Top Banner
1 1 Mit Pi-zza durchs All: Mathematik nicht nur für Außerirdische Vortrag zum Jahr der Mathematik DV-Treffen der Max-Planck-Gesellschaft 20. November 2008 Thomas Ferber Forschung und Lehre Sun Microsystems GmbH π π π π π
52

Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

May 27, 2015

Download

Education

Thomas Ferber

Der Vortrag "Mit Pi-zza durchs All: Mathematik nicht nur für Außerirdische" war der Vortrag zum Jahr der Mathematik beim DV-Treffen der Max-Planck-Gesellschaft am 20. November 2008 in Göttingen.

Der Vortrag zeigt auf vergnügliche und unterhaltsame Weise, dass die Mathematik durchaus universell ist. Mit Hilfe von Äpfeln wird bewiesen, dass die Mathematik als "lingua cosmica" zur interstellaren Kommunikation geeignet ist und auch auf Aldebaran oder Proxima Centauri die gleiche Mathematik "gesprochen" wird. Der Ausflug in das Universum der Zahlen endet mit zwei ungewöhnlichen Verfahren zur Bestimmung der Kreiszahl Pi: der Pi-zza-Methode und der chinesischen Stäbchen-Methode.
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

11

Mit Pi-zza durchs All:Mathematik nicht nur für Außerirdische

Vortrag zum Jahr der Mathematik

DV-Treffen der Max-Planck-Gesellschaft

20. November 2008

Thomas FerberForschung und LehreSun Microsystems GmbH

ππ π π π

Page 2: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

2

IntroductionIntroduction

Stand 14. November 2008: Wir kennen 326 Planeten außerhalb unseres Sonnensystems.

Photo: ESO 2008

Photo: ESO 2007

Photo: ESA/ NASA/ UCL (G. Tinetti), Extrasolar planet HD 189733b

Photo: ESO 18a-06

Page 3: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

3

Es gibt Planeten außerhalb unseres Sonnensystems.

Es gibt erdähnliche Planeten außerhalb unseres Sonnensystems!

Gibt es auch außerirdisches Leben?

Und dann auch noch intelligentes Leben?

Photo: ESO 18a-06

Page 4: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

4

Unsere Galaxie

Die Milchstraße

100 -300 Milliarden Sterne100.000 Lichtjahre Durchmesser3.000 -13.000 Lichtjahre dick

Photo: ESO phot-41-99

Es gibt ca. 100 Milliarden Galaxien im Universum

Photo: NASA

Page 5: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

5

Anzahl der technischen, intelligenten Zivilisationen in unserer Galaxie

Drake-Gleichung

N = R · fS · f

p · n

e · f

l · f

i · f

c · L

Photo: ESO phot-41-99

Page 6: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

6

Anzahl der technischen, intelligenten Zivilisationen in unserer Galaxie

Drake-Gleichung

N = R · fS · f

p · n

e · f

l · f

i · f

c · L

Photo: ESO phot-41-99

R = Sternentstehungsrate pro Jahr in unserer Galaxie ≈ 10 ... 20

fS = Anteil sonnenähnlicher Sterne ≈ 10%

Fp = Anteil Sterne mit Planeten = 0% ... 100%

...

Page 7: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

7

Anzahl der technischen, intelligenten Zivilisationen in unserer GalaxieDrake-Gleichung

N = R x fS x f

p x n

e x f

l x f

i x f

c x L

Photo: ESO phot-41-99

Dies ist eine Abschätzung und ergibt je nach eingesetzten Werten Ergebnisse zwischen 1 und 4.000.000Zivilisationen in unserer Galaxie.

Page 8: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

8

Fermi Paradox

Enrico Fermi: “Where is everybody?”

Page 9: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

9

Nehmen wir doch einfach einmal an ...es gäbe außerirdisches Leben,

es gäbe intelligentes außerirdisches Leben.

Doch wie wollen wir miteinander kommunizieren?

Auf Deutsch, Englisch, Latein, .... Chinesisch, ....

Page 10: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

10

Und wie ist es mit der Mathematik ...Betreiben unsere hypothetischen intelligenten Außerirdischen überhaupt die gleiche Mathematik wie wir?Am Beispiel der Zahlen möchte ich zeigen, das die Mathematik universell ist und auch in einem anderen Teil der Galaxis “gesprochen” wird.

