Top Banner

of 31

metamaterials part2

Apr 10, 2018

Download

Documents

LIAKMAN
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
  • 8/8/2019 metamaterials part2

    1/31

    BirckNanotechnology Center

    Engineering Space for Light with

    Metamaterials

    BirckNanotechnology Center

    Part 1: Electrical and Magnetic Metamaterials

    Part 2: Negative-Index Metamaterials, NLO,and super/hyper-lens

    Part 3: Cloaking and Transformation Optics

  • 8/8/2019 metamaterials part2

    2/31

    2

    BirckNanotechnology Center

    Outline

    What are metamaterials?

    Early electrical metamaterials Magnetic metamaterials

    Negative-index metamaterials Chiral metamaterials

    Nonlinear optics with metamaterials

    Super-resolution

    Optical cloaking

  • 8/8/2019 metamaterials part2

    3/31

  • 8/8/2019 metamaterials part2

    4/31

    4

    BirckNanotechnology Center

    Metamaterials with Negative Refraction

    Single-negative:

    n 0(F is low)

    Double-negative:

    n

  • 8/8/2019 metamaterials part2

    5/31

    5

    BirckNanotechnology Center

    Negative Refractive Index in Optics: State of the Art

    Year and Research

    group

    1st time posted and

    publication

    Refractive

    index, nWavelength

    Figure of Merit

    F=|n|/n Structure used

    2005:

    PurdueApril 13 (2005)

    arXiv:physics/0504091

    Opt. Lett. (2005)0.3 1.5 m 0.1 Paired nanorods

    UNM & ColumbiaApril 28 (2005)

    arXiv:physics/0504208

    Phys. Rev. Lett. (2005)2 2.0 m 0.5 Nano-fishnet with

    round voids

    2006:

    UNM & Columbia J. of OSA B (2006) 4 1.8 m 2.0 Nano-fishnet withround voids

    Karlsruhe & ISUOL. (2006)

    OL (2007)

    11 1.4 m1.4 m3.0

    2.5

    Nano-fishnet

    3-layer nanofishnet

    Karlsruhe & ISU OL (2006) 0.6 780 nm 0.5 Nano-fishnet

    Purdue OL (2007)0.9-1.1

    770 nm

    810nm

    0.7

    1.3Nano-fishnet

    see review: Nature Photonics v. 1, 41 (2007)

  • 8/8/2019 metamaterials part2

    6/316

    BirckNanotechnology Center

    Negative permeability and negative permittivity

    E

    H

    k

    Dielectric

    Metal

    Nanostrip pair (TM) < 0 (resonant)

    Nanostrip pair (TE) < 0 (non-resonant)

    Fishnet and < 0

    S. Zhang, et al., PRL (2005)

  • 8/8/2019 metamaterials part2

    7/317

    BirckNanotechnology Center

    Sample Geometry (Fishnet Structure)

    E-beam lithography

    Period = 300 nm along both axis

    Average width of strips along H = 130 nmAverage width of strips along E = 95 nm

    H

    E

    Alumina

    Silver

    ITO300nm

    30

    0nm

    Stacking:

    10 nm of Al2O333 nm of Ag38 nm of Al2O333 nm of Ag10 nm of Al2O3

    SEM image andprimary polarization

    i k h l

  • 8/8/2019 metamaterials part2

    8/318

    BirckNanotechnology Center

    Solid line : Experimental

    Spectra for Primary Polarization

    Magnetic resonance around = 800 nm Electric resonance around = 600 nm

    U. K. Chettiar, et al., Optics Letters 32, 1671 (2007)

    Finite Elements

    Dashed line: Simulated

    Bi k N t h l C t

  • 8/8/2019 metamaterials part2

    9/319

    BirckNanotechnology Center

    Field Maps for Primary Polarization

    Electrical Resonance, = 625 nm Magnetic Resonance, = 815 nm

    E

    H

    k

    Birck Nanotechnology Center

  • 8/8/2019 metamaterials part2

    10/3110

    BirckNanotechnology Center

    Double Negative NIM (n=-1.0, FOM=1.3, at 810 nm)Single Negative NIM (n=-0.9, FOM=0.7, at 770 nm)

    wavelength (nm)wavelength (nm)

    permeability

    permittivity

    500 600 700 800 900-1

    0

    1

    2

    -4

    -20

    2

    4

    ''

