Top Banner
Polarization of Light: from Basics to Instruments (in less than 100 slides) N. Manset CFHT
84
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Polarization Light Intro

Polarization of Light:from Basics to Instruments

(in less than 100 slides)

N. Manset

CFHT

Page 2: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 2

Introduction

• Part I: Different polarization states of light

• Part II: Stokes parameters, Mueller matrices

• Part III: Optical components for polarimetry

• Part IV: Polarimeters

• Part V: ESPaDOnS

Page 3: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 3

Part I: Different polarization states of light

• Light as an electromagnetic wave

• Mathematical and graphical descriptions of polarization

• Linear, circular, elliptical light

• Polarized, unpolarized light

Page 4: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 4

Light as an electromagnetic wave

Light is a transverse wave,

an electromagnetic wave

Part I: Polarization states

Page 5: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 5

Mathematical description of the EM wave

Light wave that propagates in the z direction:

y)t-kzcos(E)tz,(E

xt)-kzcos(E)tz,(E

0yy

0xx

Part I: Polarization states

Page 6: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 6

Graphical representation of the EM wave (I)

One can go from:

to the equation of an ellipse (using trigonometric

identities, squaring, adding):

2

0y

y

0x

x

2

0y

y

2

0x

x sincosE

E

E

E2

E

E

E

E

y)t-kzcos(E)tz,(E

xt)-kzcos(E)tz,(E

0yy

0xx

Part I: Polarization states

Page 7: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 7

Graphical representation of the EM wave (II)

An ellipse can be represented by 4 quantities:

1. size of minor axis

2. size of major axis

3. orientation (angle)

4. sense (CW, CCW)

Light can be represented by 4 quantities...

Part I: Polarization states

Page 8: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 8

Vertically polarized light

If there is no amplitude in x (E0x = 0), there is only one component, in y (vertical).

y)t-kzcos(E)tz,(E

xt)-kzcos(E)tz,(E

0yy

0xx

Part I: Polarization states, linear polarization

Page 9: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 9

Polarization at 45º (I)

If there is no phase difference (=0) and

E0x = E0y, then Ex = Ey

y)t-kzcos(E)tz,(E

xt)-kzcos(E)tz,(E

0yy

0xx

Part I: Polarization states, linear polarization

Page 10: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 10

Polarization at 45º (II)

Part I: Polarization states, linear polarization

Page 11: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 11

Circular polarization (I)

If the phase difference is = 90º and E0x = E0y

then: Ex / E0x = cos , Ey / E0y = sin

and we get the equation of a circle:

1sin cosE

E

E

E 22

2

0y

y

2

0x

x

y)t-kzcos(E)tz,(E

xt)-kzcos(E)tz,(E

0yy

0xx

Part I: Polarization states, circular polarization

Page 12: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 12

Circular polarization (II)

Part I: Polarization states, circular polarization

Page 13: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 13

Circular polarization (III)

Part I: Polarization states, circular polarization

Page 14: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 14

Circular polarization (IV)

Part I: Polarization states, circular polarization... see it now?

Page 15: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 15

Elliptical polarization

Part I: Polarization states, elliptical polarization

• Linear + circular polarization = elliptical polarization

Page 16: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 16

Unpolarized light(natural light)

Part I: Polarization states, unpolarized light

Page 17: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 17

A cool Applet

Electromagnetic Wave

Location: http://www.uno.edu/~jsulliva/java/EMWave.html

Part I: Polarization states

Page 18: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 18

Part II: Stokes parameters and Mueller matrices

• Stokes parameters, Stokes vector

• Stokes parameters for linear and circular polarization

• Stokes parameters and polarization P

• Mueller matrices, Mueller calculus

• Jones formalism

Page 19: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 19

Stokes parametersA tiny itsy-bitsy little bit of history...

• 1669: Bartholinus discovers double refraction in calcite

• 17th – 19th centuries: Huygens, Malus, Brewster, Biot, Fresnel and Arago, Nicol...

