Top Banner
ME 3250 Fluid Dynamics I Spring 2014 Prof. Mike Renfro AUST 110 TuTh 2:00-3:15 PM
410

ME 3250 - Lectures

Aug 07, 2018

Download

Documents

hotbox32
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 1/409

ME 3250Fluid Dynamics I

Spring 2014

Prof. Mike Renfro

AUST 110

TuTh 2:00-3:15 PM

Page 2: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 2/409

Handouts

Course Policy

Syllabus

Academic Conduct –  fill out and return News article –  Mars Orbiter

Page 3: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 3/409

Course Information (1)

Text: Munson, B.R., Rothmayer, A.P., Okiishi,

T.H., and Huebsch, W.W.,  Fundamentals of

 Fluid Mechanics, 7th edition, Wiley (2013).

Office: UTEB 472

Phone: 486-2239

E-mail: [email protected] Office Hours: M 10-11, Tu 10-11, Th 3:30-

4:30 (or by appointment)

Page 4: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 4/409

Course Information (2)

HuskyCT Site

Updated homework assignments, announcements

Link to publisher website –  videos, sample quizzes

Lecture notes

Old test solutions

Grades

Pre-req: ME 2233 (Thermo I) and its pre-reqs

(calculus, physics, etc.)

Pre-req quiz (5%) on Tu 1/28, 30 minutes in class

Page 5: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 5/409

Grade Distribution (1)

Homework (10%)

2-3 problems assigned each lecture due followingThursday

2-3 problems graded per set –  all must be turned infor full credit

 No late homework accepted –  due at start of class

Format/units (see Mars Lander handout)

Page 6: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 6/409

Grade Distribution (2)

i>clicker 2 questions (15%)

3-4 clicker questions each class will be used to:

Review material from previous lecture

Test new material presented during lecture See if concepts need additional attention

Grading for clicker questions is ½ credit foranswering + ½ credit for answering correctly

You may usually talk through your answers withother students unless I specifically say otherwise

Page 7: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 7/409

Attendance

Page 8: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 8/409

 

Page 9: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 9/409

Grade Distribution (3)

Exams (35%)

Exam 1 –  Tu March 4

Exam 2 –  Tu April 22

1 crib sheet can be brought to each exam

Final Exam (25%)

Tu May 6, 1-3pm (tentative)

Comprehensive

2 crib sheets can be brought to exam

Page 10: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 10/409

Grade Distribution (4)

FLUENT Projects (10%)

One or two projects using FLUENT software

2nd floor ME computer lab in E-II

Project includes brief 1 page report and data

analysis

Final grades are relative to class performance

Page 11: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 11/409

Academic Honesty

Anything you turn in for a grade must be

entirely your own work

Cheating includes obvious copying of exams

or homework but also listing the books or a

friends answer or working backwards from this

answer

As long as you turn in your own work, I

encourage working with others on homework

Page 12: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 12/409

Intro to Fluid Dynamics (1)

What is a fluid? (Chap. 1)

When a small force is applied to a solid, the solid

“strains” (displacement) until the “stresses” in the

solid balance the force –  at equilibrium a solid is atrest and if the force is removed the solid recovers

stress

F

strain

Page 13: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 13/409

Intro to Fluid Dynamics (2)

When a force is applied to a fluid (liquid or gas),

the stresses lead to continuous straining (a rate of

strain) via fluid motion (velocity) –  at equilibrium

a fluid flows Fluids flow even for infinitesimally small stresses

Page 14: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 14/409

Intro to Fluid Dynamics (3)

Fluid Statics = A study of forces caused by

stationary fluids

Fluid Dynamics = A study of fluid (gas or

liquid) motion due to applied forces

Fluid Mechanics = A study of forces caused byfluid motion

These are often used synonymously

Page 15: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 15/409

Applications of Fluid Mechanics (1)

Study the behavior of fluids at rest

Fluid statics analysis (Chap. 2)

Page 16: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 16/409

Applications of Fluid Mechanics (2)

Study the forces that fluids impart on systems

Study the global behavior of fluid in a system

Integral (control volume) analysis (Chap. 5)

Page 17: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 17/409

Applications of Fluid Mechanics (3)

Study the local behavior of fluid flow

Differential analysis (Chap. 6)

Page 18: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 18/409

Properties of Fluids (1)

Pressure

Density

Ideal gas

Most liquids

33

1

 f t 

lbm

m

kg 

vV 

m

  

  ][)(22

  atm psiinlbf   Paor 

m N 

 A F  p

 RT 

 p RT  p        

const   

Page 19: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 19/409

Properties of Fluids (2)

Specific weight

Specific gravity

33  ft 

lbf  

m

 N  g   g 

water 

SG    

Page 20: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 20/409

Viscosity (1)

You should be familiar with concepts of

density, temperature, pressure, and velocity

Viscosity is one of the most important

 properties (with density) that make fluids

 behave differently

Viscosity –  Movie 

Viscosity of the oil is 104 larger than water –  

same density

Page 21: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 21/409

Viscosity (2)

What is viscosity?

All fluids strain when a stress is applied

The viscosity, m, is the stress, , required to

achieve a given rate of strain,(we will discuss fluid strain and stress

more in Chap. 6)

dy

du

t t 

 

 g 

    0lim

Page 22: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 22/409

Viscosity (3) –  Newtonian Fluids A velocity gradient is a rate

of shearing strain

As the stress increases (by pulling the upper platefaster), the shearing strainincreases (the fluid flows

with a steeper velocitygradient)

 Newtonian fluids have alinear relationship between  and strain rate (du/dy)

This linear coefficient is theviscosity, m 

dy

dum   

Page 23: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 23/409

 

Page 24: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 24/409

Viscosity (4) –  Non-Newtonian

Fluids

 Non-Newtonian fluidsdo not have a linearrelationship betweenstress and strain rate

 Non-Newtonian Movie  Corn starch forms a

shear thickening fluid –  viscosity is larger for

high shearing strain In this course we will

deal with mostly Newtonian fluids

Page 25: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 25/409

Viscosity (5) - Units

Rate of shearing strain

Stress is a force per unit area

Viscosity

Also called dynamic viscosity

Kinematic viscosity

(other units exist for viscosity –  be careful with

unit conversions)

][   1   sdy

dug 

22

in

lbf  or 

m

 N  

 

 

22in

 slbf  or 

m

 s N m 

 s

 ft or 

 s

m   22

  

m  

Page 26: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 26/409

Viscosity (6) –  Temperature Effects

Viscosity stronglydepends on T

For liquids viscosity

decreases with T (effectsof molecular interactionsdecrease)