Photo: ESO phot-37d-98

Page 11: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

11

Sind die Zahlen universell?

Page 12: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

12

Natürliche ZahlenWir betrachten die AnZAHLEN beliebiger Objekte.

Z.B Äpfel

...

Page 13: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

13

Natürliche Zahlen

N ={ , , , . . .}Damit haben wir die Menge der natürlichen Zahlen gefunden. Und es ist völlig gleich, ob wir als Objekte Äpfel, Eier, pangalaktische Donnergurgler oder Sandkörner auf Gliese 581c oder Aldebaran nehmen.

N = { 1, 2, 3, 4, . . . }

Page 14: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

14

Rechnen mit natürlichen Zahlen

...

+ =+ =

+ =

Page 15: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

15

Rechnen mit natürlichen Zahlen

Die Addition alleine reicht aber nicht aus, wir benötigen auch die Subtraktion, d.h. wir geben etwas her, wir ziehen etwas ab.

- =- =

Page 16: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

16

Rechnen mit natürlichen Zahlen

=- ?Jetzt haben wir ein Problem. Die Menge der natürlichen

Zahlen reicht nicht aus.

Page 17: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

17

Die NullWir führen ein neues Zahlenelement ein, die Null, und erweitern die Menge der natürlichen Zahlen um die Zahl Null.

N0 = N + { 0 }

=- 0

Page 18: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

18

Von den natürlichen zu den ganzen ZahlenDoch was ist mit Subtraktionsaufgaben des folgenden Typs, bei dem wir mehr abziehen als wir haben?

- = ?Wir führen weitere neue Zahlenelemente ein, die negativen Zahlen, und erweitern die Menge der natürlichen Zahlen inklusive der Zahl Null mit den negativen Zahlen und nennen diese neue Menge die Menge der ganzen Zahlen.

Z = { . . ., -3, -2, -1, 0, 1, 2, 3, 4, . . . }

Page 19: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

19

Die ganzen Zahlen

Z = { . . ., -3, -2, -1, 0, 1, 2, 3, 4, . . . }Mit den ganzen Zahlen können wir nun nach Herzenslust rechnen. Ob Addition oder Subtraktion, jede Zahlenkombination ist möglich. Eine beliebige ganze Zahl mit einer beliebigen ganzen Zahl addiert oder subtrahiert ergibt wieder eine ganze Zahl.

Damit könnten wir jetzt aufhören, wenn nicht ....

Page 20: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

20

Die rationalen Zahlen

: =

Page 21: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

21

Die rationalen Zahlen

Q = { m/n | m, n ε Z, n≠0 }

¼½

¾

Page 22: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

22

Von den natürlichen zu den rationalen Zahlen

NN0ZQ 1, 2, 3, 4, ...

0

-1, -2, -3, ...

5/31/2

17/4

-3/2

m/n

Page 23: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

23

Das “Wurzel von zwei”-Problem

√21

1√2 = p/q?

Page 24: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

24

Die irrationalen Zahlen

π = 3,141592653589793...

√2 = 1,41...

Irrational, weil nicht rational darstellbar. D. h. nicht als Bruch darstellbar.

Page 25: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

25

Die reellen ZahlenDas heißt, dass wir die Menge der Brüche (rationalen Zahlen) Q um alle irrationalen Zahlen (nicht als Brüche darstellbar) erweitern müssen.

Wir gelangen zur Menge der reellen Zahlen

R = Q + { irrationale Zahlen }

Page 26: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

26

Die Zahlen sind universell.

Die Mathematik ist universell.Photo: ESO phot-37d-98

Foto: ESO eso9846a

Page 27: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

27

Und was bringt uns das? Und was bringt uns das?

Foto: ESO eso9846a

Page 28: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

28

Und was bringt uns das?

