + E (1− cos θ))2=dΩ4π2

E ′2

ME

The flux factor is

I =1ME

p · k = 1

The differential cross section is then

dσ =1I12p0

12k0

(2π)4δ4(p + k − p ′ − k ′) 14 ∑spin′|M |2 d 3p ′

(2π)32p ′0

d 3k ′

(2π)32k ′0

Or

dΩ=

14ME

14π2

E ′2

ME14 ∑spin′|M |2 =

(E ′

E

)2 116π2M 2

e4

q4

8[(p · k )

(p ′ · k ′

)+ (p ′ · k )

(p · k ′

)]− 8M 2 (k · k ′)

(Institute) Slide_06 QED 24 / 35

Page 25: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

It is staightforward to get [(p · k )

(p ′ · k ′

)+ (p ′ · k )

(p · k ′

)]−M 2 (k · k ′)

= 2EE ′M 2[cos2

θ

2− q2

2M 2 sin2 θ

2

]

dΩ=

(E ′

E

)2 α2

M 2

1(4EE ′ sin2

θ

2

)2 2EE ′M 2[cos2

θ

2− q2

2M 2 sin2 θ

2

]

=α2

4E ′

E 31

sin4θ

2

[cos2

θ

2− q2

2M 2 sin2 θ

2

]

Or

dΩ=

α2

4E 21

sin4θ

2

[cos2

θ

2− q2

2M 2 sin2 θ

2

][1+

(2EM

)sin2

θ

2

]Strong interaction.Use the fact that the γpp interaction is local to parametrize the γpp matrix element as

⟨p ′∣∣Jµ

∣∣ p⟩ = _u(p ′, s ′)

[γµF1

(q2)+iσµνqν

2MF2(q2)]u (p, s) with q = p − p ′ (2)

(Institute) Slide_06 QED 25 / 35

Page 26: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Lorentz covariance and current conservation have been used. Another useful relation is the Gordondecomposition

_u(p ′)γµu (p) =

_u(p ′)

[(p + p ′)µ

2m+iσµν (p ′ − p)ν

2m

]u (p)

This can be derived as follows. From Dirac equation

( /p −m)u(p) = 0,_u(p ′)( /p ′ −m) = 0

and _u(p ′)γµ( /p −m)u(p) = 0,

_u(p ′)( /p ′ −m)γµu(p) = 0

Adding these equations,

2m_u(p ′)γµu (p) =

_u(p ′)

(γµ /p + /p ′γµ

)u (p) =

_u(p ′)

(pνγµγν + p

′νγνγµ

)u (p)

=_u(p ′)

(pν(

12

γµ,γν

+12

[γµ,γν

]) + p ′ν(

12

γµ,γν

− 12

[γµ,γν

])

)u (p)

From this we get_u(p ′)γµu (p) =

_u(p ′)

[(p + p ′)µ

2m+iσµν (p ′ − p)ν

2m

]u (p)

F1(q2), charge form factor

F2(q2), magnetic form factor .

Note that F1(q2)= 1 and F2

(q2)= 0 correspond to point particle.

The charge form factor satifies the condition F1 (0) = 1. From

Q |p〉 = |p〉

(Institute) Slide_06 QED 26 / 35

Page 27: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

we get ⟨p ′ |Q | p

⟩=⟨p ′ |p

⟩= 2E (2π)3 δ3

(→p −→p

′)

(Institute) Slide_06 QED 27 / 35

Page 28: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

On the other hand from Eq(2) we see that

⟨p ′ |Q | p

⟩=

∫d 3x

⟨p ′ |J0 (x )| p

⟩=∫d 3x

⟨p ′ |J0 (0)| p

⟩e i(p

′−p)·x

= (2π)3 δ3(→p −→p

′) _u(p ′, s ′)γ0u (p, s) F1 (0)

= 2E (2π)3 δ3(→p −→p

′)F1 (0)

compare two equations =⇒ F1 (0) = 1. To gain more insight, write Q in terms of charge density

Q =∫d 3xρ (x ) =

∫d 3xJ0 (x )

Then ⟨p ′ |J0 (x )| p

⟩= e iq·x

⟨p ′ |J0 (0)| p

⟩= e iq·xF1

(q2) _u(p ′, s ′)γ0u (p, s)

F1(q2)is the Fourier transform of charge density distribution i.e.

F1(q2)∼∫d 3xρ (x ) e−i

→q ·→x

Expand F1(q2)in powers of q2 ,

F1(q2)= F1 (0) + q2F ′1 (0) + · · ·

F1 (0) is total charge and F ′1 (0) is related to the charge radius.Calulate cross section as before,

dΩ=

α2

4E 2

[cos2

θ

2

(1

1− q2/4M 2

) [G 2E −

(q2/4M 2

)G 2M]− q2

2M 2 sin2 θ

2G 2M

]sin4

θ

2

[1+

(2EM

)sin2

θ

2

](Institute) Slide_06 QED 28 / 35

Page 29: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

where

GE = F1 +q2

4M 2 F2

GM = F1 + F2

Experimentally, GE and GM have the form,

GE(q2)≈GM

(q2)

κp≈ 1

(1− q2/0.7Gev 2)2(3)

where κp = 2.79 magnetic moment of the proton. If proton were point like, we would have GE(q2)

=GM(q2)= 1

Dependence of q2 in Eq(3) =⇒ proton has a structure. For large q2 the elastic cross section falls off rapidlyas GE ≈ GM ∼ q−4 .