For gases viscosity

increases with T (effectsof molecular collisionsincrease)

Page 27: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 27/409

Viscosity (7) –  Walls and No-slip

At walls, viscosity causes the fluid to stick to

the wall  the wall and fluid have the same

velocity (otherwise there would be infinite

strain and stress)

This is called the “No-slip condition” (movie)

Page 28: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 28/409

 

Page 29: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 29/409

 

30 minutes

Pre-req Quiz

Page 30: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 30/409

Additional Fluid Properties (1)

Bulk modulus

If p is increased, how much does  decrease (as a percentage)?

since

Ev is the “Bulk Modulus” with [N/m2]

Change in pressure required for a given percentage change in density or volume

    

d dp

d dp E v  

/

  m

Page 31: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 31/409

Bulk Modulus

For ideal gases undergoing an isothermal

 process

Thus, bulk modulus for air is of the order 105

  N/m2 

For liquid water Ev=2x109 N/m2 

C  RT  p        

  Cd dp 

 pC d 

Cd  E v      

  

    

Page 32: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 32/409

Additional Fluid Properties (2)

Liquid Surfaces Gases characterized by weak intermolecular forces

(flying through space unaffected by neighbors)

Liquids characterized by significant intermolecularforces

In liquid neighboring molecules pull

equally in all directions

At surface, net force is down(balanced by pressure)

Surface also stretches molecules

(surface tension)

Page 33: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 33/409

Surface Tension (1)

Droplet Formation

Liquids in free space form spherical drops due to

surface tension

Surface tension is property of fluid,  [N/m] =

force per unit length of surface

Page 34: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 34/409

Surface Tension (2)

Pressure in a drop

Balance of forces on cross

section of drop

  22   R p A p p R L ambdrop         

 R p

   2

Page 35: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 35/409

 

Page 36: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 36/409

Surface Tension (3)

Bending of surface around an object provides

tension that must be “broken” 

Surface acts like membrane

Movie 

Page 37: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 37/409

Surface Tension (4)

At solid surface, attractive force between the

solid and liquid molecules can be large enough

to overcome surface tension –  the solid surface

“wets” (fig A) 

Or, too weak and the surface does not wet (fig

c)

Page 38: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 38/409

Surface Wetting

Wetting pulls liquid up small capillary tubes

Angle of liquid surface causes net upward

force to balance weight of liquid

   g      cos22  Rh R g mg   

  

 Rh

  cos2

Page 39: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 39/409

 

Page 40: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 40/409

Additional Fluid Properties (3)

Vapor Pressure

“Fast” molecules from liquidwith sufficient velocity toescape surface evaporate

“Slow” molecules from gasare captured by surface forcesand condense

Equilibrium occurs whensufficient vapor exists(evaporation=condensation)

This equilibrium pressure is“Vapor pressure”, pv 

Page 41: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 41/409

Vapor Pressure

Vapor pressure, pv [N/m2] or [atm] is a

 property of a liquid and is strongly T

dependent

At boiling T, vapor pressure = 1 atm

Page 42: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 42/409

Fluid Statics

If fluid has no velocity (left), or is movingtogether as a system (right) then there is nostraining motion

Each fluid element moves rigidly with itsneighbor

 No shear force on fluid00      m  

dy

duand 

dy

du

Page 43: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 43/409

Balance of Forces (1)

If there is no shear force, only forces on fluid

element are pressure and weight

Can balance forces on any control volume

(fluid element) using Newton’s Second Law

(F=ma)

Wedge chosen

as an example

Page 44: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 44/409

Balance of Forces (2)

Consider case where acceleration is zero

Regardless of angle, pressure acts equally in all directions,even with acceleration (see further analysis on text p. 39)

However, pressure can vary from point to point

 s x p z  x p

ma F 

 s y

 y y

       sin0

0

 z  s         sin

 s y

 s y

 p p

 z  x p z  x p

      0

Page 45: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 45/409

Variation of pressure in a fluid (1)  Now consider a finite sized

cubic fluid element with

 pressure variations

 y

 y

 y y

 y

a y

 p

 z  y xa z  y x y

 p

 z  y xama

 z  x y y p p z  x y

 y p p F 

  

        

     

      

  

  

  

  

22

 xa x

 p  

Page 46: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 46/409

Variation of pressure in a fluid (2) In z-direction, gravity also acts

on fluid element

 g a z 

 p

 z  y x g a z  y x z 

 p

mamg  y x

 z 

 z 

 p

 p y x

 z 

 z 

 p

 p F 

 z 

 z 

 z 

 

 

 

 

 

 

 

 

  

        

  

 

  

 

22

Page 47: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 47/409

Variation of pressure in a fluid (3)

 g a z 

 pa

 y

 pa

 x

 p z  y x  

          ,,

k  z  p j

 y pi

 x p p   ˆˆˆ

k a jaiaa  z  y xˆˆˆ  

 g a p        

Page 48: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 48/409

Fluids at Rest (1)

If a=0

For an

incompressible fluid(density=constant)

g   

  

 g  z  p

 y

 p

 x

 p

 g  p

0

h p

 z  z  g  p p

 gdz dp

 B A B A

  

  

Page 49: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 49/409

 

Page 50: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 50/409

 

Page 51: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 51/409

Fluids at Rest (2)

For a compressible fluid

(e.g., ideal gas)

If T, R, and g areconstant with height then

dz  RT 

 g 

 p

dp

 RT 

 pg  g 

dz 

dp

 RT  p

  

  

)0(

exp

ln

 pC where

 RT 

 gz C  p

 RT 

 gz  p

Page 52: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 52/409

Standard Atmosphere

Considerable variations in atmospheric

 properties with height

Page 53: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 53/409

Pressure Measurements

Barometers measure

atmospheric pressure

through balance of

 pressure and liquidmercury weight

vapatm   ph p   g 

0105.1000023.0   6

,     atm psi p  Hg vap

 Hg mmatm   7601  

Page 54: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 54/409

Manometers (1)

Manometers use fluid

statics to measure

relative pressure

 between two points Balance of forces

If fluid A is a gas, then

 pressure rise at h1 is

negligible (gA<<g2) 

22321   h p p ph p atm A A   g g   

22h p p atm A   g 

Page 55: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 55/409

 

Page 56: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 56/409

Gage Pressure

Manometers do not determine absolute pressure (since patm is not measured)

Gage pressure is pressure relative to

atmospheric Gage pressure can be negative for absolute

 pressures below atmospheric

Usually, if no information is given on a pressure it is assumed to be a gage pressure

 g atm A   p p ph   g 

Page 57: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 57/409

Manometers (2)

