Top Banner
Optical Transport Technologies and Trends August 20, 2015 Dion Leung, Director of Solutions and Sales Engineering [email protected]
25

Optical Transport Technologies and Trends

Apr 13, 2017

Download

Internet

Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Optical Transport Technologies and Trends

Optical  Transport  Technologies  and  Trends

August  20,  2015

Dion  Leung,  Director  of  Solutions  and  Sales  Engineering

[email protected]

Page 2: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    2

§ Logical  connectivity  is  presented  between  the  routers/switches

§ The  underlying  “physical”  network  is  an  abstract  layer

§ One  often  requires  to  know  if  the  routers  have  10G,  40G,  100G  interfaces  and  how  many  of  these  interfaces  are  available

In  Data/Packet  Networking  World…

P P

PEPECE

CE

Page 3: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    3

§ To  engineer  an  optical  transmission  network,  one  would  need  to  know  EXACTLY  the  underlying  fiber  topology,  the  fiber  details  and  characteristics,  so  that  the  optical  layer  can  be  designed  accordingly.

§ Economics  of  regional  network  <>  metro  network  <>  ULH  network

In  Optical  Transport  Networking  World…

DWDM

40kmDWDM

30km

CE

DWDM

DWDM

DWDM

CE

14km

35km

10km

15km35km

Page 4: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    4

§ Technology  Enabler:    Wavelength  Division  Multiplexing  – A  transmission  technology  that  multiplexes  multiple  optical  carrier  signals  on  a  single  fiber  by  using  different  wavelengths  (colors)  of  laser  light  to  carry  different  signals of  frequencies.

– Frequency  (in  THz)  and  wavelength  (in  nm)  are  often  used  to  label  a  wavelength  and the  frequency  of  a  signal  is  inversely  proportional  to  wavelength.  e.g.  193  x  1012 THz  or  1551.9  nm

Wavelength  Division  Multiplexing  (WDM)  –Similar  to  Sharing  Spectrum  over  Air,  Except  Medium  here  is  Fiber

MUX

Individually  Colored  Wavelengths

DEMUX

Single  Transmission  Fiber

Individually  Colored  Wavelengths

Equally  spaced  channels  (aka  standard  ITU  grid)

Page 5: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    5

§ Optical  light  transmitted  through  fiber  will  lose  power

§ Attenuation  caused  by  Scattering,  Absorption  and  Stress

§ Other  related  parameter:  fiber  length,  fiber  type,  transmission  bands,  and  external  loss  components  such  as  connectors  &  splices

§ Typical  fiber  loss:    0.20  dB/km  – 0.35  dB/km,  although  in  some  regions  fiber  loss  can  be  as  high  as  ~0.5  dB/km

§ Basic  Link  Budget  Engineering:– Fiber  loss +  spice  loss  +  connector  loss  +  safety  margin  ≤ Power  Budget (i.e.  Transmitted  – Received  Power)

Fiber  Characteristic  #1:Fiber  Attenuation  or  Loss  (measured  in  dB  or  dB/km)

Page 6: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    6

Transmission  Windows:Attenuation  in  Optical  Fiber  (measured  in  dB  or  dB/km)

800 900 1000 1100 1200 1300 1400 1500 1600

Wavelength  in  nanometers  (nm)

0.2  dB/km

0.5  dB/km

2.0  dB/km

C-­band  (1530  –1565  nm)

L-­band  (1565  –1625  nm)

Note:    Frequency  =  3  x  108 /  wavelength

850  nm  Range

1310  nm  Range

Also  known  as  the  three  “Transmission”  Windows

Page 7: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    7

§ Different  wavelengths  travel  at  different  speeds  through  a  given  fiber  causing  optical  pulses  to  broaden  or  to  “spread”

– e.g.  Wavelength  Channel  #1  travels  faster  than  Channels  #2,  #3,  etc..  

§ Excessive  spread  can  cause  pulses  to  overlap,  and  therefore  receivers  would  have  a  hard  time  to  distinguish  overlapped  pulses

§ The  longer  the  distance  (or  the  higher  the  bitrate)  is,  the  worst  the  spread  would  be.

