PART I
PART I
Total Value: 50%
Answer all items. Shade the letter of the correct answer on the
computer scorable answer sheet.
1.Given the graph below, which is true of the polynomial
function?
Degree
Value of leading coefficient
(A)
3
negative
(B)
3
positive
(C)
5
negative
(D)
5
positive
2.Given a polynomial function P(x) with , which is a factor of
P(x)?
(A)
(B)
(C)
(D)
3.Which polynomial function best represents the graph shown
below?
(A)
(B)
(C)
(D)
4.Which polynomial equation has a single root at and a double
root at ?
(A)
(B)
(C)
(D)
5.What are the x-intercepts of the graph of the function ?
(A)
(B)
(C)
(D)
6.When the function is divided by , what is the remainder?
(A)
(B)
(C)24
(D)56
7. Which is true of the function ?
Horizontal stretch
Vertical stretch
(A)
(B)
(C)
(D)
8.Which graph has an inverse that is also a function?
(A)
(B)
(C)
(D)
9.The point is on the graph of . What is its image point under
the transformation of the graph of ?
(A)
(B)
(C)
(D)
10.What is the inverse of ?
(A)
(B)
(C)
(D)
11.What are the zeros of the function after the transformation
?
(A)
(B)
(C)
(D)
12.What is the horizontal stretch of as compared to ?
y=f(x) y=af(bx)
(A)
(B)
(C)
(D)
13.Which function best represents the graph shown below?
(A)
(B)
(C)
(D)
14.What are all of the invariant points for the graphs of and
?
(A)
(B)
(C)
(D)
15.The graph of the function is stretched horizontally by a
factor of 2 and translated 3 units left. What is the domain of the
transformed function?
(A)
(B)
(C)
(D)
16.Which graph represents an angle measuring ?
(A)
(B)
(C)
(D)
17.In which quadrant is and ?
(A)I
(B)II
(C)III
(D)IV
18.What is 440º written in radian measure?
(A)
(B)
(C)
(D)
19.What is the length of the arc cut by a 240º sector in a
circle having diameter 10 cm?
(A)
(B)
(C)
(D)
20.Given are the coordinates on the terminal arm of an angle θ
in standard position, what is ?
(A)
(B)
(C)
(D)
21.Solve for x:, where .
(A)
(B)
(C)
(D)
22.What is the domain of?
(A)
(B)
(C)
(D)
23.What is the period of ?
(A)
(B)
(C)
(D)
24.Which graph best represents the sinusoidal function ?
(A)
(B)
(C)
(D)
25.What is the range of the function ?
(A)
(B)
(C)
(D)
26.A Ferris wheel with a radius of 6 m rotates once every 30
seconds. Passengers get on board at a point 1 m above the ground at
the bottom of the Ferris wheel. Which function models this
situation?
(A)
(B)
(C)
(D)
27.What are the non-permissible values of x for the equation
?
(A)
(B)
(C)
(D)
28.Which is expressed as a single trigonometric function?
(A)
(B)
(C)
(D)
29.Which is a true identity?
(A)
(B)
(C)
(D)
30.Which is the simplified form of the trigonometric expression
?
(A)
(B)
(C)
(D)
31.What is the exact value of ?
(A)
(B)
(C)
(D)
32.Given that , where , what is the exact value of ?
(A)
(B)
(C)
(D)
33.In which step is there an error when simplifying the
expression ?
Step 1:
Step 2:
Step 3:
Step 4:
(A)Step 1
(B)Step 2
(C)Step 3
(D)Step 4
34.Which function of the form best represents the graph shown
below?
(A)
(B)
(C)
(D)
35.Solve for x:
(A)
(B)
(C)
(D)
36.Solve for x:
(A)
(B)
(C)
(D)
37.What is the y-intercept of the function ?
(A)–22
(B)–6
(C)14
(D)32
38.Which transformations of produce the function ?
Horizontal Translation
Horizontal Stretch Factor
(A)
1 unit right
(B)
1 unit right
5
(C)
5 units right
(D)
5 units right
5
39.What is the x-intercept of ?
(A)–4
(B)–3
(C)2
(D)16
40.What function best represents the graph shown below?
(A)
(B)
(C)
(D)
41.Which is written in exponential form?
(A)
(B)
(C)
(D)
42.Solve for x:
(A)
(B)
(C)
(D)
43.Solve for x:
(A)
(B)
(C)
(D)
44.A group of 24 people are in a Math League. A four person
committee is to be formed from within this group; however, two of
the 24 people in the group must be on the committee. Which
represents the number of ways this four person committee is
formed?
(A)
(B)
(C)
(D)
45.Which equation is true?
