Top Banner
Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011
16

Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Apr 09, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Pseudo NMOS LogicPass-Transistor Logic

INEL 4207 - Spring 2011

Page 2: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Figure 15.1 (a) The pseudo-NMOS logic inverter. (b) The enhancement-load (or saturated-load) NMOS inverter. (c) The depletion-load NMOS inverter.

Page 3: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

iD =k�

n

2

�W

L

n

�2(vi − Vtn)vO − v2

O

�← vO < vi − Vtn

iD =k�

n

2

�W

L

n

(vi − Vtn)2 ← vO ≥ vi − Vtn

QN

QP

iDP =k�

p

2

�W

L

p

�2(VDD − |Vtp|)(VDD − vO)− (VDD − vO)2

�← VDD − vO < VDD − |Vtp|

← vO > |Vtp|

iDP =k�

p

2

�W

L

p

(VDD − |Vtp|)2 ← VDD − vO ≥ VDD − |Vtp|

← vO ≤ |Vtp|

Page 4: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Figure 15.2 Graphical construction to determine the VTC of the inverter in Fig. 15.1(a).

Page 5: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Figure 15.3 VTC for the pseudo-NMOS inverter. This curve is plotted for VDD = 5 V, Vtn = −Vtp = 1 V, and r = 9.

kn= r kpVtn = |Vtp| = Vt

Page 6: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Region VTC Segment QN QP Condition

I AB Cutoff Triode vi < Vtn

II BC Saturated Triode vO ≥ vi-Vtn

vO ≥ |Vtp|

III CD Saturated Saturated vO ≥ vi-Vtn

vO < |Vtp|

IV DE Triode Saturated vO < vi-Vtn

vO < |Vtp|

Page 7: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Region II

vO = Vt +�

(VDD − Vt)2 − r(vi − Vt)2

VIL = Vt +VDD − Vt�

r(r + 1)

VM = Vt +VDD − Vt√

r + 1

Region IV

vO = (vi − Vt)−�

(vi − Vt)2 −1r(VDD − Vt)2

VIH = Vt +2√3r

(VDD − Vt)

VOL = (VDD − Vt)

�1−

�1− 1

r

Istatic =12k�

p

�W

L

p

(VDD − Vt)2

Page 8: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Noise Margins

NML = Vt − (VDD − Vt)

�1−

�1− 1

r− 1�

r(r + 1)

NMH = (VDD − Vt)

�1− 2√

3r

Dynamic Operation

tPLH =αpC

k�p

�W

L

�pVDD

αp =2

74 − 3

�Vt

VDD

�+

�Vt

VDD

�2

tPHL � αnC

k�n

�W

L

�n

VDD

αn =2

1 +34

�1− 1

r

�−

�3− 1

r

� �Vt

VDD

�+

�Vt

VDD

�2

Page 9: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Figure 15.4 NOR and NAND gates of the pseudo-NMOS type.

Page 10: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Example:

Consider a pseudo-NMOS inverter for which µnCox = 115 µA/V2, µpCox = 30 µA/V2, Vtn = - Vtp = 0.5V and VDD = 2.5V. Let the W/L ratio of QN be (0.375µm/0.25µm) and r = 9. Find:

(a) VOH, VOL, VIL, VIH, VM, NMH and NML

(b) (W/L)p

(c) Istatic and PD (static power dissipation)

(d) tPLH, tPHL and tp, assuming C = 7fF

Page 11: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Figure 15.5 Conceptual pass-transistor logic gates. (a) Two switches, controlled by the input variables B and C, when connected in series in the path between the input node to which an input variable A is applied and the output node (with an implied load to ground) realize the function Y = ABC. (b) When the two switches are connected in parallel, the function realized is Y = A(B + C).

Page 12: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Figure 15.6 Two possible implementations of a voltage-controlled switch connecting nodes A and Y: (a) single NMOS transistor and (b) CMOS transmission gate.

Page 13: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Figure 15.7 A basic design requirement of PTL circuits is that every node have, at all times, a low resistancepath to either ground or VDD. Such a path does not exist in (a) when B is low and S1 is open. It is provided in

(b) through switch S2.

Page 14: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Figure 15.8

Page 15: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.
Page 16: Pseudo NMOS Logic Pass-Transistor Logicmtoledo/4207/S2011/C10_11.pdf · Pseudo NMOS Logic Pass-Transistor Logic INEL 4207 - Spring 2011. Figure 15.1 (a) The pseudo-NMOS logic inverter.

Example

Consider the NMOS switch shown in figs. 15.8 and 15.9 for which µnCox =

50µA/V 2, µpCox = 20µA/V 2, |Vt0| = 1V , γ = 0.5√

V , 2φf = 0.6V and VDD =

5V . Let the transistor have W/L = 4µm/2µm, and assume C = 50fF .

1. For vi high, (fig. 15.8) find VOH .

2. If the output feeds a CMOS inverter whose (W/L)p = 2.5(W/L)n =

10µm/2µm, find the static current in the inverter and its power dissi-

pation when its input is the value found in (1). Find the inverter output

voltage.

3. Find tPLH .

4. Find tPHL for the case with vi going low (fig. 15.9).

5. Find tp.

Answer: (1) VOH= 3.4V. (2) iDP = 18μA, PD = 90μW, vO = 0.08. (3) iD(0) = 800μA, iD(tPLH) = 50μA, iD, AV = 425μA, tPLH = C(VDD/2)/iD, AV = 0.29ns. (4) tPHL = 0.17ns. (5) tp = 0.23ns.