• 19th century: unsuccessful attempts to describe unpolarized light in terms of amplitudes

• 1852: Sir George Gabriel Stokes took a very different approach and discovered that polarization can be described in terms of observables using an experimental definition

Part II: Stokes parameters

Page 20: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 20

Stokes parameters (I)

The polarization ellipse is only valid at a given instant of time (function of time):

εsinεcos(t)E

(t)E

(t)E

(t)E2

(t)E

(t)E

(t)E

(t)E 2

0y

y

0x

x

2

0y

y

2

0x

x

To get the Stokes parameters, do a time average (integral over time) and a little bit of algebra...

Part II: Stokes parameters

Page 21: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 21

Stokes parameters (II)described in terms of the electric field

20y0x2

0y0x

220y

20x

220y

20x εsinEE2εcosEE2EEEE

The 4 Stokes parameters are:

εsinEE2V

εcosEE2U

E E Q

EEI

0y0x3

0y0x2

20y

20x1

20y

20x0

S

S

S

S

Part II: Stokes parameters

Page 22: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 22

Stokes parameters (III)described in geometrical terms

2sin

2sin2cos

2cos2cos

V

U

Q

I

2

2

2

2

a

a

a

a

Part II: Stokes parameters

Page 23: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 23

Stokes vectorThe Stokes parameters can be arranged in a Stokes vector:

LCPIRCPI

135I45I

90I0I

intensity

εsinEE2

εcosEE2

EE

EE

V

U

Q

I

0y0x

0y0x

20y

20x

20y

20x

• Linear polarization• Circular polarization• Fully polarized light• Partially polarized light• Unpolarized light 0VUQ

VUQI

VUQI

0V 0, U0,Q

0V 0, U0,Q

2222

2222

Part II: Stokes parameters, Stokes vectors

Page 24: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 24

Pictorial representation of the Stokes parameters

Part II: Stokes parameters

Page 25: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 25

Stokes vectors for linearly polarized light

LHP light

0

0

1

1

I0

LVP light +45º light -45º light

0

0

1

1

I0

0

1

0

1

I0

0

1

0

1

I0

Part II: Stokes parameters, examples

Page 26: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 26

Stokes vectors for circularly polarized light

RCP light

1

0

0

1

I0

LCP light

1

0

0

1

I0

Part II: Stokes parameters, examples

Page 27: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 27

(Q,U) to (P,)In the case of linear polarization (V=0):

I

UQP

22

Q

Uarctan

2

1

2 cos PQ 2 sin PU

Part II: Stokes parameters

Page 28: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 28

Mueller matrices

If light is represented by Stokes vectors, optical components are then described with Mueller matrices:

[output light] = [Muller matrix] [input light]

V

U

Q

I

V'

U'

Q'

I'

44434241

34333231

24232221

14131211

mmmm

mmmm

mmmm

mmmm

Part II: Stokes parameters, Mueller matrices

Page 29: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 29

Mueller calculus (I)

Element 1 Element 2 Element 3

1M 2M 3M

I’ = M3 M2 M1 I

Part II: Stokes parameters, Mueller matrices

Page 30: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 30

Mueller calculus (II)

Mueller matrix M’ of an optical component with Mueller matrix M rotated by an angle :

M’ = R(- ) M R() with:

1000

02cos2sin0

02sin2cos0

0001

)R(

Part II: Stokes parameters, Mueller matrices

Page 31: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 31

Jones formalism

Stokes vectors and Mueller matrices cannot describe interference effects. If the phase information is important (radio-astronomy, masers...), one has to use the Jones formalism, with complex vectors and Jones matrices: • Jones vectors to describe the polarization of light:

• Jones matrices to represent optical components:

(t)E

(t)E(t)J

y

x

2221

1211

jj

jjJ

BUT: Jones formalism can only deal with 100% polarization...

Part II: Stokes parameters, Jones formalism, not that important here...