LINCOS: Design of a Language for Cosmic Intercourse

Hans Freudenthal

Wikimedia Commons: Hans_Freudenthal.jpg, Urheber: Konrad Jacobs, Erlangen; Quelle: Mathematisches Forschungsinstitut Oberwolfach

Page 29: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

29

LINCOS: Design of a Language for Cosmic Intercourse

Lincos BedeutungX O X 1 = 1XX O XX 2 = 2XXX O XXX 3 = 3X OO XX 1 < 2X OO XXX 1 < 3XX OO XXX 2 < 3XX OOO X 2 > 1XXX OOO XX 3 > 2

Page 30: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

30

Bilder sagen mehr als tausend Worte

11110000011100011111110........11011110001

14.111 Bits

14.111 = 137 x 103

137103

103137

Page 31: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

31

Versuch 1

Versuch 2

Versuch 3

Page 32: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

32

7.109.411 = 3.079 x 2.309

Page 33: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

33

Photo: EUMETSAT/DLR

Photo: NASA, J. Bell (Cornell U.) and M. Wolff (SSI)

Page 34: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

34

Zahlensysteme - Additionssysteme

1, 2, 3, 4, 5

1, 2, 3, 4, 5

1, 2, 3, 4, 5

1, 10, 100, 1.000, ...

Page 35: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

35

Additionssysteme – römische ZahlenI = 1V = 5X = 10L = 50C = 100D = 500M =1.000V = 5.000X = 10.000C = 100.000M = 1.000.000M = 1.000.000.000.....

Page 36: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

36

MMMMMMMMMMCCCXXVM = ?

Additionssysteme – römische Zahlen

Page 37: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

37

MMMMMMMMMMCCCXXVM =

10 x 1.000.000 = 10.000.000+ 3 x 100.000 = 300.000+ 2 x 10.000 = 20.000+ 1 x 5.000 = 5.000+ 1 x 1.000 = 1.000 10.326.000

Solsystemi pusilli

Additionssysteme – römische Zahlen

Page 38: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

38

Zahlensysteme - Stellenwertsystem

853 = 8·100 + 5·10 + 3·1

Dezimalsystem

Wikimedia Commons, Arabic_numerals-de.svg

Page 39: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

39

Zahlensysteme - StellenwertsystemDualsystem: Basis = 2Ternärsystem: Basis = 3Quinärsystem: Basis = 5Hexalsystem: Basis = 6Oktalsystem: Basis = 8Dezimalsystem: Basis = 10Duodezimalsystem: Basis = 12Hexadezimalsystem: Basis = 16Sexagesimalsystem: Basis = 60

Page 40: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

40

π-zza π-kant

Page 41: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

41

Die π-zza-Salami-Methode

Page 42: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

42

π = 3,141592653589793...Umfang = π * Durchmesser

π = UmfangDurchmesser

22 Salamischeiben7 Salamischeiben = 3,1428.....

Man nehme eine Pizza und eine Salami von geeigneter Größe (7 x Durchmesser der Salami = Durchmesser der Pizza). Von der Salami schneidet man 29 Stücke ab. Das Verhältnis Umfang zu Durchmesser ergibt mit der π-zza-Salami-Methode schon ein sehr gutes Ergebnis. Die beiden ersten Nachkommastellen sind richtig.

Page 43: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

43

Pizzeria Italiachiuso

Page 44: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

44

π mit der Stäbchen-Methode

Page 45: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

45

Wir brauchen:

Zwei Essstäbchen der Länge a.Eine Fläche mit parallelen Linien mit Abstand b.

Page 46: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

46

Wahrscheinlichkeit(Linie wird geschnitten) =

Die Essstäbchen sind exakt 220 mm lang. In unserer Versuchsanordnung malen wir parallele Striche mit Abstand 280 mm

280mm

Page 47: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

47

Die Essstäbchen sind exakt 220 mm lang. In unserer Versuchsanordnung malen wir parallele Striche mit Abstand 280 mm

280mm

Page 48: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

48

π mit der Stäbchen-Methode – Der Film

Page 49: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

49

Wenn genau die Hälfte der Stäbchen die Linie berührt

1

2

280 mm

220 mm

= 2 x 2 x 220/280= 4 x 0,7857...= 3,14..

Page 50: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

50

Wenn alle Stäbchen die Linie berühren

2

2

280 mm

220 mm

= 2 x 1 x 220/280= 2 x 0,7857...= 1,57..

Page 51: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

51

Wenn kein Stäbchen die Linie berührt

0

2

280 mm

220 mm

Page 52: Mit Pi-zza durchs All - Mathematik nicht nur für Außerirdische

5252