Inclined manometers increase the sensitivity of

the measurement

 g    sin2221   l  p p  

Page 58: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 58/409

 

Page 59: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 59/409

 

Page 60: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 60/409

 

Page 61: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 61/409

Bourdon Pressure Gages

Metal tube straightens as pressure increases movingneedle

Set to zero for atmospheric pressure  Gage pressuremeasurement

Most common pressure sensor

Page 62: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 62/409

Forces on Surfaces (1)

For fluids in motion both pressure and shear

forces act on surfaces

For static fluids (including systems in motion

as a whole) there is no shear force

Page 63: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 63/409

Forces on Surfaces (2)

 Net force is for isobaric

surfaces (normal to gravity, horizontal)

Atmospheric pressure cancels since acting on

 both sides of surface (usually)

Gage pressure

 ghA pA F     

Page 64: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 64/409

Inclined Surfaces (1)

For an inclined surface, the pressure varies

across the surface

Defining

 pdA F   

    hdA pdA F  R   g 

 sin yh

    ydAdA y F  R    g  g    sinsin

Page 65: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 65/409

Area Centroid

Integral is area’s “Centroid” 

Thus, inclined surfaces can be treated as flat if

area centroid location is known The resulting force acts through another point,

yR

 A y ydA c

 Ah Ay F  cc R   g  g      sin

Inclined Surfaces (2)

Page 66: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 66/409

Inclined Surfaces (2)

For moment of

resulting forceto act like actual

distributed force

    dA y pydA y F   R R    g    sin2

 g    sinc R   Ay F  

 A y

 I 

 A y

dA y y

c

 x

c

 R     2

Page 67: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 67/409

Tabulated Moments of Inertia

See p. 59-60for

transformations

to use tabulated

Ixy data

Page 68: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 68/409

Example: Plane surface (wall)

Centroid is located at h/2

Thus, force is

Force actsthrough 2/3 point

2/hA F  R   g 

hhhhbh

bdy y A ydA y y

h

c

 R32

32

))(2/(

3

20

22

 

Page 69: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 69/409

 

Page 70: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 70/409

 

Page 71: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 71/409

Example: Curved surface

Direct integration difficult for arbitrary surface

Free body diagram used to compute resultant

force

F1 is gh acting through center of surface AB

F2 acts through 2/3 point of surface AC

Page 72: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 72/409

 

Buoyancy (1)

Page 73: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 73/409

Buoyancy (1) . Submerged surfaces are subject to

an upward force due to higher pressure at greater depth

Force balance on only fluid in

ABCD

Buoyancy force only depends on

volume (Movie)

 AB

 Ah F 11

  g   CD

 Ah F 22

  g 

g g g 

 B

obj B

 fluid  B

 F 

 Ahh Ah F  Ah

W  F  F  F 

1212

12

Page 74: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 74/409

Buoyancy (2)

Since buoyancy only depends on volume and

not density of the object, its force acts through

the centroid of the object (see p. 70 for formal

 proof) However, the weight of the object acts through

the center of mass which is different from the

centroid if the object is not homogeneous

Page 75: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 75/409

Stability

If center of mass is below centroid, object will be stable

If center of mass is above centroid, object will be unstable

Page 76: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 76/409

 

Page 77: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 77/409

Rigid body rotation (1)

Last time we derived for accelerating systems

For a rotating system

 g a p        

 g a z  z 

 p p

r r 

 p p       

 

  ˆ

ˆ1

ˆ

r r a   ˆ2 

2   r r 

 p

 g 

 z 

 p  

dz dr r dp   g         2

Page 78: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 78/409

Rigid body rotation (2)

Along an isobar dp=0 dz dr r dp   g         2

 g 

dr 

dz    2 

c g 

r  z   

2

22 

Page 79: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 79/409

 

Page 80: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 80/409

 

Page 81: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 81/409

 

Fl Vi li i (1)

Page 82: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 82/409

Flow Visualization (1)

Dye injectionin liquid can be used to“see” flow –  dye followsthe flow

Photographsshow streaksrepresenting

 path of fluid particles

Fl Vi li i (2)

Page 83: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 83/409

Flow Visualization (2)

Streaklines, Pathlines, and Streamlines

Streaklines = instantaneous location of fluid

 particles that once passed through a specified point

inject dye continuously at fixed points and take snapshotat later time

Pathlines = path that particles follow

inject dye briefly at fixed points and take time-lapsed

 photo for a period of time

Movie –  differences in pathlines and streaklines

St li

Page 84: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 84/409

Streamlines

Streamlines = lines in the flow that are locally

tangent to the velocity of the fluid

St li (2)

Page 85: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 85/409

Streamline (2)

Streamlinesdetermined bymeasuringinstantaneousvelocity and

integrating tofind tangent lines

Harder tomeasure than

streaklines Most useful to

mathematicallydescribe flow

St li (3)

Page 86: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 86/409

Streamlines (3)

For steady flows –  pathlines, streaklines, andstreamlines are identical - Movie 

I i id Fl (1)

Page 87: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 87/409

Inviscid Flow (1)

In real fluids, if there is fluid motion with non-

uniform velocity then there will be strain and

shear forces

However, it is often true that these shear forcesare much smaller than forces due to pressure

gradients or gravity

In these cases the fluid is assumed to beinviscid (m=0)

I i id Fl (2)

Page 88: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 88/409

Inviscid Flow (2)

Inviscid flows are not strongly affected by drag atsurfaces and can flow around sharp corners

Viscid flows are slowed by drag at the surface much

more strongly

I i id Fl (3)

Page 89: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 89/409

Inviscid Flow (3)

Changes in overallvelocity or geometryof a problem canchange the

importance ofviscous forces

Some regions of a

flow may be inviscidwhile others showstrong viscouseffects

St li A l i

Page 90: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 90/409

Streamline Analysis

Fluid particlessubject to

Since streamline is

tangent to V

am F  

n sV V    ˆ0ˆ

dt 

ds

 s

dt 

dn

n

 sanadt 

V d a  sn

  ˆˆ

2V an

  V  s

V a s

F Al St li (1)

Page 91: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 91/409

F=ma Along Streamline (1)

 Note: we are applying F=ma to a fluid particle –  the fluid particle follows a

 pathline but we are using derivatives along the streamline to represent the

fluid acceleration  the flow must be steady

Force due to gravity along streamline is

      s

V V am F   s s

           sinsin,

  g mg  F  g 

 s

F Al St li (2)

Page 92: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 92/409

F=ma Along Streamline (2)

Force due to pressure:

2

 s

 s

 p p p p  s

  

2

 s

 s

 p p p p  s

  

2

 s

 s

 p p s

  

    

