Top Banner
POTENTIAL for COALBED METHANE (CBM) and ENHANCED COALBED METHANE RECOVERY (ECBM) in INDIANA Maria Mastalerz , Indiana Geological Survey, Indiana University , Bloomington
43

POTENTIAL for COALBED METHANE (CBM) and ENHANCED …€¦ · • Enhanced coal bed methane recovery is a method of producing additional coalbed methane from a source rock (coal bed),

May 02, 2020

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • POTENTIAL for COALBED METHANE (CBM) and ENHANCED COALBED METHANE

    RECOVERY (ECBM) in INDIANA

    Maria Mastalerz , Indiana Geological Survey,

    Indiana University , Bloomington

  • CBM is unconventional gas

  • U.S. Unconventional Natural Gas Production 1990-2030 (trillion cubic feet)

    0

    1

    2

    3

    4

    5

    6

    7

    1990 1995 2000 2005 2010 2015 2020 2025 2030

    Tight Sands

    Coalbed Methane

    Gas Shales

    History Projections

    Annual Energy Outlook 2007

  • CBM in USA

    Source, EIA, 2009

    0

    500

    1000

    1500

    2000

    2500

    1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

    Billio

    n c

    ub

    ic f

    eet

    (Bcf)

    Year

  • Illinois Basin among the CBM basins in US

    0.6 trillion m3

    21 trillion m3

  • Illinois Basin – shallow low maturity (high volatile bituminous) coals

    ~21 TCF of CBM

  • Coal in Indiana

  • producing area

    1.5 Tcf – Seelyville alone, ~5 Tcf - total

  • Mo

    re m

    icro

    bia

    l C

    H4

    Distribution of coal gas compositional and isotopic fingerprints

    ~ 3 cm3/g (100 scf/ton), ~ 99% of microbial origin Strąpoć et al., 2008, IJCG

    -90 to -45 - biogenic

    -30 to -50 - thermogenic

  • Geochemical and isotopic signatures of coal gas: CH4 generated microbially via CO2-reduction

    Strąpoć et al., 2007, OG

  • Basin history and multi-parameter model for microbial methanogenesis

    60 C

    MESO- ZOIC

    Microbial

    Early T-genic gas

    Temperature o.k.

    Slow colonization and onset of methanogenesis

    Brine dilution

    Meteoric water access

  • Microbial colonization and onset of methanogenesis

    • Inter and post glacial colonization and onset of CH4-generation in the Illinois Basin (similarly to the New Albany Shale and Antrim Shale in Michigan Basin (McIntosh, 2003)

    • Initiated by brine dilution with ice sheet melt-waters

    • Similar activation of methanogenesis in coal beds observed in other basins: Black Warrior, San Juan, Alberta

  • Epifluorescence of F420 coenzyme

    Microscopic features of methanogenic enrichments of the CBM co-produced water suggest presence

    of methanogenic Archaea

    Very small cell size typical of Archaea

    1 μm x400

    Renewable resource??

  • 16S rRNA study of coal water and methanogenic enrichment: dominant methanogen - CO2/H2 utilizing Methanocorpusculum

    SEM image of the CO2-reduction methanogenic enrichment

    (Methanocorpusculum)

    Strąpoć et al., 2008, AEM

    Cell membrane intact polar lipids (IPLs)

  • n-C15

    n-C16

    n-C17

    n-C18 n-C19

    n-C20

    me-C23

    me-C24

    me-C25

    me-C26

    me-C27

    hopane

    norhopane

    pristane

    phytane

    biphytane

    monomethylalkanes:

    found in modern and

    paleo microbial mats

    signatures (Kenig, 2000)

    alkyl cyclohexanes:

    coal wax (Dong et al.,

    1993) and in microbes

    n-alkanes, coal bitumen:

    trace amounts (similar

    to biomarkers e.g. hopanes),

    only C15 – C25 present

    isoprenoids: hard to biodegrade, Pri and Phy ~ ½ of C17 and C18 ?

    hopanes (biomarkers,

    hard to biodegrade)

    C17

    C16

    C15

  • How much coalbed gas do we have?

    • CBM in the Illinois Basin:

    - 21 Tcf (GRI)

    - 7.8 Tcf (DOE) – recoverable

    • CBM in Indiana

    - 1.1 Tcf - Seelyville Coal in Indiana

    (Drobniak et al., 2004)

    - 5 Tcf in Indiana?

    17.5 billion tons available 39.2 billion tons restricted

  • How much gas do we produce?

  • • Enhanced coal bed methane recovery is a method of producing additional coalbed methane from a source rock (coal bed), similar to enhanced oil recovery applied to oil fields;

    • If the gas is injected into a coal bed, then methane could be

    liberated and extracted. Typical injection gases include nitrogen and carbon dioxide;

    • Growing interest in carbon sequestration brought considerable

    interest into integrated ECBM recovery/carbon sequestration projects.

