Page 1
Metallurgical Challenges in Joining
Lightweight Dissimilar Materials
Phil Prangnell & Joe Robson
School of Materials, University of Manchester, UK
Acknowledgements
Ying–Chun Chen, Lexi Panteli, Farid Haddadi, (Manchester)
Stewart Williams, Supriyo Ganguly, Gonçalo Pardal, Sónia Meco (Cranfield)
Hugh Shercliff, Aidan Reilly et al. (Cambridge– Dept. Engineering)
Nick Wright, Mike Shergold (JLR), Tim Wilkes, Bruce Davies (MEL), A. Smith (Tarta),
Tym Burman (Novelis)
Page 2
LATEST2 – Priority Areas
Energy efficient welding processes
Joining dissimilar metals
Composite to metal joining
Integrated modelling - material interactions and joint
performance
Surface engineering for enhanced performance
Page 3
Welding Multi-material Structures
Fusion techniques
Resistance spot welding, GMAW, GTAW
Laser etc.
Intermetallic reaction
Qiu et al. Mater. Characterization 61 (2010)
Resistance spot welding
Al to Steel
10 μm
Al –Fe Phase diagram
IMC
Layer
Page 4
Control of Interface Reaction
Thin as possible
< 200 nm
Ikeuchi, Yamamoto, Tikahashi, Aritoshi
Trans JWRI 34 (2005)
(Direct drive rotational friction welding)
Page 5
Interface
cleavage Full Pullout
Al to Al (6111)
0
0.5
1
1.5
2
2.5
3
3.5
0 1 2 3 4
Lo
ad
(kN
)
Displacement (mm)
0
0.5
1
1.5
2
2.5
3
3.5
0 1 2 3 4
Lo
ad
(kN
)
Displacement (mm)
Al – Steel
Target - Match Al to Al Joints (6111)
Low Joint
failure energy
Page 6
Focus
Energy Efficient
Industrially viable - Spot Joining Methods
for aluminium – steel / magnesium
Page 7
Current Spot Joining Methods for Al
Electrode
Component surface
Resistance Spot Welding (RSW)
+ Fast
- Electrode maintenance needed
- High energy costs ~ 50 kJ
~ 0.3 sec
Self Pierce Riveting (SPR)
+ Good mechanical properties
+ Join through adhesive
- High consumable costs
- Hard metals?
Low
< 0.5
sec
Energy/
Weld time
Page 8
Alternative Spot Joining Methods
Fusion: Rapid thermal Cycle
Laser Conduction Spot Welding
+ Fast
+ low heat input
+ Excellent surface quality
- Low efficiency
~ 40 kJ
< 1sec
Steel
Al
Page 9
Alternative Spot Joining Methods
Solid state
Friction Stir Spot Welding (FSSW)
+ Low energy
- Keyhole
- Slow
Ultrasonic Spot Welding (USW)
+ Very low energy
- Surface damage
< 1 kJ
< 0.5 sec
~ 2 - 4 kJ
2 – 5 sec
Page 10
Laser Conduction Spot Welding
Uncoated Steel
AA6111T4 - DC04 steel
Supriyo Ganguly, Gonçalo Pardal, Sónia Meco
Ring
Clamp
Anvil
Page 11
Specific point energy vs. Intermetallic layer thickness(spot size = 13 mm, interaction time = 3 s)
Specific point energy [kJ]
8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
Inte
rme
talli
c la
ye
r th
ickn
ess [
m]
0
5
10
15
20
25
30
35
40
Cu backing bar
Water cooled plate
Steel
Al
Fe2Al5
FeAl3
Power density vs. Intermetallic layer thickness(spot size = 13 mm, interaction time = 3 s)
Power density [MW/cm2]
0.0022 0.0023 0.0024 0.0025 0.0026 0.0027 0.0028 0.0029
Inte
rme
talli
c la
ye
r th
ickn
ess [
m]
0
5
10
15
20
25
30
35
40
Cu backing bar
Water cooled plate
Laser Conduction Spot Welding
With – Thermal management
Water cooled plate
Copper
backing plate
IMC layer thickness
Page 12
Laser Conduction Spot Welding
With – Thermal management Specific point energy vs. Shear strength
(spot size = 13 mm, interaction time = 3 s)
Specific point energy [kJ]
8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