       

 s

 p yn p

 yn p p yn p p F 

 s

 s s p s

2

)()(,

F Al St li (3)

Page 93: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 93/409

F=ma Along Streamline (3)

 Net Force = ma

 Note: we have not included shear forces –  we are assuming the flow is

inviscid (pressure forces are more important than viscous forces)

In static fluids the pressure gradient was balanced by gravity

In moving fluids, any imbalance in pressure and gravity (LHS) causes fluid particle acceleration (RHS)

           

 s

V V 

 s

 p g  F    sin

 s

V V 

 s

 p g 

        sin

F ma Along Streamline (4)

Page 94: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 94/409

F=ma Along Streamline (4)

Along streamline

Since along a streamline dn=0, for any derivative

 partial and ordinary derivates in s are the same

(Note: analysis is limited to along a streamline)

Finally,

 s

V V 

 s

 p g 

        sin

 s

 z 

 sin

0

 s z  g 

 sV V 

 s p     

ds s

 pdn

n

 pds

 s

 pdp

 s

 s

V V 

  2

2

    

F ma Along Streamline (5)

Page 95: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 95/409

F=ma Along Streamline (5)

Integrating along a streamline

If we assume fluid is incompressible (negligible density change)

02

2

ds

dz  g 

ds

dV 

ds

dp  

  

02

1   2   gdz dV dp

  

.2

1   2 Const  gdz dV dp

   

.2

1   2 Const  gz V dp

   

.2

1   2 Const  gz V  p        

Bernoulli Equation

Page 96: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 96/409

Bernoulli Equation

Can only be applied to

Steady flow

Inviscid flow

Incompressible flow

Flow along a streamline

.21   2 Const  gz V  p        

Page 97: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 97/409

 

Stagnation Flow

Page 98: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 98/409

Stagnation Flow

Stagnation point occurswhere flow is diverted around

two sides of an object

Dividing streamline includesstagnation point

Movie 

Flow decelerates toward

stagnation point (higher pressure)

Page 99: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 99/409

 

Pressure Along Dividing Streamline

Page 100: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 100/409

Pressure Along Dividing Streamline

F=ma Normal to Streamline (1)

Page 101: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 101/409

F=ma Normal to Streamline (1)

Force due to gravity across streamline is

Force due to pressure

           coscos,   g mg  F   g n

     

2V am F  nn

    

       

n

 p

 y s p

 y s p p y s p p F 

n

nn pn

2

)()(,

2

n

n

 p pn

  

F=ma Normal to Streamline (2)

Page 102: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 102/409

F=ma Normal to Streamline (2)

Across streamline

Since normal to streamline ds=0, for any derivative

 partial and ordinary derivates in n are the same

(Note: analysis is limited to normal to a streamline)

n

 z 

 cos

dnn

 p

dnn

 p

ds s

 p

dp

2

cos  V 

n

 p g        

02

n z  g V 

n p     

02

  gdz dnV 

dp      

F=ma Normal to Streamline (3)

Page 103: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 103/409

F=ma Normal to Streamline (3)

Integrating normal to streamline

If we assume fluid is incompressible

.

2

Const  gz dn

 p        

0

2

  gdz dnV 

dp      

.2

Const  gdz dnV dp

   

Steady Inviscid Incompressible Flow

Page 104: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 104/409

Steady, Inviscid, Incompressible Flow

Along streamline:

Across streamline:

Pressure changes along streamline accelerates fluid

 particles Pressure changes normal to streamline turns fluid

 particles (changes streamline direction)

.

2

Const  gz dnV 

 p        

.21   2 Const  gz V  p        

Page 105: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 105/409

 

Page 106: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 106/409

 

Movie 

Bernoulli Equation –  

Page 107: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 107/409

Meaning of Terms

Along the streamline:

Static pressure dynamic pressure hydrostatic pressure total pressure

Each term has units of pressure (N/m2)

Static pressure = actual local pressure in the flow (thermodynamic pressure)

Dynamic pressure = pressure change due to velocity

Hydrostatic pressure = pressure change due to height

Total pressure = sum of all parts = constant

The Bernoulli Equation conserves pressure –  pressure is only converted from one

type to another (Static/Dynamic/Hydrostatic)

T  pConst  gz V  p     .2

1   2     

Bernoulli Equation

Page 108: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 108/409

Bernoulli Equation

Dividing by specific weight:

Pressure head velocity head elevation head total head

Each term has units of height (m)

Instead if we multiply by specific volume:

Elevation head is equivalent to potential energy per unit mass

Velocity head is equivalent to kinetic energy per unit mass

Pressure head is equivalent to flow work (pv) per unit mass

The Bernoulli Equation is a form of energy conservation (with no thermal orviscous losses or work or heat additions)

 H  z  g 

V  p

2

2

.2

2

Const  gz V 

 pv  

Example – Stagnation Streamline

Page 109: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 109/409

Example –  Stagnation Streamline

Free stream: high velocity (high dynamic pressure),low static pressure

Stagnation point: zero dynamic pressure, high static pressure

E.g., sticking your hand out the window of a movingcar

Stagnation Pressure

Page 110: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 110/409

Stagnation Pressure

Stagnation pressure = pressure that will beachieved if a fluid is brought to rest

 Neglecting hydrostatic pressure, stagnation

 pressure is simply static + dynamic pressure

2

22

2

1

2

1.

2

1

V  p p

V  pConst V  p

 stag 

 stag  stag 

  

    

Measuring Static/Stagnation Pressure

Page 111: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 111/409

Measuring Static/Stagnation Pressure

A side wall tap measures thestatic pressure by convertingstatic pressure tohydrodynamic pressure(pressure head) –  dynamic

 pressure at point 3 is zero (noslip)

Tap facing into flow convertsstatic and dynamic pressureto hydrostatic pressure -dynamic pressure at point 2 is

 NOT zero

Pitot-static Tube

Page 112: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 112/409

Pitot static Tube

Two concentrictubes –  one with a

forward facing tap

and the other with aside tap

43

4

2

3

2

2

1

 p pV 

 p p

V  p p

  

  

Page 113: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 113/409

 

Page 114: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 114/409

Why does the pressure drop between 2 and 1?

Hydraulic grade line

Page 115: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 115/409

Hydraulic grade line

Energy line istotal head offluid(measured by

 pitot tube)

Hydraulicgrade line is

 pressure andelevation

head only(measured bystatic tube)

Why does HGL decrease in this system?