    Enhanced Coal Bed Methane Recovery (ECBM)

  • Power generation, CO2 sequestration & ECBM

    Power plant

    CO2

    CH4 CH4

    CH4

  • Coal-burning electric power plants

    71.62%

    Major coal-burning industrial and

    institutional plants 2.66%

    Natural-gas industrial generators

    24.29%

    Oil-burning industries 1.19%

    Wood-burning industries

    0.24%

    Emission sources (2009 data) CO2 emissions

    (metric tons/year) Coal-burning electric power plants 117,736,810 Major coal-burning industrial and institutional plants 4,378,999 Natural gas-burning industrial generators 39,925,000 Oil-burning industries 1,954,741 Wood-burning industries 399,672

    TOTAL emissions from point sources 164,395,222

    CO2 emissions from stationary sources in Indiana

    Total Indiana CO2 emissions: 250 mln tons a year

  • Gas storage in coal

    • Dual-porosity system: matrix and cleats

    • Gas stored by adsorption on coal surfaces within the matrix

    • 1 lb of coal (15 in3) contains 100,000 – 1,000,000 ft2 of surface area

    • Gas production by desorption, diffusion and Darcy flow

  • Matrix: Gas Desorption, Diffusion, Darcy-flow

    Fracture: Darcy-Flow

    Gas Transport Mechanisms

    Microporosity Mesoporosity Macroporosity (fracture flow) (matrix flow)

  • CH4 adsorption: corresponding CH4 adsorption capacities range from approximately

    1.6 to 6.3 m3/t (50 to 200 scf/ton).

    Adsorption capacities of Indiana coals

  • CO2 adsorption: for reservoir conditions, the range of CO2 adsorption capacities (daf

    basis) ranges from close to 6.2 m3/t (200 scf/ton) for the lowest pressure to almost

    22.0m3/t (700 scf/ton) for the highest pressures.

    Adsorption capacities of Indiana coals

    The ratio of CO2 to CH4 adsorption capacities varies with pressure. At 2.07MPa (300

    psi), the CO2/CH4 ratio ranges from 3.7 to 5.7 for the coals studied.

  • Objective: to assess the potential of

    deep, uneconomic coalbeds located

    within the Illinois Basin to (1) sequester

    CO2 and (2) produce methane from the

    coals as a by-product of the

    sequestration process (enhanced

    coalbed methane [ECBM] recovery).

  • Methods: - We reviewed physical and chemical attributes of the coals that are important in assessing their ability to adsorb and retain CO2. - The depth and thickness of the coalbeds, as well as selected coal quality parameters (e.g., ash, moisture), were analyzed and interpreted in terms of the availability of the coal for CO2 storage. - The criteria for minability were reviewed and applied to the set of seven major coalbeds in the Illinois Basin.

    - Coals were also assessed relative to their adsorption capacities and their response to CO2 flooding experiments. - Storage capacities were modeled. - Final estimates of ECBM and CO2 storage volumes were made using GIS-generated map layers.

  • CO2 sequestration screening criteria for designating areas not desirable for mining (unminable) 1) 91-152 m (300-500 ft) deep: No CO2 sequestration, coalbed methane (CBM) target only.

    2) 152-305 m (500-1,000 ft) deep: Sequestration or ECBM target in coals between 0.46 and 1.1 m (1.5 and 3.5 ft) thick. Coals greater than 1.1 m (3.5 ft) thick are considered minable. 3) Greater than 305 m (1,000 ft) deep: Sequestration target in coals greater than 0.46 m (1.5 ft) thick (all coals assumed to be unminable at this depth). While establishing these criteria for CO2 sequestration and ECBM production potential, these assumptions, among others, were considered: 1) the minimum thickness for identifying, perforating, and producing CH4 from a coal seam is 0.46 m (1.5 ft), regardless of depth, and 2) the current minimum minable thickness by underground coal equipment is 1.1 m (3.5 ft).

  • The depth and thickness of coal beds were the basis for the calculating CO2 volumes that could be potentially injected.

    Thickness and depth maps were used to separate minable from unminable (potentially suitable for CO2 sequestration) areas within each coal bed.

  • The depth and thickness of coalbeds were the basis for calculating CO2 volumes that could be potentially injected.

    1) 91-152 m (300-500 ft) deep:

    No CO2 sequestration, coalbed methane

    (CBM) target only.

    2) 152-305 m (500-1,000 ft) deep:

    Sequestration or ECBM target in coals

    between 0.46 and 1.1 m (1.5 and 3.5 ft)

    thick. Coals greater than 1.1 m (3.5 ft) thick

    are considered minable.

    3) Greater than 305 m (1,000 ft) deep:

    Sequestration target in coals greater than

    0.46 m (1.5 ft) thick (all coals assumed to

    be unminable at this depth).

  • The remaining coal resource in the Illinois Basin: 413 billion tonnes (455 billion tons). 142 billion tonnes (157 billion tons) (or 34.5%) meets the “minable” criteria of being less than 305 m (1000 ft) deep and greater than 1.1 m (3.5 ft) thick. 271 billion tonnes (298 billion tons) are potentially available as a CO2 sequestration reservoirs.