Page 32: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 32

Part III: Optical components for polarimetry

• Complex index of refraction

• Polarizers

• Retarders

Page 33: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 33

Complex index of refraction

The index of refraction is actually a complex quantity:

iknm • real part

• optical path length, refraction: speed of light depends on media

• birefringence: speed of light also depends on P

• imaginary part

• absorption, attenuation, extinction: depends on media

• dichroism/diattenuation: also depends on P

Part III: Optical components

Page 34: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 34

Polarizers

Polarizers absorb one component of the polarization but not the other. The input is natural light, the output is polarized light (linear, circular, elliptical). They work by dichroism, birefringence, reflection, or scattering.

Part III: Optical components, polarizers

Page 35: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 35

Wire-grid polarizers (I)[dichroism]

• Mainly used in the IR and longer wavelengths

• Grid of parallel conducting wires with a spacing comparable to the wavelength of observation

• Electric field vector parallel to the wires is attenuated because of currents induced in the wires

Part III: Optical components, polarizers

Page 36: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 36

Wide-grid polarizers (II) [dichroism]

Part III: Optical components, polarizers

Page 37: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 37

Dichroic crystals [dichroism]

Dichroic crystals absorb one polarization state over the other one.

Example: tourmaline.

Part III: Optical components, polarizers

Page 38: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 38

Polaroids [dichroism]

Made by heating and stretching a sheet of PVA laminated to a supporting sheet of cellulose acetate treated with iodine solution (H-type polaroid). Invented in 1928.

Part III: Optical components, polarizers – Polaroids, like in sunglasses!

Page 39: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 39

Crystal polarizers (I) [birefringence]

• Optically anisotropic crystals

• Mechanical model:• the crystal is anisotropic, which means that the electrons are bound with different ‘springs’ depending on the orientation

• different ‘spring constants’ gives different propagation speeds, therefore different indices of refraction, therefore 2 output beams

Part III: Optical components, polarizers

Page 40: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 40

Crystal polarizers (II)[birefringence]

The 2 output beams are polarized (orthogonally).

isotropiccrystal (sodiumchloride)

anisotropiccrystal(calcite)

Part III: Optical components, polarizers

Page 41: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 41

Crystal polarizers (IV)[birefringence]

• Crystal polarizers used as:• Beam displacers,• Beam splitters,• Polarizers,• Analyzers, ...

• Examples: Nicol prism, Glan-Thomson polarizer, Glan or Glan-Foucault prism, Wollaston prism, Thin-film polarizer, ...

Part III: Optical components, polarizers

Page 42: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 42

Mueller matrices of polarizers (I)

• (Ideal) linear polarizer at angle :

0000

0χ2sinχ2cosχ2sinχ2sin

0χ2cosχ2sinχ2cosχ2cos

0χ2sinχ2cos1

2

12

2

Part III: Optical components, polarizers

Page 43: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 43

Mueller matrices of polarizers (II)

Linear (±Q) polarizer at 0º:

0000

0000

0011

0011

5.0

Linear (±U) polarizer at 0º :

0000

0101

0000

0101

5.0

Part III: Optical components, polarizers

Circular (±V) polarizer at 0º :

1001

0000

0000

1001

5.0

Page 44: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 44

Mueller calculus with a polarizer

Input light: unpolarized --- output light: polarized

0

I-

0

I

5.0

0

0

0

I

0000

0101

0000

0101

5.0

V'

U'

Q'

I'

Total output intensity: 0.5 I

Part III: Optical components, polarizers

Page 45: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 45

Retarders

• In retarders, one polarization gets ‘retarded’, or delayed, with respect to the other one. There is a final phase difference between the 2 components of the polarization. Therefore, the polarization is changed.

• Most retarders are based on birefringent materials (quartz, mica, polymers) that have different indices of refraction depending on the polarization of the incoming light.

Part III: Optical components, retarders

Page 46: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 46

Half-Wave plate (I)

• Retardation of ½ wave or 180º for one of the polarizations.