Shear
stre
ngth
[M
Pa]
0
20
40
60
80
100
120
140
Cu backing bar
Water cooled plate
Water cooled
plate
Copper
backing
plate
Steel
Al
IMC = 5 µm IMC = 35 µm
Cu Backing Bar Water cooled plate
Steel
Al
Lap Shear Strength
Temperature vs time - SP4
Time [s]
0 1 2 3 4 5 6
Tem
pera
ture
[°C
]
0
200
400
600
800
1000
Cu backing bar - Sample O9
Water cooled plate - Sample O15
Temperature
Page 13
Laser Conduction Spot Welding
With – Thermal management Specific point energy vs. Shear strength
(spot size = 13 mm, interaction time = 3 s)
Specific point energy [kJ]
8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
Shear
stre
ngth
[M
Pa]
0
20
40
60
80
100
120
140
Cu backing bar
Water cooled plate
Water cooled
plate
Copper
backing
plate
Steel
Al
IMC = 5 µm IMC = 35 µm
Cu Backing Bar Water cooled plate
Steel
Al
Lap Shear Strength
Page 14
Laser Conduction Spot Welding
With – Thermal management Specific point energy vs. Shear strength
(spot size = 13 mm, interaction time = 3 s)
Specific point energy [kJ]
8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
Shear
stre
ngth
[M
Pa]
0
20
40
60
80
100
120
140
Cu backing bar
Water cooled plate
Water cooled
plate
Copper
backing
plate
Cu Backing Bar Water cooled plate
Relative Lap Shear Strength
St
Al
St
Al
Page 15
friction spot welded Al deck lid to the galvanized steel bolt retainer on the Mazda
MX-5. [Mazda Motor Corporation]
Solid State Welding Al-Steel
FSSW
Page 16
Objective
Produce successful joints in short weld times
~ 1 second
In thin sheet ~ 1 mm thick
FSSW Al-Steel
Page 17
Friction Stir Spot Joining Methods
3. Stitch, or Sweep
1. Standard Pin tool
2. Pinless tool
4. Refil
Pin displaces bottom sheet
Mechanical locking /hook
Exposure of fresh surface
Flow confined to soft top sheet
– abrades bottom?
or is this pure diffusion bonding?
Pin abrades bottom sheet
Currently not used with hard
materials?
Al
Fe
Standard 10 mm
diameter tool
Page 18
Standard Pin Tool
WC tool Al
Fe
Standard 10 mm
diameter tool
2000 rpm, plunge depth -1.6 mm, 1s,
plunge rate 50 mm/min,
withdraw rate 50 mm/min
AA6111T4 - DC04 steel
Uncoated Steel
Page 19
Standard Pin Tool
Small Pullout Area -> longer times expands to include area
Under shoulder
Max Failure load ~ 80% Al-Al
Failure Energy ~ 40%
weld time 7 seconds!
0 2 4 6 8 10
1
2
3
1
2
3
Fra
ctu
re e
ne
rgy,
kN
.mm
Fa
ilure
lo
ad,
kN
Dwell time, s
Failure load
Fracture energy
Fe Al
Extent of mechanical locking is
limited in thin sheet
Page 20
Standard Pin Tool
Interface temperature
bottom
top
200 µm
top
2 µm
bottom
1sec 5 sec 9 sec
IMC layer 1 µm
IMC layer 4 µm
Reaction Layer Thickness
Page 21
Flat tool or tool with features
e.g. Wiper tool
Pinless Tool
6111T4 - DC04 steel
Page 22
-0.8
-0.7
-0.6
-0.5
1.0
1.5
2.0
2.5
3.0
800
1200
1600
2000
Rotation speed, rpm
Plunging depth, mm
Failure load, kN 1.000
1.250
1.500
1.750
2.000
2.250
2.500
2.750
3.000
Not fully bonded
Reaction layer too
thick/ Top sheet
thinning
Optimum
Lap Shear Test Failure Loads
Max Failure load
80% Al-Al
Failure energy
~ 25% Al-Al
1 Sec Dwell time
1 Second dwell time
Top sheet
thinning
Page 23
Reaction Behaviour
2 sec 5 sec
Wiper Tool 500 nm
Dwell time
1 sec
0
100
200
300
400
500
600
700
0 1 2 3 4 5
IMC
Laye
r Th
ickn
ess
(nm
)
Radial Distance From Center (mm)
Wiper tool 5 sec.
