Top Banner
Harry Heinzelmann VP Nanotechnology & Life Sciences PATLiSci – Probe Array Technology for Life Sciences Zurich, April 2012
52
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: PATLiSci

Harry HeinzelmannVP Nanotechnology & Life Sciences

PATLiSci – Probe Array Technology for Life Sciences

Zurich, April 2012

Page 2: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 2

Probe Technology

PATLiSci – Probe Array Technology for Life Science Applications

IBM

for Cancer Research and Detection

Page 3: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 3

Project Partners

PATLiSci – Probe Array Technology for Life Science Applications

H. Vogel EPFL

Membrane prot. immobilisation

H.P. Herzig EPFL-IMT

Optics

A. Mariotti CePO, CHUV Melonoma progression

P. Romero LICR U Lausanne Head & neck

carcinoma

E. Meyer Ch. Gerber Uni Basel

Cantilever sensors

D. Rimoldi LICR U Lausanne

Melanoma

H. Heinzelmann CSEM (Coord) Probe array technologies

P. Renaud EPFL-IMT Fluidics

N. de Rooij, P. Vettiger, J. Brugger

EPFL-IMT, MEMS design & fab

Page 4: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 4

Probe Array Tech – high potential in Cancer Research

PATLiSci – Probe Array Technology for Life Science Applications

• cantilever arrays (without tips)for nanomechanical sensing

• measure the presence of minute concentrations of analytes (N channels)

• personalized healthcare & diagnostics

• probe arrays with tipsfor parallel force spectroscopy

• measure interaction forces and mechanical properties (N statistics)

• R&D, cell based screening

Page 5: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 5

Force Spectroscopy

• information about adhesion proteins, cell mechanics, kinetics, …

• statistics! parallel force spectroscopy novel cantilever deflection readout probe array microfabrication living melanoma cell array

PATLiSci – Probe Array Technology for Life Science Applications

source: JPK

Page 6: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 6

Motivation: metastatic cancer development

PATLiSci – Force Spectroscopy

Lee et al., Trends Biotechnol. 2007

all cells

tumor cells

normal cells

S.E. Cross et al., Nature Nanotech (2007)

Page 7: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 7

Probe Arrays for parallel force spectroscopy

PATLiSci – Force Spectroscopy

F. Loizeau et al., MicroNanoLetter 2012 (in press)

Page 8: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 8

SiN probe arrays with (active) actuation

PATLiSci – Force Spectroscopy

Page 9: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 9

Setup and readout

PATLiSci – Force Spectroscopy

Page 10: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 10

Elasticity of Melanoma cells

PATLiSci – Force Spectroscopy

Page 11: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 11

Elasticity, Mobility, Vesicle formation

PATLiSci – Force Spectroscopy

Page 12: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 13

Elasticity of different malignant cell types

• Probing melanoma cell elasticity by pulling and relaxing membrane nanotubes using optical tweezers

PATLiSci – Force Spectroscopy

Page 13: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 14

Parallel force spectroscopy on living cells

• Proof of Principle parallel force spectroscopy force on WM239 melanoma cells

PATLiSci – Force Spectroscopy

Page 14: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 15

Nanomechanical Sensing

detection in liquids :

• BRAF mutation in DNA samples

• capture of melanoma cells

detection in the gas phase :

• volatile organic compounds for early diagnosis

PATLiSci – Probe Array Technology for Life Science Applications

J. Fritz et al., Science 288, 316-318 (2000); D. Schmid et al., Eur. J. Nanomedicine 1, 44-47 (2008)

Cantilever is a Nanomechanical Sensorspecific adsorption/docking of molecules creates mechanical stress bending

melanoma naevus (National Cancer Inst.)