• Used to flip the linear polarization or change the handedness of circular polarization.

Part III: Optical components, retarders

Page 47: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 47

Half-Wave plate (II)

Part III: Optical components, retarders

Page 48: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 48

Quarter-Wave plate (I)

• Retardation of ¼ wave or 90º for one of the polarizations

• Used to convert linear polarization to elliptical.

Part III: Optical components, retarders

Page 49: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 49

• Special case: incoming light polarized at 45º with respect to the retarder’s axis

• Conversion from linear to circular polarization (vice versa)

Quarter-Wave plate (II)

Part III: Optical components, retarders

Page 50: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 50

Mueller matrix of retarders (I)

• Retarder of retardance and position angle :

cosτ12

1Handcosτ1

2

1G :with

cosτcos2ψsinτsin2ψsinτ0

cos2ψsinτcos4ψHGsin4ψH0

sin2ψsinτsin4ψHcos4ψHG0

0001

Part III: Optical components, retarders

Page 51: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 51

Mueller matrix of retarders (II)

• Half-wave oriented at 0º or 90º

• Half-wave oriented at ±45º

1000

0100

0010

0001

k

1000

0100

0010

0001

k

Part III: Optical components, retarders

Page 52: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 52

Mueller matrix of retarders (III)

• Quarter-wave oriented at 0º

• Quarter-wave oriented at ±45º

0100

1000

0010

0001

k

0010

0100

1000

0001

k

Part III: Optical components, retarders

Page 53: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 53

Mueller calculus with a retarder

1

0

0

1

0

0

1

1

0010

0100

1000

0001

V'

U'

Q'

I'

kk

• Input light linear polarized (Q=1)• Quarter-wave at +45º• Output light circularly polarized (V=1)

Part III: Optical components, retarders

Page 54: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 54

(Back to polarizers, briefly)

Circular polarizers• Input light: unpolarized --- Output light: circularly polarized

• Made of a linear polarizer glued to a quarter-wave plate oriented at 45º with respect to one another.

Part III: Optical components, polarizers

Page 55: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 55

Achromatic retarders (I)

• Retardation depends on wavelength• Achromatic retarders: made of 2 different materials with

opposite variations of index of refraction as a function of wavelength

• Pancharatnam achromatic retarders: made of 3 identical plates rotated w/r one another

• Superachromatic retarders: 3 pairs of quartz and MgF2

plates

Part III: Optical components, retarders

Page 56: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 56

Achromatic retarders (II)

Part III: Optical components, retarders

=140-220º

not very achromatic!

= 177-183º

much better!

Page 57: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 57

Retardation on total internal reflection

• Total internal reflection produces retardation (phase shift)

• In this case, retardation is very achromatic since it only depends on the refractive index

• Application: Fresnel rhombs

Part III: Optical components, retarders

Page 58: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 58

Fresnel rhombs

• Quarter-wave and half-wave rhombs are achieved with 2 or 4 reflections

Part III: Optical components, retarders

Page 59: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 59

Other retarders

• Soleil-Babinet: variable retardation to better than 0.01 waves

• Nematic liquid crystals... Liquid crystal variable retarders... Ferroelectric liquid crystals... Piezo-elastic modulators... Pockels and Kerr cells...

Part III: Optical components, retarders

Page 60: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 60

Part IV: Polarimeters

• Polaroid-type polarimeters

• Dual-beam polarimeters

Page 61: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 61

Polaroid-type polarimeterfor linear polarimetry (I)

• Use a linear polarizer (polaroid) to measure linear polarization ... [another cool applet] Location: http://www.colorado.edu/physics/2000/applets/lens.html

• Polarization percentage and position angle:

)II(

II

IIP

max

minmax

minmax

Part IV: Polarimeters, polaroid-type

Page 62: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 62

Polaroid-type polarimeterfor linear polarimetry (II)

• Advantage: very simple to make

• Disadvantage: half of the light is cut out

• Other disadvantages: non-simultaneous measurements, cross-talk...