Fiber  Characteristic  #2:Chromatic  Dispersion  (measured  in  ps /  km-­nm)

Page 8: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    8

Lego  Blocks  of  a  Simple  Point  to  Point  DWDM  System

TransponderMuxponderTransceiver

MuxDemux

Page 9: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    9

§ Multiplex  /  Demultiplexer (aka.  Mux/Demux)  Comes  with  Various  Sizes…– Use  light’s  reflection  and  refraction  properties  to  separate  and  combine  wavelengths  from  a  

fiber  strand  (e.g.  logically  think  of  a  prism)

– Common  technologies:  thin  film  filters,  fiber  bragg gratings  and  arrayed  waveguides  (AWG)

– Passive  device  which  requires  no  power

– Higher  the  channel  counts  means  higher  the  insertion  loss

Lego  Block  to  Create  the  Highway  Lanes  Common  Mux/Demux Selections  from  most  vendors…

DWDM  Mux-­Demux (8λ Add-­Drop)

CWDM  Mux-­Demux (4λ Add-­Drop)

OADMs  (1,2,  and  4λ Add-­Drop)

DWDM  Mux-­Demux (40λ Add-­Drop)

DWDM  Mux-­Demux (96λ Add-­Drop)

Page 10: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    10

Transponder  and  Muxponders:Converting  “Grey”  to  “Color”

Transponder

Muxponder

Client  Signal  (Grey optics)  (e.g.  from  a  switch,  router)

Line  Signal  (Color optics)(to  DWDM  mux  /  outside  plant)

10GE  LAN  PHY(STM64,  10G  FC)

a  10G  Wavelength(e.g.  Channel  3)

a  10G  Wavelength(e.g.  Channel  4)

GbESTM162G  FC

STM4GbE

1  in  – 1  out

Many  in  – 1  out

Page 11: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    11

Transceivers

§ Typical  Line  Rates

– 2.5G

– 10G

– 100G

§ Transceivers

– SFP

– XFP/SFP+

– QSFP+

– CFP

§ Selection  of  which  type  mainly  depends   on  Speed,  Reach– 850nm,  1310nm,  1550nm,  CWDM,  DWDM  Fixed  Channel,  DWDM  Tunable

§ Each  type  of  transceiver’s  has  its  transmit  power  and   receive  power  sensitivity(e.g.  TX  =  [-­3,1]  dBm,  RX  =  [-­25,  -­5]  dBm)  à Max  Budget  =  1-­(-­25)  =  26dB

Optical  Transceivers  – The  Pluggable  Optics

Page 12: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    12

Additional  Lego  Blocks  of  Multi-­Node  Linear  DWDM  System

TransponderMuxponderTransceiver

MuxDemux

OpticalAmplifier

DispersionCompensation

Page 13: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    13

Overcome  Fiber  Attenuation…  Optical  Amplifiers  (EDFA  and  Raman)

Optical  Amplifiers  are  Needed  in  Order  to  be  Sure  Optical  Signals  Can  Be  Accurately  Detected  by  Receivers

Two  Common  Types  of  Optical  Amplifiers

Erbium  Doped  Fiber  Amplifier RAMAN  Amplifier

Most  common  used  and  simple  to  deploy

Fixed  gain  or  Variable  gain  

For  high  span  loss  and  long  distance  transmission

Used  in  Conjunction  With  EDFAs

Page 14: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    14

End End

0

Max

Min

Receiver

ToleranceCD

Dispersion  Compensation  Over  Multi-­span  Route(Note:  for  100G  coherent transmission,  CD  is  less  of  an  issue…)

DCM DCM DCM

Span-­by-­Span  CD  Compensation  for  10G/40G  transmission  

Simply  match  fiber  distance  to  DCM  type  (e.g.  Use  60km  DCM  for  ~60km  link)  

Page 15: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    15

As  Network  Grows  and  Evolves  to  Ring  /  Mesh  Topologies…Advanced  Technology  Enabler  Makes  Operation  &  Planning  Simpler

From  www.datacentermap.com

Page 16: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    16

§ For  initial  Point-­to-­Point  network,  Fixed  OADM  (FOADM)  network  architecture  worked  fine.

§ A  problem  arises  when  we  have  intermediate  location  that  requires  “partial”  adding/dropping  of  traffic  à manual  patch  work  is  needed

Unexpected  Network  Expansion  or  Node  InsertionWavelength  power  management  can  become  tricky  to  engineer

A C

40km

10dB

B

20km

5dB

§ 10  x  10GbE  circuits  are  now  between  Site  A  and  Site  B  

§ 10  x  10GbE  circuits  are  now  between  Site  A  and  Site  C  (via  Site  B)

10  x  10GbE10  x  10GbE

Page 17: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    17

§ Since  not  all  wavelengths  need  to  be  dropped,  manual  padding,  patching  works  are  required  to  connect  wavelength  across  intermediate  site(s)

§ Patching  through  makes  sense  for  small  λ counts,  but  with  40/96  DWDM  channels,  this  can  be  prone  to  human  errors  and  difficult  to  manage  –a  better  solution  is  warranted.  