    500 600 700 800 900

    -1

    0

    1-n'/n"

    -n'E

    H

    permeab

    ility

    permittiv

    ity

    '

    '

    wavelength (nm) wavelength (nm)

    -n'/n"

    -n'

    E

    H

    700 800 900-1

    0

    1

    700 800 900

    0.5

    1

    1.5

    -6

    -4

    -2

    0

    Chettiar et al

    OL (2007)

    Birck Nanotechnology Center

  • 8/8/2019 metamaterials part2

    11/3111

    BirckNanotechnology Center

    Summary on negative refractive index

    A Double Negative NIM (Negative index material) isdemonstrated at a wavelength of ~810 nm

    The sample exhibits a figure of merit (-n/n) of 1.3and a transmittance of 25% at 813 nm

    The same sample shows Single Negative NIMbehavior for the orthogonal polarization at a

    wavelength of ~770 nm with a figure of merit of 0.7and a transmittance of 10%

    Birck Nanotechnology Center

  • 8/8/2019 metamaterials part2

    12/3112

    BirckNanotechnology Center

    Negative Refraction for Waveguide Modes

    An mode index of ~ -5 is obtained at the

    green light.

    Lezec, Dionne and Atwater, Science, 2007

    negative refraction for 2DSPPs in waveguides

    Birck Nanotechnology Center

  • 8/8/2019 metamaterials part2

    13/3113

    BirckNanotechnology Center

    Outline

    What are metamaterials?

    Early electrical metamaterials Magnetic metamaterials

    Negative-index metamaterials Chiral metamaterials

    Nonlinear optics with metamaterials Super-resolution

    Optical cloaking

    BirckNanotechnology Center

  • 8/8/2019 metamaterials part2

    14/3114

    gy

    Chiral Optical Elements

    Boses Artificial chiral molecules: Twisted jute elements

    J. C. Bose, Proceeding of Royal Soc. London, 1898

    Optical counterparts:

    Decher, Klein, Wegener and Linden

    Opt. Exp., 2007

    The Zheludev group, U. Southampton

    Appl. Phys. Lett., 2007

    BirckNanotechnology Center

  • 8/8/2019 metamaterials part2

    15/3115

    gy

    Chiral Effects in Optical Metamaterials

    Circular dichroism:

    Giant optical gyrotropy:

    Decher, Klein, Wegener and Linden

    Opt. Exp., 2007

    The Zheludev group, U. Southampton

    Appl. Phys. Lett., 2007

    Chirality can ease obtaining n

  • 8/8/2019 metamaterials part2

    16/31

    16

    Outline

    What are metamaterials?

    Early electrical metamaterials Magnetic metamaterials

    Negative-index metamaterials Chiral metamaterials

    Nonlinear optics with metamaterials

    Super-resolution

    Optical cloaking

    BirckNanotechnology Center

  • 8/8/2019 metamaterials part2

    17/31

    17

    SHG and THG from Magnetic Metamaterial

    Excitation when magneticresonance is excited (1st pol)

    SHG: Klein, Enkrich, Wegener, and Linden, Science, 2006

    SHG & THG: Klein, Wegener, Feth and Linden, Opt. Express, 2007

    Excitation at 2nd pol.(no magnetic resonance)

    BirckNanotechnology Center

  • 8/8/2019 metamaterials part2

    18/31

    18

    NLO in NIMs: SHG

    Backward Waves in NIMs:

    Distributed feedback, cavity-like amplification, etc.