(Institute) Slide_06 QED 29 / 35

Page 30: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Compton Scattering

γ (k ) + e (p) −→ γ (k ′) + e (p ′)

Two diagrams contribute,

The amplitude is given by

M (γe −→ γe) =_u(p ′)(−ieγµ)ε′µ (k

′)i

/p + /k −m (−ieγν) εν (k ) u (p)

+_u(p ′)(−ieγµ)εµ (k )

i

/p − /k ′ −m(−ieγν) ε′ν (k

′) u (p)

Note that if write the amplitude asM = ε′µ (k

′)M µ

(Institute) Slide_06 QED 30 / 35

Page 31: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Then we have

k ′µMµ = −ie2 [

_u(p ′) /k ′

1/p + /k −m γνεν (k ) u (p) +

_u(p ′)γµεµ (k )

i

/p − /k ′ −m/k ′u (p)]

Using the relation/k ′ =

(/p ′ + /k ′ −m

)−(/p ′ −m

)= ( /p −m)−

(/p − /k ′ −m

)we get

k ′µMµ = −ie2 [

_u(p ′)γνεν (k ) u (p)−

_u(p ′)γµεµ (k ) u (p)] = 0

Similarly, we can show that if we repalce the polarization εµ (k ) by kµ the amplitude also vanishes. Using thisrelation we can simplify the polarization sum for the photon as follows. Let us take polarizations to be

εµ (k , 1) = (0, 1, 0, 0) , εµ (k , 2) = (0, 0, 1, 0) , with kµ = (k , 0, 0, k ) ,

Then the polarization sum is

∑λ

∣∣εµ (k ,λ)M µ∣∣2 = ∣∣M 1

∣∣2 + ∣∣M 2∣∣2

But from kµM µ = 0, we get

M 0 = M 3 , =⇒∣∣M 0

∣∣2 = ∣∣M 3∣∣2

Thus∑λ

∣∣εµ (k ,λ)M µ∣∣2 = ∣∣M 1

∣∣2 + ∣∣M 2∣∣2 + ∣∣M 3

∣∣2 − ∣∣M 0∣∣2 = −gµνM µM ∗ν

This is the same as the repalcement

∑λ

εµ (k ,λ) εµ (k ,λ) −→ −gµν

(Institute) Slide_06 QED 31 / 35

Page 32: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

Put the γ- matrices in the numerator,

M = −ie2ε′µεν

[_u(p ′)γµ /p + /k +m

2p · k γνu (p) +_u(p ′)γν /p − /k ′ +m

−2p · k ′ γµu (p)]

Using the relations,( /p +m) γνu (p) = 2pνu (p) ,

we get

M = −ie2_u(p ′)

[/ε′ /k /ε+ 2 (p · ε) /ε′

2p · k +− /ε /k ′ /ε′ + 2 (p · ε) /ε′

−2p · k ′]u (p)

(Institute) Slide_06 QED 32 / 35

Page 33: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

The photon polarizations are,

εµ =(0,→ε), with

→ε ·→k = 0, ε′µ =

(0,→ε′), with

→ε′·→k′= 0,

Lab frame , pµ = (m, 0, 0, 0), =⇒ (p · ε) = (p · ε′) = 0 and

M = −ie2_u(p ′)

[/ε′ /k /ε2p · k +

/ε /k ′ /ε′

2p · k ′]u (p)

Summing over spin of the electron

12 ∑spin|M |2 = e4Tr

(/p ′ +m

) [ /ε′ /k /ε2p · k +

/ε /k ′ /ε′

2p · k ′]( /p +m)

[/ε′ /k /ε2p · k +

/ε /k ′ /ε′

2p · k ′]

The cross section is given by

dσ =1I12p0

12k0

(2π)4δ4(p + k − p ′ − k ′) 14 ∑spin′|M |2 d 3p ′

(2π)32p ′0

d 3k ′

(2π)32k ′0

phase space

ρ =∫(2π)4δ4(p + k − p ′ − k ′) d 3p ′

(2π)32p ′0

d 3k ′

(2π)32k ′0

is exactly the same as the case for ep scattering and the result is

ρ =dΩ4π2

ω′2

(Institute) Slide_06 QED 33 / 35

Page 34: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

It is straightforward to compute the trace with result,

dΩ=

α2

4m2

(ω′

ω

)2 [ω′

ω+

ω

ω′+ 4 (ε · ε′)2 − 2

]

This is Klein-Nishima relation. In the limit ω → 0,

dΩ=

α2

m2 (ε · ε′)2

hereα

mis classical electron radius.

(Institute) Slide_06 QED 34 / 35

Page 35: Quantum Electrodynamics - CAS · Quantum Electrodynamics Ling-Fong Li (Institute) Slide_06 QED 1 / 35. Quantum Electrodynamics Lagrangian density for QED , L= y(x)gm i ...

For unpolarized cross section, sum over polarization of photon,

∑λλ′

[ε (k ,λ) · ε′

(k ′,λ′

)]2= ∑

λλ′

[→ε (k ,λ) ·→ε

′ (k ′,λ′

)]2

Since→ε (k , 1) ,

→ε (k , 2) and

→k form basis in 3-dimension, completeness relation is

∑λ

εi (k ,λ) εj (k ,λ) = δij − ki kj

Then

∑λλ′

[→ε (k ,λ) ·→ε

′ (k ′,λ′

)]2=(δij − ki kj

) (δij − k ′i k ′j

)= 1+ cos2 θ

where k · k ′ = cos θ. The cross section is

dΩ=

α2

2m2

(ω′

ω

)2 [ω′

ω+

ω

ω′− sin2 θ

]The total cross section,

σ =πα2

m2

∫ 1

−1dz 1[

1+ω

m(1− z )

]3 + 1[1+

ω

m(1− z )

] − 1− z 2[1+

ω

m(1− z )

]2 At low energies, ω → 0, we

σ =8πα2

3m2

and at high energies

σ =πα2

ωm

[ln2ω

m+12+O

(mωlnmω

)](Institute) Slide_06 QED 35 / 35