A  Closer  Look:  Channel  Patching  Work  is  RequiredIntermediate  Site  (at  Site  B)

DEMUX M

UXλ

λ

λ

λ

λ

λ

λ

λ

λλ

1.  The  insertion   lossaffects  the  overall  link  budget

2.  Each  wavelength  addedneeds  to  be  re-­balanced

λ 3.  Regeneration   is  oftenneeded  due  to  deficit  power  budget

From  Site  A                                                                                            At  Site  B                                                                                  To  Site  C

Page 18: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    18

How  a  4-­Degree  ROADM  Node  Works…

A/DEx2

Ex4

Ex3

ROADM

FiberLine

A/D

Ex3

Ex2

Ex4

ROADM

FiberLine

A/D

Ex2

Ex4

Ex3

ROADM

FiberLine

λ

Mux  /  Demux

λ

λ A/D

ROADM

FiberLine

Ex2

Ex3

Ex4

Mux  /  Demux

λ

λA  Single  ExpressCable

AutomaticPowerEqualizedWavelengths

In-­Service  Network  Expansion  by  SimplyAdding  ROADM  module

Page 19: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    19

Network-­wide  Benefit  of  ROADM:  Reconfigurability,  Flexibility  and  Ease  of  Expansion

• Individual  wavelengths  can  be  easily  steered  from  any  node   to  any  node  

• Site  visit  only  at  the  add/drop   locations• Simplify  operations  and  network  planning

OO

O

OO

O

Page 20: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    20

Optical  LayerLego Block

Uses  &  Benefits Additional  Design  Notes

Fiber  Pair For  DWDM  transmission • G.652  /  SMF  is  preferred

Mux  /  Demux (M/D) For  dividing  fiber  into  virtual  highway  lanes  or  wavelengthchannels

• Passive element  (no  power  required)

• Various  M/D  have  different  insertion  loss

DispersionCompensation   Fiber  or  Module  (DCF/DCM)

For  compensation   CD  for80km  or  longer span  or  multi-­span  network

• DCF  is  usually  classified  by  distance

• DCF  has  insertion  loss  and  add  latency

Amplifier For  overcoming fiber  span  loss  and  minimizing  regeneration   cost  for  multi-­span  network

• Choice  of  EDFA  (commonly  used  metro)  and  Raman  (for  regional/long-­haul)

• Amplifier  has  various  gain  levels,  noise  figure

ReconfigurableOptical  Add/Drop  Multiplexer(ROADM)

For  flexible  wavelength  add/drop/bypass  and  simpler  operation

• Single  module   combines  amplifier  and  WSS

• Per-­channel   auto  power  balancing

Summary  of  Essential  Lego  Blocks  for  Building  a  Flexible  Optical  Network

Page 21: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    21

DWDM

40kmDWDM

30km

CE

DWDM

DWDM

DWDM

CE

14km

35km

10km

15km35km

§ One  school  of  thought:  Router  vendors  have  integrated  DWDM  or  color  optical  interfaces  onto  their  routing  platform

§ Another   school  of  thought:    Optical  vendors  have  integrated  packet  functionalities  (L2/L3)  onto  their  optical  platform

§ Which  option   is  better?  Which  option  is  more  cost  effective?  It  depends.

Remember  this  View?

P P

PEPECE

Page 22: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    22

School  of  Thought  #1…  Simple  Point  to  PointConverged  Packet  Optical  Networking  

EdgeRouter

Core  Router

Core  Router

§ Optics  on  routers  simplify  the  need  for  a  separate  optical  platform§ Limited  to  point-­to-­point  or  simple  fiber  topology.  Remember  the  

fundamental  optical  rules  and  lego blocks  don’t  disappear.  

§ Optical  reach  depends  on  the  integrated  optical  transceiver  specifications§ 100G  coherent  technology  helps  overcome  dispersions

Integrated  Optics  on  Routers

EdgeRouter

Page 23: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    23

School  of  Thought  #2…  Beyond  Point  to  PointConverged  Packet  Optical  Networking  

NMSEdgeRouter

Core  Router

Core  Router

§ Pre-­integrated  solution  using  10G/100G  colored  interfaces  from  existing  feature-­rich  routing  platform,  or  grey  optics  handoff

§ ROADM  layer  can  provide  additional  layer  of  flexibility  at  physical  layer

§ OSS/NMS  integration  can  simplify  operations  and  troubleshooting

Dynamic  ROADM  Core

EdgeRouter

Page 24: Optical Transport Technologies and Trends

Company  Confidential  BTI  Systems.  Distribution  of  this  document  is  not  permitted  without  written  authorization.    24

School  of  Thought  #3…  DC+C  Provider  CentricConverged  Packet  Optical  Networking

• If many Layer 3  features go unused in  routers,  you paid for them anyway• If most of  Layer 3  traffic is actually MPLS  LSR  switching…• MPLS  LER  features  are  higher  cost  than  simple  LSR  • Do  you use  all the RFC’s and  functionalities in  your routers today?• MPLS  LER  and  LSR  functions do  not need to  be  on same equipment

LER

WDM

LER/LSR

$$$$$

LER

WDM

LSR

$$

LER$$ $$

$

LER

WDM+LSR

Page 25: Optical Transport Technologies and Trends

btisystems.com