(A)
(B)
(C)
(D)
46.If the eighth row of Pascal’s Triangle is given as 1 7 21 35
35 21 7 1, what is the coefficient of the x5y2 term in the
expansion of ?
(A)1
(B)7
(C)21
(D)35
47.How many different 11-letter arrangements can be made using
the letters of the word POSSIBILITY?
(A)3 326 400
(B)6 652 800
(C)19 958 400
(D)39 916 800
48.In how many ways can four people stand in a circle?
(A)4
(B)6
(C)20
(D)24
49.What is the 5th term in the expansion of ?
(A)90n2
(B)135n2
(C)270n2
(D)3240n2
50.John is purchasing a new vehicle. He can choose between a
car, an SUV or a truck. The vehicle can be automatic or standard
transmission. The choices for the colour of the vehicle are red,
silver, black and white. How many choices does he have?
(A)9
(B)10
(C)24
(D)36
PART II
Total Value: 50%
Answer ALL items in the space provided. Show ALL workings.
Value
451.(a)Sketch the graph of the function and clearly label
the
x-intercept(s) and the y-intercept.
251.(b)The dimensions of a rectangular prism are given by , and
. Write an equation representing the volume in the form . Identify
and justify all inadmissible values for x.
352.(a)The graph of with points is transformed so that . Plot
the points and determine the equation of the image function in the
form .
252.(b)Given the graph of the function below, sketch the inverse
graph of .
Value
253.(a)Solve graphically:
253.(b)Use to answer the questions below.
(i)Determine the invariant points for and .
(ii)State the domain and range of .
454.Algebraically determine the exact value of:
(simplify completely)
455.(a)Determine all solutions, in radian measure, for the
equation:
356.(a) and are both in Quadrant II, and . Determine the exact
value of .
356.(b)Verify the trigonometric identity:
356.(c)Solve the trigonometric equation shown below for :
257.(a)Algebraically solve for x:
457.(b)A vehicle purchased for $32,000 depreciates at a rate of
75% every
6 years. Another vehicle purchased for $16,000 depreciates at a
rate of 50% every 4 years. Create an exponential function for each
situation, and use the functions to algebraically determine the
amount of time it would take for the vehicles to be equal in
value.
358.(a)Algebraically solve for x:
358.(b)Sound intensity, A, in decibels is defined as where I is
the intensity of the sound measured in watts per square metre
(W/m2) and Io is 10–12 W/m2, the threshold of hearing. What is the
sound intensity of a fire truck siren that has a decibel level of
112 dB?
459.(a)Expand using the Binomial Theorem.
259.(b)Algebraically solve for n:
ANSWERS:
1. D2. C3. A4. B5. A6. D7. B8. C9. D10. C11. A12. C13. B
14. A15. A16. D17. B18. B19. B20. A21. D22. C23. C24. D25. B26.
B
27. D28. B29. C30. D31. C32. B33. A34. C35. A36. C37. A38. D39.
B
40. A41. B42. C43. D44. A45. D46. C47. A48. B49. B50. C
(x – intercepts at:(–1, 0), and (3 , 0)y – intercept at (0 ,
3))
51.(a)
51.(b) f(x) = x3 – 3x2 – 6x + 8Note:To have a rectangular prism
we must have
f(x) > 0 and x > 0. To have a positive dimension
for length, width and height we cannot consider
values for x where x < 4 otherwise some of the
dimensions will be less than 0. Therefore,
positive dimensions and volume occurs when
x > 4.
(A′B′C′ABC)52.(a)
(Image Function:)
52.(b)
53.(a)
(Solutions:x = –3 and 3)
53.(b) (i)Invariant points .