Flat tool 5 sec.
IMC Layer Thickness (nm)
Model: Courtesy of Aidan Reilly & H. Shercliff
Page 24
Hot Dipped Zinc (DX56-Z )
Fe2Al5-xZnx
η(Zn-Fe)
5 µm
FSSW Zinc Coated Steels
Pinless tool
Page 25
(a)
(b)
(c)
Plunge depth of 0.2 mm
Plunge depth of 0.4 mm
Plunge depth of 0.8 mm
FSW tool
Wiper tool (tool steel)
Flat shoulder profile (WC tool with coating)
Impossible to weld
1 second dwell
time
Very difficult
6111-T4/DX54Z
Zinc Coated Steels: Weld Envelope
Aluminium
Steel
Defect free
BUT
Plunge rate 10 mm/min - retraction rate 5 mm/min
Defects
Shear Cracks
Disc pull out
Page 26
7501000
12501500
17502000-0.2
-0.3
-0.4
-0.5
-0.61.5
2.0
2.5
3.0
3.5
Plunging depth, mm
Rotation speed, rpm
Failure load, kN
Aluminium to Zinc coated steel
Max Failure load 90% Al-Al
Failure energy 75% Al-Al
But too slow!
Total weld time > 6 seconds
Al Fe
Plunge
1 sec
Withdraw
Welding cycle
Lap Shear Test Failure Loads
6111-T4/DX54Z
plunge rate 10 mm/min - retraction rate 5 mm/min
1 Sec dwell time
Page 27
6111-T4/DX54Z
6111-T4/DC04
1 sec,
1600 rpm
Effect of Zinc on flow Behaviour
Un-coated
Stick condition
Al
Steel
1600 rpm,-0.1mm,1s
1600 rpm,-0.3mm,1s
Al
Steel
Zn Coated
Slip condition
6111-T4/DX54Z
800 rpm ,-0.5mm, 1s
1600 rpm ,-0.5mm, 1s
Page 28
0
100
200
300
400
500
0 10 20 30
Tem
pe
ratu
re (C
)
Time (sec.)
Peak Interface Temperatures
Al-Zn eutectic 381 °C
Weld Temperatures
2000 rpm ,-0.5mm, 1s
Centre = 406 °C
r/2 = 395 °C
Page 29
Dispersion of Zn Coat
Zinc detected
Al-Zn eutectic
“Friction brazing”?
Page 30
Fe
Al
IMC Reaction Layer
Fe2Al5-xZnx
Fe
Al
Fe2Al5-xZnx
200 nm
50 nm Fe2Al5-xZnx ~ 80 nm
Little change from Zn bath
Hot Dipped Zinc (DX56-Z )
Fe2Al5-xZnx
η(Zn-Fe)
5 µm
Page 31
Abrasion Circle FSSW
ABC-FSSW
Pin abrades bottom sheet
Page 32
Start
End
WC probes Tool steel
shoulder
10 mm Tool diameter 10 mm
Probe diameter 5 mm
Full width 15 mm
Pin trace area ~8 mm
Abrasion Circle” FSSW
Page 33
5754H24
18.2s 3.64s 1.82s
60mm/min 300mm/min 600mm/min Travel speed
Rotation rate
1.1s 0.73s 0.55s 1.82s
1.1s 0.73s 0.55s 1.82s Travel speed
Rotation rate
2 mm
thick
1 mm 6111T4
to DC04 steel
800 rpm
Abrasion Circle” FSSW
Page 34
0123456789
10
0 500 1000 1500 2000
Failu
re E
ner
gy (
kN.m
m)
Travel Speed (mm/min.)