• Move the polaroid to 2 positions, 0º and 45º (to measure Q, then U)

Part IV: Polarimeters, polaroid-type

Page 63: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 63

Polaroid-type polarimeterfor circular polarimetry

• Polaroids are not sensitive to circular polarization, so convert circular polarization to linear first, by using a quarter-wave plate

• Polarimeter now uses a quarter-wave plate and a polaroid

• Same disadvantages as before

Part IV: Polarimeters, polaroid-type

Page 64: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 64

Dual-beam polarimetersPrinciple

• Instead of cutting out one polarization and keeping the other one (polaroid), split the 2 polarization states and keep them both

• Use a Wollaston prism as an analyzer• Disadvantages: need 2 detectors (PMTs, APDs) or

an array; end up with 2 ‘pixels’ with different gain• Solution: rotate the Wollaston or keep it fixed and

use a half-wave plate to switch the 2 beams

Part IV: Polarimeters, dual-beam type

Page 65: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 65

Dual-beam polarimetersSwitching beams

Part IV: Polarimeters, dual-beam type

• Unpolarized light: two beams have identical intensities whatever the prism’s position if the 2 pixels have the same gain

• To compensate different gains, switch the 2 beams and average the 2 measurements

Page 66: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 66

Dual-beam polarimetersSwitching beams by rotating the prism

rotate by 180º

Part IV: Polarimeters, dual-beam type

Page 67: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 67

Dual-beam polarimetersSwitching beams using a ½ wave plate

Rotated by 45º

Part IV: Polarimeters, dual-beam type

Page 68: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 69

A real circular polarimeterSemel, Donati, Rees (1993)

Quarter-wave plate, rotated at -45º and +45º

Analyser: double calcite crystal

Part IV: Polarimeters, example of circular polarimeter

Page 69: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 70

A real circular polarimeterfree from gain (g) and atmospheric transmission () variation effects

• First measurement with quarter-wave plate at -45º, signal in the (r)ight and (l)eft beams:

• Second measurement with quarter-wave plate at +45º, signal in the (r)ight and (l)eft beams:

• Measurements of the signals:

rl SS 11 ,

rl SS 22 ,

)()(

)()(

22222222

11111111

VIgSVIgS

VIgSVIgSrrll

rrll

Part IV: Polarimeters, example of circular polarimeter

Page 70: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 71

A real circular polarimeterfree from gain and atmospheric transmission variation effects

• Build a ratio of measured signals which is free of gain and variable atmospheric transmission effects:

1for 2

1

2

11

4

1

2

2

1

1

21211221

2112

1

2

2

1

VI

V

I

VF

VVVIVIII

VIVI

S

S

S

SF

r

r

l

l

average of the 2 measurements

Part IV: Polarimeters, example of circular polarimeter

Page 71: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 72

Polarimeters - Summary• 2 types:

– polaroid-type: easy to make but ½ light is lost, and affected by variable atmospheric transmission

– dual-beam type: no light lost but affected by gain differences and variable transmission problems

• Linear polarimetry: – analyzer, rotatable– analyzer + half-wave plate

• Circular polarimetry:– analyzer + quarter-wave plate

2 positions minimum

1 position minimum

Part IV: Polarimeters, summary

Page 72: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 73

Part V: ESPaDOnS

Optical components of the polarimeter part :

• Wollaston prism: analyses the polarization and separates the 2 (linear!) orthogonal polarization states

• Retarders, 3 Fresnel rhombs:– Two half-wave plates to switch the

beams around– Quarter-wave plate to do circular

polarimetry

Page 73: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 74

ESPaDOnS: circular polarimetry

• Fixed quarter-wave rhomb

• Rotating bottom half-wave, at 22.5º increments

• Top half-wave rotates continuously at about 1Hz to average out linear polarization when measuring circular polarization

Part V: ESPaDOnS, circular polarimetry mode

Page 74: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 75

ESPaDOnS: circular polarimetry of circular polarization

• half-wave

• 22.5º positions

• flips polarization

• gain, transmission

• quarter-wave

• fixed

• circular to linear

• analyzer

Part V: ESPaDOnS, circular polarimetry mode

Page 75: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 76

ESPaDOnS: circular polarimetry of (unwanted) linear polarization

• half-wave

• 22.5º positions

• gain, transmission

• quarter-wave

• fixed

• linear to elliptical

• analyzer• circular part goes through not analyzed and adds same intensities to both beams

• linear part is analyzed!