B-Raf oncogenein 50-60% of all melanoma tumors

Page 15: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 16

Principle of nanomechanical biosensing

• each cantilever is functionalized for molecular recognition (ex: oligonucleotides)

• Probe cantilevers coated with a specific layer for target capture

• Reference cantilevers coated with a non-specific layer

• Differential measurement reveals net signal and cancels thermal drift

PATLiSci – Nanomechanical Sensing

Injection Baseline

baseline

injection

di

ff. d

efle

ctio

n Dx

time

Page 16: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 17

Functionalization for BRAF V600E

PATLiSci – Nanomechanical Sensing

SH-GAGATTTCTCTGTAGCTA

SH-GAGATTTCTCTGTAGCTA

SH-GAGATTTCTCTGTAGCTA

SH-GAGATTTCTCTGTAGCTA

SH-ACACACACACACACACAC

SH-ACACACACACACACACAC

SH-ACACACACACACACACAC

SH-ACACACACACACACACAC

reference cantilever: unspecific oligonucleotide (#1-4) SH-ACACACACACACACACAC

sensing cantilever: probe oligonucleotide(#5-8) SH-GAGATTTCTCTGTAGCTA

Au / Ti layer (for thiol binding top side)

PEG-silane (for passivation) 1.

2.

3. thiol-oligonucleotide self-assembly

Page 17: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 18

Detection of single point BRAF mutation in DNA

PATLiSci – Nanomechanical Sensing

Page 18: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 19

Detection of single point BRAF mutation in RNA

PATLiSci – Nanomechanical Sensing

BRAF mutation in RNA detected within minutes !

0 20 40 60 80 100-100

-80

-60

-40

-20

0

20

40

*

diffe

rent

ial d

efle

ctio

n Dx

/nm

time /min

**

injection of RNA

injection of buffer

first personalized medical drug:• 60% of melanoma patients carry the

BRAF V600E mutation• RG7204 shows a significant survival

benefit in melanoma.

ZELBORAF available in Switzerland since Feb 2012

Page 19: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 20

Functionalization for melanoma cell capture

PATLiSci – Nanomechanical Sensing

PEG-silane (for passivation)

Au / Ti layer

antibodies covalently attached to Au Si

Melanoma cells expressing High Molecular Weight Melanoma-Associated Antigen (HMM-MAA)

antibodies:• sensing: anti-HMW-MAA highly specific to melanoma cells

anti-MHC-Class-I molecules less specific to melanoma cells• reference: anti-Hemagglutinin (HA) non-binding

Page 20: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 21

Specific capturing of melanoma cells

PATLiSci – Nanomechanical Sensing

N. Backmann et al., unpublished (2012)

specific Ab: -HLA-Class-I

non-specific Ab: -HA

specific Ab: -HMW-MAA

1

6

Page 21: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 22

Microfluidic system for preselection of cells

PATLiSci – Nanomechanical Sensing

• Separation of melanoma cells from single cell suspensions from biopsies

• goal: capture CTCs from blood samples

MINACEL extension, EPFL & UniBAScytometer chip (A) with electrodes (B)

• microfabricated flow cytometerbased on dielectrophoresis

• tests in progress

Page 22: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 23

Membrane Surface Stress Sensors & Electronics

PATLiSci – Nanomechanical Sensing

F. Loizeau, EPFL-IMT (2012)

A. Tonin, UniBAS

Inkjet spotting for MSS coatinge.g. polymers such as PSS, Dextran, CMC, PVP

Page 23: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 24

Membrane sensor response to solvent vapor

PATLiSci – Nanomechanical Sensing

Page 24: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 25

Principal Component Analysis (PCA)

PATLiSci – Nanomechanical Sensing

• measured signals from CL arraygive multi-dimensional data set

• PCA seeks „optimized“ projection matrix into 2 dimensionswith maximum information content

Page 25: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 26

Selectivity to breath and VOC samples

PATLiSci – Nanomechanical Sensing

test substance

clustering is robust againststorage for 48 h at 4°C and variations in injection cycles

Page 26: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 27

Next steps

• optimization of setup for parallel force spectroscopy

• demonstration experiment if possible on cell arrays, alternatively on vesicle arrays

• implementation of bioreactors and cell sorting with microfluidics (MINACEL)

• Clinical study with breath samples from head & neck cancer patientsObjective: identify cancer and track drug treatment efficacy

• approved by Ethics Committee April 2012, start of the study May 2012double-blind scheme with patients before and after treatment, and healthy people

• with Ludwig Center for Cancer Research LICR

PATLiSci – Probe Array Technology for Life Science Applications

Page 27: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 28

Thank you for your attention.