Page 116: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 116/409

 

“Modified” Bernoulli Equation

Page 117: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 117/409

Modified Bernoulli Equation 

Bernoulli equation can only be used for steady,inviscid, incompressible flow

“Modified” forms of equation can be used

carefully for special cases of compressible,viscous, or unsteady flows

E.g., unsteady Bernoulli’s (see Sect. 3.8) 

2

2

22

1

2

1

2

112

1

2

1 gz V  pds

V  gz V  p

 s

 s

          

Application of Bernoulli Equation

Page 118: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 118/409

Application of Bernoulli Equation

Free Jets

Confined Flows

Venturi and orifice flowmeters

Sluice gates

Free Jets

Page 119: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 119/409

Free Jets

If streamlines are straight at jet exit (free jet,

R=∞) then no pressure gradient across jet,

 p2=p1  V1=0

2

2

221

2

112

1

2

1

 gz V  p gz V  p            

)(2 212   z  z  g V   

 ghV    22  

Page 120: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 120/409

 

Vena Contracta (1)

Page 121: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 121/409

Vena Contracta (1)

If a jet exit is too sharp,the streamlines cannotturn and flow is smallerthan hole diameter

90° turn would require

infinite pressure gradient At a-a, pressure is

atmospheric across jet(straight streamlines)

 p2>p1 to cause streamline

curvature Contraction coefficient =

A j/Ah 

Vena Contracta (2)

Page 122: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 122/409

Vena Contracta (2)

Page 123: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 123/409

 

Confined Flows

Page 124: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 124/409

Co ed ows

If a flow is completely enclosed, then no pointmust be at atmospheric pressure (or zero

velocity) –  less information known

Must generally use VAQVAmassflow

  

Repeat for static taps on

Page 125: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 125/409

Repeat for static taps on

 both ends of the manometer

Cavitation

Page 126: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 126/409

High velocity causesa locally low pressure

If static pressuredrops below vapor

 pressure of liquid –   boiling occurs

This “cavitation”leads to gas bubbles

flowing in liquiduntil pressureincreases

Page 127: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 127/409

 

Orifice and Venturi Meters

Page 128: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 128/409

Restriction in flow byorifice or Venturi tube

(specially shaped nozzle)

causes increase invelocity and decrease in

 pressure

For horizontal flow:222

2

112

1

2

1V  pV  p        

2211   AV  AV Q  

Flow Meters

Page 129: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 129/409

Flow rate is directly related to static pressure

drop across orifice and known geometry

In practice, these must be calibrated to account

for non-uniform flow, viscous effects, etc.

 

 

 

 

 

 

 

 

  

  

 

 

 

 

  

  

  

  

2

1

2

212

2

1

2

2

2

22

1

2

2

21

1

2

122

1)(

 A

 A

 p p AQ

 A A

 AQ

 AQ

 AQ p p

  

    

Page 130: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 130/409

 

Page 131: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 131/409

 

Page 132: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 132/409

 

Sluice Gates

Page 133: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 133/409

2

2

221

2

11

2

1

2

1 gz V  p gz V  p               2211   AV  AV Q  

2

221

2

12

1)(

2

1V  z  z  g V           

2

12

21

2

2

1

222

2

2

21

2

1

2

2

21

1

)(2

1)(2

2

1)(

 z  z 

 z  z  g bz Q

 z 

 z Q z b z  z  g 

bz 

Q

bz 

Q z  z  g 

 

  

 

 

 

 

 

 

 

 

       

12   2 gz bz Q If z1>>z2

Page 134: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 134/409

 

***ADD**

Page 135: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 135/409

Add physical interpretation of acrossstreamline equation and a couple of examples

E.g. Pressure in a vortex

Chapter 4 - Fluid Kinematics

Page 136: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 136/409

p

Fluid kinematics = study of fluid motionwithout concern for forces driving flow

What is the velocity, acceleration?

In reality, a point in space does not have avelocity (it is unlikely there is a moleculeexactly at that point)

When we talk velocity of a fluid particle wemean the average over all molecules in a smallregion –  Continuum Hypothesis

Eulerian - Velocity Field

Page 137: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 137/409

Eulerian description of flow describes the velocity at

all points at all times Velocity field is a 3 component vector in 4

dimensions Movie 

Some simpler cases often occur: Steady 3-D flow

Unsteady, 2-D flow

Movie  Steady, 2-D flow

Movie 

Steady, 1-D flow

k t  z  y xw jt  z  y xvit  z  y xuV    ˆ),,,(ˆ),,,(ˆ),,,(  

k  z  y xw j z  y xvi z  y xuV    ˆ),,(ˆ),,(ˆ),,(  

 j y xvi y xuV    ˆ),(ˆ),(  

i xuV    ˆ)(

 jt  y xvit  y xuV    ˆ),,(ˆ),,(  

Page 138: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 138/409

 

Lagrangian –  Particle Velocity

Page 139: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 139/409

Lagrangian description offlow follows individual particles

The position of a fluid particleis

The velocity of that fluid particle is

This does not tell us what thevelocity will be at a pointaway from the fluid particle

k t  z  jt  yit  xr    ˆ)(ˆ)(ˆ)(  

dt 

r d V  

Acceleration - Eulerian

Page 140: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 140/409

In Eulerian representation of velocity

Since x, y, z do not depend on t –  Eulerian =

fixed coordinates

dt 

V d 

k t  z  y xw jt  z  y xvit  z  y xuV    ˆ),,,(ˆ),,,(ˆ),,,(  

V k 

w j

vi

u

dt 

V d 

  ˆˆˆ

Acceleration –  Lagrangian (1)

Page 141: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 141/409

In Lagrangian representation of velocity, x, y,

and z depend on t as particle follows flow

dt 

V d 

k t t  z t  yt  xw jt t  z t  yt  xvit t  z t  yt  xuV    ˆ)),(),(),((ˆ)),(),(),((ˆ)),(),(),((  

k dt 

dz 

 z 

w

dt 

dy

 y

w

dt 

dx

 x

w

w

 jdt dz 

 z v

dt dy

 yv

dt dx

 xv

t v

idt 

dz 

 z 

u

dt 

dy

 y

u

dt 

dx

 x

u

u

dt 

V d 

ˆ

ˆ

ˆ

 

  

 

  

  

 

  

 

  u

dt 

dx

vdt dy

wdt 

dz 

Acceleration –  Lagrangian (2)

Page 142: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 142/409

Lagrangian acceleration includes local acceleration

and change in velocity due to fluid particle motion

k  z ww

 ywv

 xwu

 j z 

vw

 y

vv

 x

vu

i z 

uw

 y

uv

 x

uu

dt 

V d 

ˆ

ˆ

ˆ

  

  

 

  

 

 

 

 

 