    02

    2

    2

    2

    2

    2

    1

    1

    1 =+dz

    dhk

    dz

    dhk

    Czhzh = )()( 22

    2

    1

    Manley-Rowe Relations

    ,021 =dz

    dS

    dz

    dS

    Czhzh = )()( 222

    112212, kk == Phase-matching:

    n1 < 0 and n2 > 0

    BirckNanotechnology Center

  • 8/8/2019 metamaterials part2

    19/31

    19

    SHG in NIMs: Nonlinear 100% Mirror

    [ ] 1100 = hz 222

    22

    )2( /4 ck =

    )](cos[/)(1 zLCCzh = )](tan[)(2 zLCCzh =

    )/arccos( 10hCLC =

    Finite Slab:

    Semi-Infinite Slab:

    )()(,0 12 zhzhC ==

    )]/(1/[)( 0102 zzhzh +=

    100% reflective SHG Mirror !

    Czhzh = )()( 222

    1

    Other work on SHG:

    Kivshar et al; Zakhidov et al

    BirckNanotechnology Center

  • 8/8/2019 metamaterials part2

    20/31

    20

    Optical Parametric Amplification (OPA) in NIMs

    213 +=

    Manley-Rowe Relations:

    02

    2

    1

    1

    =

    SS

    dz

    d

    0 0.5 10

    2

    4x 10

    7

    z/L

    1a,

    2g gL=4.805

    k=0

    LHM

    3S - Control Field (pump)(n1 < 0, n2,n3 > 0)

    2122

    22011

    2111 /)(,/)(,/)( LggLa azaazaaza === ( )( ) 3

    )2(4212121 /8/ hcg =

    Popov, VMS, Opt. Lett. (2006)

    Appl. Phys. B (2006)

    For SHG see also Agranovich et al

    and Kivshar et al

    BirckNanotechnology Center

  • 8/8/2019 metamaterials part2

    21/31

    21

    OPA in NIMs:Loss-Compensator and Cavity-Free Oscillator

    2

    2011

    2

    111

    /)(,/)( azaazagLa

    == ( ) 3

    )2(4

    212121 /8/ hcg =

    0=k

    Backward waves in NIMs ->

    Distributed feedback & cavity-like

    amplification and generation

    Popov, VMS, OL (2006)

    Resonances in output amplification and DFG

    OPA-Compensated Losses

    Cavity-free (no mirrors) Parametric Oscillations Generation of Entangled Counter-propagating LH and RH photons

    1L = 1, 2L = 1/2

    BirckNanotechnology Center

  • 8/8/2019 metamaterials part2

    22/31

    22

    (3) -OPA assisted by the Raman Gain:

    4 signal; 1, 3 control fields2= 1+3-4 idler

    (Raman-enhanced; contributes back to OPA at 4)

    Four-level (3) centers embedded in NIM

    .

    (3) -OPA: compensation of losses:transparency and amplification at 4

    Cavity-free generation of counter-

    propagating entangled right- and left-handed

    photons Control of local optical parameters through

    quantum interference

    OPA with 4WM

    Popov, et al OL (2007)See talk tomorrow by Popov et al on NLO in MMs

    BirckNanotechnology Center

  • 8/8/2019 metamaterials part2

    23/31

    23

    Outline

    What are metamaterials?

    Early electrical metamaterials Magnetic metamaterials

    Negative-index metamaterials

    Chiral metamaterials

    Nonlinear optics with metamaterials

    Super-resolution Optical cloaking

    BirckNanotechnology Center

  • 8/8/2019 metamaterials part2

    24/31

    24

    Super-resolution:Amplification of Evanescent Waves Enables sub- Image!

    Waves scattered by an object have all the Fourier components

    The propagating waves are limited to:

    To resolve features , we must have

    The evanescent waves are re-grown in a NIM slab and fully recovered at the image plane

    2 2 2

    0 z x yk k k k = 2 2

    0t x yk k k k = +