Page 28: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 29

Thank you for your attention.

Page 29: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 33

Literature – Force Spectroscopy on Cancer Cells

PATLiSci – Probe Array Technology for Life Science Applications

from S.E. Cross et al., Nanotechnology (2008)

from S.E. Cross et al., Nature Nanotech (2007)

all cells

Tumor cells

normal cells

Page 30: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 37

Safety Production

Food Quality

Environment

Diagnostics

Impact beyond the Scope of this Project

Probe Array Technology for Life Science Applications

Research,Screening

NEMS / nano

ICT / tera

Page 31: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 38

NADIS for Liquid Exchange with Living Cells

Nanotools – Nanoscale Dispensing

• injection after perforation of the cell membrane

• extraction of cytoplasm for remote analysis

• towards patch clamping

viable neuroblastoma cells Cell TrackerTM green staining

Page 32: PATLiSci
Page 33: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 40

Motivation: Metastatic cancer development

PATLiSci: Force spectroscopy

Adhesion properties of cells Elastic properties of cells

Characterization by force

spectroscopy

Parameters involved in metastatic proliferation

Weder et al. 2009Biointerph. 4:27

Page 34: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 41

Parallel force spectroscopy on living cells

• Harry, nous n’avons pas encore de telles courbes de force, mais nous en aurons une pour le meeting NanoTera

PATLiSci: Force spectroscopy

Page 35: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 42

Types of melanoma cell analyzed

• Primary melanocyte: non cancerous healthy cells used as reference

• Radial growth phase (RGP): Cells spread horizontally through the epidermis (cell line SBCL2)

• Vertical growth phase (VGP): Cells begin to grow deeper into the skin and invade the organism via the blood and lymphatic vessels (cell line WM115)

• Metastatic (M): Cells from metastasis in the organism (cell line WM239)

PATLiSci: Force spectroscopy

Radial growth phase Vertical growth phase

Page 36: PATLiSci
Page 37: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 44

it’s much much more than microscopy…

PATLiSci – Probe Array Technology for Life Science Applications

Müller and DufrêneNature Nanotechnology (2008)

U Pennsylvania

Page 38: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 45

Cancer is Relevant

PATLiSci – Probe Array Technology for Life Science Applications

bfs.admin.ch

• how do cancer cells differ in cell mechanical properties ?

• how do cancer cells adhere to substrates, or to other cells ?

• can we find better ways to detect cancer in an early stage ?

• can we bring a test device to POC?

Page 39: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 46

Cantilever Sensing – Outlook and Next Steps

in liquids

DNA, mRNA, and tumor cell detection

• melanoma associated antigens

• test of mutation/antigen and cell binding

• detection limits of the assays

• optimization of DNA and antigen binding

• optimization of cell capture

• implementation of a microfluidic system for an initial cell sorting step (PATLiSci extension MINACEL)

in gas phase

Breath analysis of from cancer patients

• feasibility EBS of head & neck cancer patients

• representative study on EBS of head & neck or lung cancer patients

• optimization of readout hard-/software

• functionality and reliability tests

• portable device prototype

• implementation of a micro bioreactorin combination with cantilever arrays (PATLiSci extension MINACEL)

PATLiSci – Probe Array Technology for Life Science Applications

Page 40: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 47

Force Spectroscopy – Outlook and Next Steps

• Measure cell elasticity at different growth phases

• Analysis of cell adhesion (cell-surface, cell-cell) in the presence of extra cellular matrix proteins

• Compact optical cantilever deflection read-out

• Individual cantilever actuation (force control)

• implementation of cell separation and sorting (PATLiSci extension MINACEL)

