Top Banner
Nafion: Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass , Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion – Israel Institute of Technology Wolfson Department of Chemical Engineering Haifa, Israel
22

Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Dec 26, 2015

Download

Documents

Harry Webb
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Nafion: Hydration, Microstructure and Schroeder’s paradox

Viatcheslav Freger

Maria Bass , Amir Berman (BGU)Oleg Konovalov, Amarjeet Singh (ESRF)

Technion – Israel Institute of TechnologyWolfson Department of Chemical Engineering

Haifa, Israel

Page 2: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Nafion and Its Uses

Fuel Cells

Membrane electrolysisSensors

Catalysis

An ionomer developed by DuPont in 70s

Page 3: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Unique Microstructure: Microphase separation and 2D Micelle Morphology

Schmidt-Rohr and Chen, Nat Mater., 2008

Gebel, Diat et al, Macromolecules, 2002, 2004

Gebel, Polymer, 2000

Hsu and Gierke, JMS, 1983

Page 4: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

2D Morphology: Transport vs. Hydration

Conductivity

VF et al., JMS, 1999Kreuer, JMS, 2001

0.001

0.01

0.1

1

0.01 0.1 1

water volume fraction XVD/

Dw

Blum et al.SPEPEEKKNafion

3D

2D

Water self-diffusion (NMR)

Page 5: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Schroeder’s Paradox: Two Isotherms?

Bass and Freger, 2008

0

10

20

30

0 0.2 0.4 0.6 0.8 1

water activity

l

vapor

liquid

Li-Nafion

Sample SampleOsmotic stressor

solution

Page 6: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Schroeder’s Paradox and Water Transport

If the thermodynamic potential of water is ill-defined, how

does one model water transport and “water management”?

51~

Hw

www J

RT

CDJ

Page 7: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Schroeder’s paradox explained?

Choi and Datta (JES, 2003) were first to publish an explanation,

but they assumed

permanent pores;

hydrophobic pore walls (despite ionic groups);stability of surface structure and 3-phase line.

Page 8: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Fixing the Model: Structure and Equilibrium

Four terms are the minimal set

osmotic “inflation” interface “corona”

20( ) ( ) /o eff g G BR

1

34

5

2

)( ge vv

R

VF, Polymer, 2003; JPC B, 2009

Minimize g = f – lto getl

Page 9: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Chemical Equilibrium as Balance of Pressures

2

2/3

(1 )s

out sin d

RR R

g

”’

l”l’

Pressures:out , in - osmoticd - inflation (transient)s - interfacial-elastic (“Laplace”)

VF, JPC B, 2009

The interfacial tension is zero, but the “Laplace” pressure is not unless = 1.

Page 10: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Surface Equilibrium

Two more equilibrium conditions at the surface:

Balance of 3 tensions (Neumann construction)

Equilibrium between polymer bulk and surface

vapor

matrix (2)

an ionic group

liquid (1)12

12a b

c d e

VF, JPC B,2009

Page 11: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Surface Equilibrium: Interim Summary

In vapor water gets buried under surface; s ≥ 0.

In liquid micelles are inverted and s = 0 (Schroeder’s paradox).

Nafion should dissolve in water, but dissolution never happens (relaxation time ≥ 105 s).

However, (quasi-)dissolution may occur at the surface.

2)1( Rs

normal-type micelles(“spaghetti”)surface-aligned

bundle (“macaroni”)

water

Page 12: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Examining the Surface Structure: GISAXS

keV 8for 2.0 c

nm 3~pd

Rubatat and Diat, Macrmolecules, 2007

(bulk SANS)

Page 13: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

ESRF and ID10B

Page 14: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Nafion Surface in Vapor (GISAXS)

0.001

0.01

0.1

1

0.01 0.1 1 10Qxy , A-1

Qxy

*I,

A-1

a.u.

0.110.170.20.25

100 nm thick Nafion film spin-cast on a Si waferT = 30 C, RH ~ 97%Beam 8 keV

Bass et al., JPC B, 2010

Page 15: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

GISAXS: Going Under Water

water vapor

C18-capped Si substrate

Nafion film

Page 16: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Vapor vs. Liquid: Contact Angle and AFM

CA: Nafion surface is hydrophobic in vapor and hydrophilic in water

AFM: under water the surface gets rougher (surface tension drops).

Dry = 96.4 ± 1.2hydrophobic

Vapor RH=97% = 94.5 ± 1.1hydrophobic

water

Air bubble

Water drop

Air Water drop

Air

Liquid water = 25.4 ± 0.25

hydrophilic

Page 17: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Hydrophilic vs. Hydrophobic Substrate

OTS on Si: = -59 mV, = 130o (Yang & Abbott, Langmuir, 2010)

Dura et al., Macromolecules, 2009 (NR)

C18-capped Si substrate

Nafion film

Native Si substrate (SiO2)

Nafion film

Page 18: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Micelle Orientation at Interfaces

C18-capped Si substrate

a micelle bundle

Vapor

Native Si (SiO2) substrate

Water

Nafion film Micellebundles

bundlesbreaking up

Bass et al., 2010

Some of these are metastable non-equilibrium structures! (non-relaxed elastic stress, relaxation time >105 s)

Balsara et al, NanoLett, 2007

Page 19: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Summary

2)1( Rs

Vapor Nafion Liquid

Solid Nafion is a non-equilibrium structure.

Non-relaxed pressures in Nafion result in a non-thermodynamic behavior (Schroeder’s paradox); this needs to be accounted for in transport modeling.

Interfaces affect the morphology and orientation of micelles in thin Nafion films; this could be attractive for developing barriers with enhanced and stable transport characteristics.

Page 20: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

ISFESRF

Maria Bass

Oleg Konovalov, Amarjeet Singh, Jiři Novak (ESRF, ID10B)

Amir Berman, Yair Kaufman, Juergen Jopp (BGU)

Special thanks: Emmanuel Korngold (BGU), Klaus-Dieter Kreuer, Martin Ise (MPI Stuttgart)

Thanks

Page 21: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Another old puzzle: microscopic vs. macroscopic swelling

The relative change of Bragg spacing (d-do)/d (“microscopic swelling”) may be compared with the relative macroscopic linear expansion (1/p – 1)1/3 calculated from l.

Though for high l the relation is as for dilute 2D micelles, for solid Nafion (small and moderate l) it is nearly linear, as if the structure is 1D (lamellae)

Gebel, 2000; Fujimura et al., 1981, 1982

Page 22: Nafion : Hydration, Microstructure and Schroeder’s paradox Viatcheslav Freger Maria Bass, Amir Berman (BGU) Oleg Konovalov, Amarjeet Singh (ESRF) Technion.

Microscopic vs. macroscopic swelling

The model shows a good agreement with scattering data, provided a 2D morphology is “plugged in”

0

1

2

3

4

5

6

0 0.5 1 1.5

Linear expansion

Mic

rosc

opic

sw

ellin

g

D=3

D=2

D=2 var

1

10

100

0.01 0.1 1

p

dm

ax, n

m

constantvariable

1

10

0

23

11 11

n for D=2 theoretical initial slope is 7 (exp 6)

n D

gDp w

g g

d dn

d D D