(ii)Domain Range y ≥ 0
54. 55.(a)θ = 3π + 4πn, n є I, θ = 4πn, n є I
56.(a)
(cot x)56.(b)56.(c)
57.(a) 57.(b)12 years
58.(a)x = 858.(b)10–0.8 W/m2
or 0.158 W/m2
59.(a)59.(b) n = 20
Binomial Theorem:
Mathematics 3200 Sample ExaminationPage 4 of 18
Page 1 of 18Mathematics 3200 Sample Examination
8
2
y
x
+
=±
1
2
8
xy
=±+
8
2
x
y
+
=±
1
2
8
yx
=±+
x
-
3
-
2
-
1
1
2
3
4
5
6
y
2
-
(
)
yfx
=
(
)
1
2
fx
-
{
}
6,2
-
{
}
2,6
-
{
}
3
1
22
,
-
{
}
3
1
22
,
-
x
-
2
2
4
y
-
2
2
4
6
x
-
2
2
4
6
8
y
-
2
2
4
6
8
10
(
)
yafbx
=
1
3
2
1
2
2
3
x
y
3
yx
=--
3
yx
=-+
3
yx
=--
3
yx
=-+
(
)
2
43
fxxx
=+
(
)
yfx
=
2
x
-
(
)
(
)
(
)
(
)
3
1
44
1,1,,0,0,0,,1
--
(
)
(
)
1
4
1,1,,1
-
(
)
(
)
3
4
,0,0,0
-
(
)
(
)
0,0,1,7
yx
=
{
}
,
3
xxxR
³-Î
{
}
,
3
2
xxxR
³-Î
{
}
,
1
xxxR
³-Î
{
}
,
3
2
xxxR
³Î
5
3
p
2
x
+
60°
30°
30°
60°
csc0
q>
cos0
q<
11
9
p
22
9
p
44
9
p
88
9
p
x
-
4
-
2
2
4
y
240°
10
3
p
20
3
p
30
3
p
40
3
p
(
)
7,24
P
-
csc
q
25
24
-
24
25
-
7
25
(
)
(
)
2
()22
fxxx
=--+
25
7
3sec20
x
+=
02
x
£
11
66
,
pp
5
33
,
pp
24
33
,
pp
57
66
,
pp
tan
yx
=
{
}
,,
4
xxnnxR
¹+ÎÎ
p
p
I
{
}
,,
4
2
xxnnxR
¹+ÎÎ
p
p
I
(
)
(
)
2
()22
fxxx
=--+
{
}
,,
2
xxnnxR
¹+ÎÎ
p
p
I
{
}
,,
2
2
xxnnxR
¹+ÎÎ
p
p
I
(
)
1
2
4cos45
yx
=-°
2
p
p
4
p
8
p
(
)
2sin3302
yx
=--°-
x
-
360
°
-
180
°
180
°
360
°
y
-
3
-
2
-
1
1
2
3
x
-
360
°
-
180
°
180
°
360
°
y
-
3
-
2
-
1
1
2
3
(
)
(
)
2
()22
fxxx
=-+
x
-
360
°
-
180
°
180
°
360
°
y
-
5
-
4
-
3
-
2
-
1
1
x
-
360
°
-
180
°
180
°
360
°
y
-
5
-
4
-
3
-
2
-
1
1
(
)
1
44
cos23
yx
p
=--
{
}
,
71
yyyR
-££Î
{
}
,
13
11
44
yyyR
-££-Î
{
}
,
17
yyyR
-££Î
{
}
,
13
11
44
yyyR
££Î
15
6cos7
yx
p
=-+
15
6cos7
yx
p
=-+
(
)
(
)
2
()22
fxxx
=-+
1
615
cos7
yx
p
=-+
secsintan
xxx
×=
2
0,
xnn
p
¹+Î
I
0,
xnn
¹+pÎ
I
22
,
xnn
pp
¹+Î
I
2
,
xnn
p
¹+pÎ
I
66
2sincos
pp
3
cos
p
3
sin
p
3
x
=-
2
6
12sin
p
-
2
6
2cos1
p
-
2sin1
q=
2
2cos10
q-=
sincotcos
qq=q
22
sincos1
q=q-
2
cscsin
cot
q-q
q
2
tan
-q
1
1cos
-q
4
3
cos
sin
q
q
2
x
=
sin
q
cos75
°
0
1
2
-
62
4
+
62
4
5
13
cos
-
q=
2
p
£q£p
q
cos2
-
120
169
--+=
32
43180
xxx
-
119
169
119
169
120
169
+
2
3
tantancos
sin
xxx
x
(
)
-
2
3
tan1cos
sin
xx
x
(
)
(
)
-
-
2
2
tan1cos
1cossin
xx
xx
tan
sin
x
x
sec
x
x
yc
=
x
-
2
2
y
-
4
4
8
12
16
20
24
28
(-2,25)
(0,1)
(-1,5)
--+=
32
8120
xxx
(
)
5
x
y
=-
(
)
1
5
x
y
=-
(
)
1
5
x
y
=
(
)
5
x
y
=
525
x
=
1
4
1
2
2
4
(
)
21
3
1
3
81
x
x
-
-
=
+--=
32
8120
xxx
11
6
13
6
11
2