PATLiSci – Probe Array Technology for Life Science Applications

Page 41: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 48

Migration and invasion properties

• There is no clear relationship between cell stiffness and cell motility

PATLiSci – Force Spectroscopy

Sbcl2(in Tu) WM115 WM239A0

100

200

300

400

500Invasion

Prim Mel Sbcl2 WM115 WM239A0

100

200

300

400

500

600Migration

% m

igra

tion

com

pare

d to

WM

239A

cel

ls

Page 42: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 49

MINACEL: Micro- and Nanofluidics for Cell Handling

PATLiSci – Probe Array Technology for Life Science Applications

bring competence in fluidics to PATLiSci

• micro Bioreactor with tumor cells producing VOCs for gas phase analysis

• Cell Sorting device to isolate CTC and adherent cells

• Nanofluidics for single cell microinjection using NADIS technology

Page 43: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 50

backup slides

Page 44: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 51

Cantilever Sensing in Gaseous and in Liquid Environments

Non-Invasive Diagnostics for early detection of eg. lung, head & neck cancer • higher specificity and sensitivity to VOC with

coatings based on natural odorant receptors

• piezo-resistive cantilevers

• handheld device for POC applications

Detection of melanoma specific somatic mutations in blood samples• detection of dissolved tumor specific

markers with suitable anti-bodies, or direct binding of melanoma cells (CTC)

• no prior amplification or labeling

Probe Array Technology for Life Science Applications

Page 45: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 52

Project Goals

• develop point probe array system (microfabricated array and read-out system)

• demonstrate parallel measurement of cell mechanics

• demonstrate cell adhesion measurements with improved statistics

• assess potential in diagnostics and cell based screening

• improve performance of cantilever array sensors

• demonstrate detection of cancer via breath analysis

• improve sensitivity and demonstrate detection of disorders in patients’ blood samples via various biomarkers (library)

• integrate system into a handheld cantilever-based diagnostic device prototype

Probe Array Technology for Life Science Applications

Page 46: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 53

PROBART for Parallel Imaging

Nanotools – Probe Arrays

R lever

R ref

VEE (- 6V)Rlever

Rref

R1 R2

Vout

(~ 20 kohm)

4x4 array imaging inbuffer solution with continuous zoom-in

probe #6

probe #13

probe #15

Page 47: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 54

ArrayFM with Optical Read-out – First Results

Nanotools – Probe Arrays

Page 48: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 55

PROBART for Force Spectroscopy

Nanotools – Probe Arrays

600 pN/div

√√

√√

√√

in “expert reviews in molecular medicine”, http://www-ermm.cbcu.cam.ac.uk

Force resolution = 160 pN

sufficient for mostdonor/acceptor complexes

glass surface

PBS (0.01M)Polylysin (5mg/l)

18µm

6.4µm Mapping of the elastic response of a cell

Page 49: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 56

ArrayFM with Optical Read-out

Nanotools – Probe Arrays

where are we with this?

first demonstration in ambient conditions and on solid substrates

topography detail reproduced down to nm scale and nm sensitivity

what is still missing?

• improve sensitivity / noise equivalent force

• adapt optics to operation in liquids

• adapt optics to large arrays

• interface with software, data transfer

Page 50: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 57

ArrayFM with Optical Read-out – Some More Tricks

Nanotools – Probe Arrays

• solving phase ambiguity

• LabView based software interface

• Si and sol-gel replicated cantilevers

Page 51: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 58

Cell Adhesion Forces

Nanotools – Probe Arrays

what is still missing?

• work on arrays of cells(immobilized arrays)

• work on arrays of vesicles, and assess feasibility

• for cell-cell (vesicle-vesicle) studies, develop protocols on how to get these on the probe tip

• work on probes, tip geometry, functionalization

• work probe actuation

• work on probe array homogeneity, and alignment issues

Page 52: PATLiSci

Copyright 2012 I Nanotechnology & Life Sciences I Harry Heinzelmann I page 59

Thank you for your attention.