6111T4 to DC04 steel
0
1
2
3
4
5
0 500 1000 1500 2000
Failu
re L
oa
d (
kN)
Travel Speed (mm/min.)
2000 mm/min 300 mm/min 60 mm/min
Fe
Al
“Dwell Time”
800 rpm
3.6 1.8 1.1 0.7 0.6 sec. “Dwell Time”
3.6 1.8 1.1 0.7 0.6 sec.
For 1 sec. Dwell Time
Max Failure load 100% Al-Al
Failure energy ~100% Al-Al
Failure Load Failure Energy
Abrasion Circle” FSSW
1 sec
Page 35
Failure Comparison
FSSW Pinless tool
Optimised 1 Sec Dwell FSAW Circle Weld
1 Sec Dwell
Al-Steel
Page 36
Interface Layer
Al Deformed
grains
Fe
parent
grains
interface
Fe
Fe 200 nm
200 nm
60mm/min
Fe
Al
Page 37
USW Al to Steel Automotive Sheet
Page 38
Al- Uncoated Steel
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0 1000 2000 3000 4000 5000
Energy (J)
Lo
ad
(k
N)
1.4 kN
1.9 kN
10 um 10 um 10 um
2.4 kJ
3 Seconds
6111 - DC04
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
0 0.5 1 1.5 2 2.5 3 3.5 4
Time (Sec)
Lo
ad
(k
N)
1.4 kN
1.9 kN
Fracture Path
IMC
Page 39
Modelling Interfacial Reaction
in Dissimilar Welds
1 um 3 Seconds
Al5Fe2
AlFe
AlFe3
Al
Fe
Al -Steel
Page 40
‘Simple’ Predictions of IMC Layer Thickness
Al - Steel AA6111- DC04
Parabolic growth law d =C1 exp (-Q/RT) t1/2
500 C
10 µm 4 Hours 1 Hour 0.5 Sec
0 1 2 3 4 5 60
10
20
30
40
Expt.
Fit
d (
m)
t (hrs)1/2
k = 0.0397 m s-1/2 a
1.0 1.2 1.4 1.6 1.8-12
-10
-8
-6
-4
-2
0 Q = 117 KJ / mole
Expt.
Fit
ln (
k)
m s
-1/2
1000 / T(K)
b
500 C
Static Isothermal Kinetic data
Page 41
Predictions of IMC Layer Thickness
450 C
Peak Temperature
500 C
400 C
6111 - Formable Steel DC04
500 C
450 C
400 C
Peak Temperature
IMC Layer thickness very
sensitive to peak temperature
Application to FSSW
Page 42
0
20
40
60
80
100
120
140
160
180
200
0 1 2 3 4 5 6
IMC
Lay
er T
hic
knes
s (n
m)
Radial Distance From Center (mm)
500 nm
Dwell time
Predicted Max. Interface Temp.
Predicted Layer Thickness
Flat tool 3 sec.
Flat tool 1 sec.
2 sec 5 sec 1 sec
Inte
rfac
e Te
mp
erat
ure
C
300
320
340
360
380
400
420
440
460
480
500
-6 -4 -2 0 2 4 6
Peak T
emp.
at Int
erface
(C)
Radial Distance from Centre (mm)
340
360
380
400
420
440
460
480
500
Radial Distance from Centre (mm) 0 2 4 6
1 sec.
2 sec.
3 sec.
Application to FSSW
Page 43
Advanced Model - IMC Layer growth
Al – Mg AA6111 –AZ31
Al-Mg
Mg-Mg
Al-Al
Application to Ultrasonic Spot Welding
2 mm
2 mm
Al Mg
Mg Mg
Page 44
Al- Mg IMC Layer growth
5µm
5µm
5µm
5µm
10µm
10µm
10µm
10µm
Al
Mg
Al
M
g IMC
Al
Mg
Al12Mg17
Al3Mg2
0.3 s
0.5 s
0.7 s
1.0 s.