13
2
(
)
(
)
21
234
x
y
+
=--
=
5
x
y
(
)
-
=
0.21
5
x
y
1
5
1
5
(
)
2
log4
yx
=+
+--=
32
43180
xxx
x
y
(
)
4
log2
yx
=--
(
)
4
log2
yx
=-+
(
)
4
log2
yx
=-
(
)
4
log2
yx
=+
log
p
mnq
=
=
q
m
pn
=
qm
pn
q
pmn
=
qm
pn
=
32
()2323
fxxxx
=+--
(
)
(
)
+-=
555
log3log3log30
xx
2
10
3
5
33
4
(
)
12
523
xx
+
=
log5
12log6
-
-
log5
log52log6
-
-
log2log5
12log3
-
-
log2log5
log52log3
-
-
{
}
3
2
,1,1
--
222
C
222
P
242
C
242
P
6936
CC
=
6963
CC
=
9639
CC
=
9693
CC
=
(
)
+
7
xy
(
)
6
31
n
+
{
}
3
2
,1,1
-
=--+
32
2543
yxxx
x
y
+
2
x
-
4
x
1
x
-
=+++
32
()
fxaxbxcxd
x
-
10
-
8
-
6
-
4
-
2
2
4
6
y
-
4
-
2
2
4
6
8
(
)
yfx
=
(
)
(
)
(
)
--
5,3,3,6,1,3
ABC
(
)
(
)
(
)
9,1,5,0,3,3
ABC
¢¢¢
----
{
}
3
2
1,1,
--
(
)
(
)
yafbxhk
=-+
x
-
14
-
12
-
10
-
8
-
6
-
4
-
2
2
4
6
8
10
12
14
y
-
14
-
12
-
10
-
8
-
6
-
4
-
2
2
4
6
8
10
12
14
(
)
(
)
3211
yfx
=--+
x
-
14
-
12
-
10
-
8
-
6
-
4
-
2
2
4
6
8
10
12
14
y
-
14
-
12
-
10
-
8
-
6
-
4
-
2
2
4
6
8
10
12
14
x
-
6
-
4
-
2
2
4
6
y
-
4
-
2
2
4
6
8
2
254
x
-=
(
)
fxpxq
=-+
(
)
yfx
=
(
)
yfx
=
{
}
3
2
1,1,
-
(
)
(
)
(
)
pp
+
-°
118
63
seccot
sin150
(
)
2
1
222
sin
p
éù
q-=-
ëû
A
Ð
B
Ð
5
13
cos
A
=-
3
5
sin
B
=
(
)
+
cos
AB
sin2
cot
1cos2
x
x
x
=
-
02
x
££p
3
2
sin3coscos3sin
xxxx
-=-
52
()48
fxxx
=++
(
)
4
21
243381
x
x
+
-
=
(
)
(
)
2
55
log56log21
xxx
-+--=
(
)
10log
o
A
=
I
I
(
)
6
2
3
a
a
-
(
)
32
3
nn
CP
=
x
-
3
-
2
-
1
1
2
3
4
5
y
-
10
-
9
-
8
-
7
-
6
-
5
-
4
-
3
-
2
-
1
1
2
3
4
5
x
-
10
-
8
-
6
-
4
-
2
2
4
6
y
-
4
-
2
2
4
6
8
x
-
14
-
12
-
10
-
8
-
6
-
4
-
2
2
4
6
8
10
12
14
y
-
3
-
2
-
1
1
2
3
x
-
6
-
4
-
2
2
4
6
y
-
4
-
2
2
4
6
8
(
)
2
x
-
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
(
)
01122110
0121
...
nnnnnn
nnnnnnn
xyCxyCxyCxyCxyCxy
---
-
+=+++++
(
)
tantan
tan
1tantan
AB
AB
AB
+
+=
-
22
sincos1
q+q=
(
)
tantan
tan
1tantan
AB
AB
AB
-
-=
+
22
cot1csc
q+=q
40
-
22
1tansec
+q=q
(
)
sinsincoscossin
ABABAB
+=+
sin22sincos
AAA
=
(
)
sinsincoscossin
ABABAB
-=-
22
cos2cossin
AAA
=-
(
)
coscoscossinsin
ABABAB
+=-
2
cos212sin
=-
AA
2
cos22cos1
=-
AA
(
)
coscoscossinsin
ABABAB
-=+
2
2tan
tan2
1tan
A
A
A
=
-
8
-
(
)
1
n
o
AAr
=+
2
4
2
bbac
x
a
-±-
=
(
)
!
P
!
nr
n
nr
=
-
!
!!!...
n
abc
(
)
!
!!
nr
n
n
C
r
nrr
æö
==
ç÷
-
èø
(
)
2348
yfx
+=-+
1
4
3
-
3
4
x
-
4
-
2
2
4
y
1
3
x
y
x
y
x
y
x
y
(
)
2,3
-
()
yfx
=
(
)
+=--
123
yfx
()
fx
(2)0
P
=
(
)
1,7
-
(
)
1
2
5,
(
)
5
2
5,
(
)
5,5
2
28
yx
=-