• Add a rotating half-wave to “spread out” the unwanted signal

Part V: ESPaDOnS, circular polarimetry mode

Page 76: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 77

ESPaDOnS: linear polarimetry

• Half-Wave rhombs positioned at 22.5º increments

• Quarter-Wave fixed

Part V: ESPaDOnS, linear polarimetry

Page 77: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 78

ESPaDOnS: linear polarimetry

• Half-Wave rhombs positioned as 22.5º increments– First position gives Q– Second position gives U– Switch beams for gain and atmosphere effects

• Quarter-Wave fixed

Part V: ESPaDOnS, linear polarimetry

Page 78: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 79

ESPaDOnS - Summary

• ESPaDOnS can do linear and circular polarimetry (quarter-wave plate)

• Beams are switched around to do the measurements, compensate for gain and atmospheric effects

• Fesnel rhombs are very achromatic

Part V: ESPaDOnS, summary

Page 79: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 80

Page 80: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 81

Credits for pictures and movies• Christoph Keller’s home page – his 5 lectures

http://www.noao.edu/noao/staff/keller/

• “Basic Polarisation techniques and devices”, Meadowlark Optics Inc. http://www.meadowlark.com/

• Optics, E. Hecht and Astronomical Polarimetry, J. Tinbergen • Planets, Stars and Nebulae Studied With Photopolarimetry, T.

Gehrels

• Circular polarization movie http://www.optics.arizona.edu/jcwyant/JoseDiaz/Polarization-Circular.htm

• Unpolarized light movie http://www.colorado.edu/physics/2000/polarization/polarizationII.html

• Reflection of wave http://www.physicsclassroom.com/mmedia/waves/fix.html

• ESPaDOnS web page and documents

Page 81: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 82

References/Further reading On the Web

• Very short and quick introduction, no equation http://www.cfht.hawaii.edu/~manset/PolarIntro_eng.html

• Easy fun page with Applets, on polarizing filters http://www.colorado.edu/physics/2000/polarization/polarizationI.html

• Polarization short course http://www.glenbrook.k12.il.us/gbssci/phys/Class/light/u12l1e.html

• “Instrumentation for Astrophysical Spectropolarimetry”, a series of 5 lectures given at the IAC Winter School on Astrophysical Spectropolarimetry, November 2000 –http://www.noao.edu/noao/staff/keller/lectures/index.html

Page 82: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 83

References/Further reading Polarization basics

• Polarized Light, D. Goldstein – excellent book, easy read, gives a lot of insight, highly recommended

• Undergraduate textbooks, either will do:– Optics, E. Hecht– Waves, F. S. Crawford, Berkeley Physics Course vol. 3

Page 83: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 84

References/Further readingAstronomy, easy/intermediate

• Astronomical Polarimetry, J. Tinbergen – instrumentation-oriented

• La polarisation de la lumière et l'observation astronomique, J.-L. Leroy – astronomy-oriented

• Planets, Stars and Nebulae Studied With Photopolarimetry, T. Gehrels – old but classic

• 3 papers by K. Serkowski – instrumentation-oriented

Page 84: Polarization Light Intro

N. Manset / CFHT Polarization of Light: Basics to Instruments 85

References/Further readingAstronomy, advanced

• Introduction to Spectropolarimetry, J.C. del Toro Iniesta – radiative transfer – ouch!

• Astrophysical Spectropolarimetry, Trujillo-Bueno et al. (eds) – applications to astronomy