V V 

dt 

V d 

k w jviuV    ˆˆˆ  

 z 

 j

 y

i

 x

ˆˆˆ

“Material” Derivative 

Page 143: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 143/409

Material or Substantial derivative includeslocal and spatial variation in a quantity

V V t 

 Dt 

V  D

termconvective

termunsteady

V t  Dt 

 D

 z 

T w

 y

T v

 x

T u

 Dt 

 DT 

Steady/Unsteady Flow

Page 144: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 144/409

In steady flow, partial derivatives with respectto time are zero

However, spatial variations can still cause a

derivative for a fluid particle to be non-zero

 z 

T w

 y

T v

 x

T u

 z 

T w

 y

T v

 x

T u

 Dt 

 DT 

0 Dt 

 DT 0

Page 145: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 145/409

 

Page 146: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 146/409

 

Page 147: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 147/409

 

Control Volumes / Systems

Page 148: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 148/409

Just like in Thermo we sometimes consider systems (controlmass, Lagrangian) and sometimes control volumes (Eulerian)

We will start with relationships for systems… 

m=constant

F=ma

… and derive from them relationships for control volumes 

Steady Control Volume Unsteady Control VolumeControl Mass

Extensive/Intensive

Page 149: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 149/409

Consider an intensive property b (units/kg) B=mb (units)  

 system system

 sys   bd bdm B       cvvolumecontrol 

cv   bd bdm B    

dt 

bd d 

dt 

dB   sys sys

 

 

 

 

  

dt 

bd d 

dt dB   cvcv

 

 

 

 

  

dt 

dB

dt 

dB   syscv

Example: Mass, b=1 (B=m)

0dt 

dm sys mdt 

dmcv

Relating CV and CM (1)

Page 150: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 150/409

Consider a control mass that moves from (1) to (2) int

Define control volume as common region plus regionI

Relating CV and CM (2)

Page 151: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 151/409

 II  I 

cv sys

 B Bt 

 B

 Dt 

 DB

22221111   bV  AbV  A

 B

 Dt 

 DBcv sys

      

 AVbbm B      

Rate change of property B for a system equals

change for a control volume plusinflow/outflow to control volume

Relating CV and CM (3)

Page 152: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 152/409

In general: velocity may not be normal to surface

 property and velocity may vary across surface

  cs

out    dAnV bbm B   ˆ

    

cv

cv bd t t 

 B  

Reynolds Transport Theorem

Page 153: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 153/409

Formal relationship between changes in a control

mass and control volume This is similar to a material derivative except it

applies to a finite sized control volume and materialderivative applies at a point

RTT becomes material derivative as volume goes tozero

  cscv

 sys dAnV bbd t  Dt 

 DBˆ

    

bV t 

b

 Dt 

 Db

 

Deforming Control Volumes

Page 154: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 154/409

Reynolds Transport Theorem can be applied to

any CV even if it moves

V is relative velocity

= V1-V0

 

cscv

 sysdAnV bbd 

t  Dt 

 DBˆ

    

Page 155: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 155/409

 

Page 156: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 156/409

 

3:57 (19th Olympics) versus 4:02 (20th 

Olympics) speed skating (3000 m)

Page 157: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 157/409

19th - Salt Lake City (4200 ft): p = 650 mm Hg

20th - Turin, Italy (810 ft): p = 739 mm Hg

Density atm = 1.23 kg/m3 

Find difference in air resistance

Conservation of Mass (1)

Page 158: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 158/409

Mass is conserved for a system, which bydefinition is a control surface that follows a

specific set of mass

Apply Reynolds Transport Theorem with B=m b=B/m=1

 

cscv

 sysdAnV bbd 

t  Dt 

 DBˆ

    

 

cscv

 sysdAnV d 

t  Dt 

 Dmˆ

    

Conservation of Mass (2)

Page 159: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 159/409

Since mass is conserved, msys=constant For a closed control surface (a system) –  

Lagrangian description

For an open control volume (Eulerian

description), this becomes

0ˆ  

cscv

dAnV d t 

    

 

  d  Dt 

 D

 Dt 

 Dm sys

  0

Integral Continuity Equation

Page 160: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 160/409

For steady flows this becomes

The term

since mass flow is out if V is in same direction as n

 

cscvdAnV d t 

    

0ˆ   cs

dAnV 

  

    inout net 

cs

mmmdAnV   

ˆ  

Uniform Flow

Page 161: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 161/409

Recall from Thermo 1, for uniform flow

We define average velocity at an inlet or outlet so that

We usually mean average velocitywhen we speak about the velocity at

inlet or exit

VAm    

 AV m    

 A

dAnV 

V    cs

  

    

ˆ

Page 162: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 162/409

 

Page 163: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 163/409

 

Page 164: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 164/409

 

Moving Control Volumes

Page 165: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 165/409

If the controlvolume is moving,the coordinatesystem is fixed tothe control volume

The velocity offlow across thecontrol surface isevaluated relativeto this coordinate

system

0ˆ  

cscv

dAnW d t 

    

cvV V W 

Deforming Control Volumes

Page 166: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 166/409

Deforming control volumes are both movingand unsteady

Local relative velocities used at all surfaces

0ˆ  

cscv

dAnW d t 

    

Page 167: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 167/409

 

Newton’s Second Law 

Page 168: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 168/409

 but since mass is conserved for a system

Sum of forces on a system in any direction

equals change in momentum for the system in

that direction

 Dt V  Dmam F   sys sys sys

 Dt 

V m D F 

  sys

 sys

Linear Momentum Equations (1)

Page 169: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 169/409

Applying Reynolds Transport Theorem withB=mV, b=V

This is a vector equation (it is really 3equations in x, y, z directions)

 

cscv

 sysdAnV V d V 

t  F    ˆ

    

 

cscv

 sysdAnV bbd 

t  Dt 

 DBˆ

    

   Dt 

V m D F 

  sys

 sys

Integral Linear Momentum

Equations

Page 170: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 170/409

 

cscv

 sysdAnV V d V 

t  F    ˆ     

cscv

 z 

cscv

 y

cscv

 x

dAnV wwd t  F 

dAnV vvd t 

 F 

dAnV uud 

 F 

ˆ

ˆ

ˆ

    

    

    

 z  y x   nwnvnunV    ˆˆˆˆ  

Page 171: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 171/409

 

Page 172: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 172/409

 

Page 173: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 173/409

 

Moving Reference Frame

Page 174: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 174/409

Moving control volumescan be used

Inertial reference frame(not accelerating)

 Non-inertial referenceframe (accelerating)

Accelerating referenceframes require caution

(relative velocities cannotsimply be used)