Welding
time
Page 45
Advanced Model - IMC Layer Growth
Weld first forms
at asperities
Nucleation of of
first IMC island
Interface diffusion
controlled growth
1D diffusion
controlled growth
Al
Mg
Al
Fe
Inter diffusion
occurs
10µm
Al
Mg
Al12Mg17
Al3Mg2
Page 46
mic
ron
Advanced Model – Example Predictions
Temperature in
weld cycle
Predicted vs
measured
layer thickness
Layer growth
in weld cycle
Page 47
Preventing IMC Reaction in Dissimilar Welds
• Coatings
- Separate weld from dissimilar joint
- Diffusion Barrier coatings
• Inhibitors
Process
• Control of heat input
• Avoid liquid phase
Metallurgical
Page 48
Mg Al
Coating
50µm
Cold Spray Al
Mg
Y-C Chen; Beijing Aeronatical
Joint failure energy
E.G. Cold Spray Coatings in Al-Mg USWs
Thick Al- Pre Coating- Separate Weld from Dissimilar Joint
Page 49
Mg Al
Coating
50µm
Cold Spray Al
Mg 10µm
Thick Al- Pre Coating- Separate Weld from Dissimilar Joint
10µm 10µm
Coated Un-coated
Effect on Joint failure energy
E.G. Cold Spray Coatings in Al-Mg USWs
Page 50
Thin Barrier Coating
2µm Mg
John Nicholls - Cranfield
PVD Mn coating ~ 0.9µm
Effect on Joint failure energy
Fa
ilure
En
erg
y k
N.m
m
Al Mg
Al
Mg
USW – 0.4 Sec
Mn Coatings in Al-Mg USWs
Page 51
USW – 0.4 Sec
Effect on Joint failure energy
Fa
ilure
En
erg
y k
N.m
m
Thin Barrier Coating
Mn Coatings in Al-Mg USWs
2µm Mg
John Nicholls - Cranfield
PVD Mn coating ~ 0.9µm
USW – 0.4 Sec
Page 52
2µm
PVD Mn coating ~ 0.9µm
Mg
10µm Al
Mg
10µm Al
Mg
USW – 0.4 Sec
Uncoated Coated
Al
Mg
5 µm
Break up
Effect on Joint failure energy
Fa
ilure
En
erg
y k
N.m
m
John Nicholls - Cranfield
Thin Barrier Coating
Mn Coatings in Al-Mg USWs
Page 53
1.5 sec weld time
1 µm 1 µm
3 sec weld time
Fe2Al5-xZnx Passivated steel
1 µm 1 µm
Uncoated Steel
1.5 sec weld time 3 sec weld time
Al-Steel USWs
Inhibition of IMC Reaction
Page 54
Can You Fix Interfacial Reaction in Fusion Welding??
Ranfeng Qiua, et al.
Mat. Sci Charact. 2010
P. Peyre et al. / Materials Science
and Engineering A 444 (2007)
327–338
Laser welding RSW welding
10 µm
Page 55
e.g Out bursts occur by
diffusion through
passivation layer on
grain boundaries.
Potential for Improving Passivation Layers on Zn
Coated Steel for Fusion Welding to Aluminium
Doping of Zn bath with rare earth mischmetal is known to inhibit
outbursts and reaction between Fe and liquid Zn.
e.g. Galfan coated Steel
0.03–0.10 % Cerium + lanthanum
Page 56
Summary
The thickness of the intermeteallic reaction layer is a key issue in
dissimilar metal welding even with solid state processes.
=> Poor joint failure energies
The reaction layer thickness can be reliably predicted with kinetic
models.
Novel friction welding techniques can be used to successfully weld Al
and dissimilar metal combinations with very high energy efficiency.
Rapid fusion processes, with careful thermal management, are viable.
There is potential to use pre-coatings and tailor galvanising on steel to
inhibit reaction - allowing more flexible fusion welding.
LIGHT ALLOYS TOWARDS ENVIRNMENTALLY
SUSTAINABLE TRANSPORT