  • CO2 storage from 1.6 to 4.6 billion t (1.8 to 5.1 billion tons) in Illinois Basin coals

    - 164 mln tons a year from stationary sources in Indiana - Gibson Station emits ~ 22 mln CO2 a year (3100 MW capacity) – 660 mln for 30 years - Edwardsport Gasification – 4.5 mln a year (630 MW capacity) – 150 mln for 30 years

    90 mln tons of CO2 storage in Indiana (~3%)

    COMET 2 software

  • 70-280 billion m3 (2.4-9.8 tcf) of CH4 is potentially recoverable as a result of CO2 ECBM practices

    in the Illinois Basin Total recoverable ECBM and CO2 storage per acre of the coal increases towards the deeper areas of the basin, where there are more coal seams and the total coal thickness is largest

    ~0.15 tcf of CH4 in Indiana

  • Illinois Basin coal beds have reservoir temperatures ranging from less than 12ºC (55ºF) to a little more than 26ºC (80ºF) in isolated areas in Illinois, where geothermal anomalies are present with temperature gradients up to 2.4 ºF/100 ft. This temperature range indicates a gaseous phase of CO2 upon injection into reservoir conditions.

  • A hydrostatic pressure map, generated from the depth of the Springfield Coal, assuming totally saturated conditions with freshwater hydrostatic gradient of 0.43, shows that the pressure ranges from less than 689 kPa (100 psi) close to the margin of the Basin to more than 3,792 kPa (550 psi) in tectonically engaged areas in western Kentucky. Such a pressure range is far below the critical point, placing the coals studied in the gas state with regard to phase characteristics of CO2.

  • Oil and Gas Field Distribution In Indiana

  • Oil Production

  • Gas Production

  • A'ANW SE

    LIMA-INDIANA TREND

    GR

    Nipsco #3 Berger

    P # 24272

    Sec. 18-34N-3E

    Marshall County, Indiana

    N

    IGS # SDH-323 Williams

    P # 116607

    Sec. 20-25N-12E

    Wells County, Indiana

    GR N

    (Trempealeau)

    Premier Oil #1 Breymier

    P # 65

    Sec. 5, Jackson Twp.

    Drake County, Ohio

    GR FDC

    800

    900

    1000

    1100

    1200

    800

    900

    1000

    1100

    1200

    1300

    1400

    1500

    1200

    1300

    1400

    1500

    1600

    1700

    1800

    Structural Cross Section - Indiana/OhioDatum: Sea Level

    00

    300 feet

    15 miles

    marker

    Royal

    Center

    Fault

    Keith and Wickstrom (1992)

    50 Miles

    30 Km

    0

    0

    UPPER ORDOVICIAN PRODUCTION

    Oil Gas

    MICHIGAN

    INDIANAOHIO

    Bowling

    Green

    Fault

    Zone

    D U

    TRENTON STRUCTURE

    B'

    B

    A'

    A

    Keith (1986, 1989)

  • Trenton Field Summary

    • 1890: production began

    • 1915: production essentially over

    • Cumulative oil > 105 MMBO million barrels of oil

    • Cumulative gas > 980 BCFG billion cubic feet of gas

    • Covers 17% of Indiana land (43,000 mi2)

    • 36,259 wells by end of 1916 (Barrett, 1907)

    • 24,103 wells accounted for in PDMS

    • Depth of Trenton/Black River pay: 800-1,300 ft

  • Trenton Field Reservoir Characteristics

    • Reservoir pressure compromised, highly depleted Porosity generally in upper 100 ft of Trenton

    • Reservoir Rock: Dolostone

    • Typical porosity range: 0.3-10%, < 1% common

    • Typical permeability range: 0.3-100 md, < 10 md common

    • Both porosity and permeability are highly variable

    • Recoverable hydrocarbons left in place: ??

  • Enhanced Oil Recovery Perspective

    Depths 800 – 1300 feet Pressures 384 – 559 psi Temperature No organic matter to adsorb gas Variable permeability and porosity Unknown recoverable hydrocarbon resources Past completion practices Potential for enhanced oil recovery????

  • Field scale CO2 injection

    - Tanquary Site

    Injection

    well (I-1B)

    Monitoring

    well (M-3)

    Monitoring

    well (M-2A) Monitoring

    well (M-1)

    Ground water

    Monitoring well

    Ground water

    Monitoring well

    Ground water

    Monitoring well

    Ground water

    Monitoring well CO2 storage tank

    booster pump

    tool trailer

    portable

    generator

    office trailer

    pump skid heater

    engineer

    Butt

    cleat

    Face c

    leat

    148’-5

    98’-5

    104’-11

    52’-4”

    Tanquary FieldECBM Site Plan and Equipment LayoutUpdated 07.22.2008

    THANK YOU