Steady Inertial Control Volume

Page 175: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 175/409

 

cscv sys

dAnW V d V 

 F    ˆ

    

cvV V W 

 

cs

cv

 steady

cv

cv sysdAnW V W d V W 

t  F    ˆ

)(0

     

    

  cs

cv

cs

 sysdAnW V dAnW W  F    ˆˆ     

)(0

ˆˆ

onconservatimass

cs

cv

cs sys

dAnW V dAnW W  F 

       

  cs

 sysdAnW W  F    ˆ

     Relative velocities used for

inertial control volumes

Page 176: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 176/409

 

Page 177: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 177/409

 

Rotating Systems (1)

Page 178: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 178/409

For rotating systems, the moment of themomentum equation (angular momentum) is

often convenient

At a point, F=ma becomes Taking cross product of location of fluid

 particle and F=ma

 Dt 

d V  D

 Dt 

ma D F 

 

   

   )(

  d V  Dt 

r  D

 Dt 

d V r  D

 Dt 

d V  Dr  F r 

       

)0(0  

V V 

d V V  Dt 

d V r  D F r     

   

Rotating Systems (2)

I t ti t l l

Page 179: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 179/409

Integrating over a control volume

Applying Reynolds Transport Theorem(b=r xV)

Moment of momentum equation

   sys sys sys

d V r  Dt 

 D

 Dt 

d V r  D F r     

   

   sys

d V r  Dt 

 D F r     

 

cscv sys

 sysdAnV bbd 

t bd 

 Dt 

 D

 Dt 

 DBˆ

      

 

cscv

dAnV V r d V r t 

 F r    ˆ

    

Moment of momentum equation

ˆ

Page 180: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 180/409

For a steady system

Sign of r xV and T terms determined by right-

hand-rule

 

cs  fluxmomentumangular 

momentumangular unsteady

cv systemontorquesof  Sum

dAnV V r d V r 

T    

ˆ    

 

cs dAnV V r T   ˆ

  

Page 181: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 181/409

 

Page 182: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 182/409

 

Page 183: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 183/409

 

Page 184: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 184/409

 

Energy Equation (1)

Page 185: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 185/409

From Thermo 1, energy of a system follows

where u is the internal energy from thermodynamics

innet innet 

 sysW Q

 Dt 

 DE ,,

 

 sys sys   ed  E     

 gz V 

u pekeue   2

2

Energy Equation (2)

Page 186: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 186/409

Applying Reynolds Transport Theorem withB=E, b=e

 

cscv

innet innet 

 sysdAnV eed 

t W Q

 Dt  DE  ˆ

,,     

 gz V 

u pekeue   2

2

 

cscv

 sysdAnV bbd 

t  Dt 

 DBˆ

    

Work Work = force through a distance (s)

Page 187: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 187/409

Work force through a distance (s)

Can occur internal to system (as shaft work) or work at controlsurface (flow work)

Force at flow surface is pressure times area acting in – ndirection

Rate change of distance is velocity

  cs

 shaft innet    s F W W   

,

dAn pV W W cs

 shaft innet 

      ˆ)(,

  in shaft innet 

cscv

W QdAnV  peed t 

  ,,ˆ

 

     

Energy Equation (3)

VV 22

Page 188: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 188/409

For steady, uniform flow

in shaft innet cscv W QdAnV  gz 

V  p

ud  gz 

ut    ,,

22

ˆ

22

 

 

 

 

 

 

 

 

       

h pvu p

u     

in shaft innet 

cscv

W QdAnV  gz V 

hd  gz V 

ut 

  ,,

22

ˆ

22

 

  

   

  

       

in shaft innet inout    W Q gz V 

h AV  gz V 

h AV  ,,

22

22

 

  

 

 

  

         

Steady, Uniform FlowVV 22

Page 189: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 189/409

For a 1 inlet, 1 outlet control volume

If flow is inviscid, shaft work will be zero

in shaft innet inout 

inout 

inout 

  W Q gz  gz V V 

hhm,,

22

22

 

 

 

 

 

in shaft innet inout    W Q gz V 

hm gz V 

hm ,,

22

 

 

 

 

 

 

 

 

   

q gz  gz 

V V 

 pv pvuu inout inout 

inout inout   22

22

loss Bernoulliquu gz  gz V V 

 pv pv inout inout inout 

inout    22

22

Extended Bernoulli Equation

VpVp22

Page 190: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 190/409

In units of length (head)

hL = head loss

hs = shaft work head (pump head)

in shaft in

in

in

in

out 

out 

out 

out  wloss gz V  p

 gz V  p

,22

    

 sl ininin

out out out  hh z 

 g 

 g 

 p z 

 g 

 g 

 p

22

22

    

Page 191: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 191/409

 

Page 192: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 192/409

 

Page 193: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 193/409

 

Page 194: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 194/409

 

Page 195: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 195/409

 

Why Differential Analysis?

I l l i ll

Page 196: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 196/409

Integral analysis allows us tocompute overall (global) flow

 behavior without concern for thedetailed flow inside a device

Integral analysis requires careful

integration at system boundaries(velocity profiles at exits must

 be given or assumed)

Differential analysis is required

when we need to know thedetailed flow behavior at pointsinside a system (velocity profilesare computed directly) Recirculation zone will not show up in

integral analysis

Fluid Element Motion

Page 197: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 197/409

Differential equations for fluid flow can bederived by considering the motions and forces

of small fluid elements

Movie  –  rotation/translation/angulardeformation

Translation

Page 198: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 198/409

Translation –  fluid elements translate at localfluid velocity  z w yv xuV    ˆˆˆ  

t u x  

t v y  

t w z   

Linear Deformation

zyx

Page 199: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 199/409

Volume of differential fluid element: Change in volume of fluid element in x direction

In general for 3-D:

  zdt  y x

 x

ud          

 

 

 

 

 z  y x         

 

  

 

  x

u

dt 

d   

 

1

 z 

w

 y

v

 x

u

dt 

d   

 

  

 

 

 

1

Rotation/Angular Deformation (1)

Page 200: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 200/409

Define angles a and  as rotation of x and yaxis

a  a   

  t 

 x

vtan        

  t 

 y

utan

Rotation/Angular Deformation (2)

Page 201: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 201/409

Rate of rotation of x and y axis

 Note different sign convention for a and  

If OA=-OB then the fluid element will only rotate andnot deform

If OA=+OB then the fluid element will only deformand not rotate

 x

v

t t OA

 

a  

    0lim

 yu

t t OB

   

    0lim

Rotation/Angular Deformation (3)

Page 202: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 202/409

Rate of rotation of fluid elementdefined as average of OA and -OB 

Likewise

 

 

 

 

 y

u

 x

vOBOA z 

2

1

2

   

  

  

 z v

 yw

 x21   

  

  

 xw

 z u

 y21 

Rotation and Vorticity

ˆˆˆ

Page 203: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 203/409

Rotation rate is a vector:

Vorticity is defined as twice the rotation rate - Movie

 

  

 

 y

u

 x

v z 

2

 

  

 

 z 

v

 y

w x

2

1   

 

  

 

 x

w

 z 

u y

2

 z  y x  z  y x  ˆˆˆ

       

wvu

 z  y x

 z  y x

ˆˆˆ

2

1

2

1    

       2

Page 204: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 204/409

 

Angular Deformation

Page 205: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 205/409

Rate of angular deformation (rate of shearing strain) offluid element defined as twice the average of OA and

+OB 

Likewise

 

  

 

 

  

     y

u

 x

vOBOA z 

22

    g 

 

  

 

 z 

v

 y

w xg   

 

  

 

 x

w

 z 

u yg 

Page 206: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 206/409

 

Mass Conservation (1)

Page 207: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 207/409

Previously we derived mass conservation for acontrol volume

For a differential element:

We apply control

volume equation to

element and let

dV0

0ˆ  

cscv

 sysdAnV d 

t  Dt 

 Dm       

Mass Conservation (2)

0ˆ  

 sysdAnV d 

 Dm       

Page 208: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 208/409

As volume0, all flows become uniform and

volume integral becomes homogeneous

cscv

t  Dt 

0

22

22

22

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 x y z 

 z 

ww x y

 z 

 z 

ww

 z  x y

 y

vv z  x

 y

 y

vv

 z  y x

 x

uu z  y

 x

 x

uu z  y x

cs

cs

cscv

     

       

  

     

       

  

     

       

      

Mass Conservation (3)

0

 

   

   

   

   wvu

t

Page 209: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 209/409

For steady flow:

For incompressible fluids:

Incompressible flows have zero deformation(zero dilatation) –  Velocity field is solenoidal

 z  y xt 

  0

  

  

  0   V    

0  V 

Cylindrical Coordinates

Page 210: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 210/409

Mass conservation can be applied in anycoordinate system:

For cylindrical coordinates

Can look up form for gradient in cylindrical

coordinates:

  0

  

  

0

11

 z 

vv

r r 

vr 

r t 

 z r     

 

        

 z vvr vV   z r    ˆˆ

ˆ       

Page 211: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 211/409

 

Page 212: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 212/409

 

Page 213: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 213/409

 

Stream Function (1)

Page 214: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 214/409

For plane (2-D) steady incompressible flow,mass conservation becomes:

Define the stream function, y(x,y) such that

Thus, if y can be found it automaticallysatisfies mass conservation 

  0

  

  

 y

v

 x

uV 

  0

u y

y v

 x

y 0

 x y y x y

v

 x

u   y y 

Stream Function (2)

Page 215: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 215/409

What is the stream function?

For constant y

Line of constant stream function is a

streamline

udyvdxdy y

dx x

d   

  y y y 

0y d uv

dxdy

Stream Function (3)

Since flow can’t cross a streamline, flow between two

Page 216: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 216/409

differentially close streamlines: Difference in stream

function is flow rate

 between streamlines

y y y 

d dx x

dy y

vdxudydq  

12   y y y      d vdxudydqQ

Page 217: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 217/409

 

Page 218: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 218/409

 

Potential Flow

Page 219: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 219/409

Potential Flow = Inviscid, Incompressible,Irrotational

Under these conditions the velocity potential,f, exists and satisfies:

Laplace equation is linear, so superposition ofsolutions can be used (this is generally not true

for fluids since full momentum equation isnonlinear)

02

 f 

  g  pV V t 

V   

         

What is the Potential Function?

vdyudxdydxd   

  f f 

Page 220: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 220/409

Thus, if then

Compared to stream function:

Lines of constant f (equipotential lines) are

orthogonal to lines of constant y (streamlines)

 y x 0f d 

v

u

dx

dy

0y d uv

dxdy

Streamlines/Potential Lines

Streamlines and

Page 221: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 221/409

Streamlines andequipotential linesform grid describingflow

High velocities inregions wherestreamlines arecompressed

Low velocities wherestreamlines expand

How is Potential Flow Used? First, we find the potential function for several simple flows

(next slides)

Page 222: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 222/409

(next slides)

If we can then describe a new flow as a sum of simple flows,the total potential function = sum of simple potential functions

Movie –  Example: flow over a surface can be approximated bya point source and uniform flow

Simple Flow 1: Uniform Flow

Page 223: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 223/409

Straight flow in one direction:

If a=0:

 xU u

  f a cos

 yU v

  f a sin

)(cos

)(sin

 y f  Ux

 x f  Uy

a f 

a f 

a a f    cossin   x yU  

Uxf 

Simple Flow 2: Source/Sink

Flow originating from a point with equal velocity in

Page 224: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 224/409

all directions and a volume flow rate, m

Source (m>0), Sink (m<0)

m=source strength

mrvr   2

 

f  

v  10

r m

ln2 

f  

m

r vr  

2

Example: Flow over a Half-body (1)

Page 225: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 225/409

Half-body can be approximated as uniformflow + source (Movie)

Stagnation point occurs at r=b (angle

 f    cosUr Ux

r m

ln2 

f   

 

  f 

  f 

    sin1

2cos

ln2

cos

U r 

v

r mU 

r v

r m

Ur 

mb

b

mU vr 

 

  

2

2cos0

Flow over a Half-body (2)

Page 226: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 226/409

Can also find streamfunction for halfbody (see text):

Value of stream function at stagnation point:

Streamlines from stagnation point:

  

 y y y 2

sin  m

Ur  sourceuniform  

22

sin

2

mm

mU   

 

  

     

  

 y 

 

  

 

    

  

 y 

sin2

2sin

2sin

2

mr 

m

Ur 

mUr 

m

Simple Flow 3: Vortex

Flow circulating about a point

Page 227: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 227/409

Free vortex:

Free vortex is irrotational

Other vortices can be rotational  No potential function

 f    K 

 K 

r v  

 

f  

1

Circulation

Page 228: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 228/409

Define the circulation for a closed curve in anyflow as:

For vortex:     sd V ccw

  rd v sd V   

 

 K d r r 

 K      2

  

f 2

Simple Flow 4: Doublet (1)

A doublet is a combination of a source and sink

Page 229: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 229/409

As a0

  

  

1

212   ln

2ln

2ln

2   r r mr mr m

   f 

  2/122

2   cos2    ar ar r r  source  

  2/122

1   cos2    ar ar r r  sink   

 

  

 

 

 

 f 

cos2

cos41ln

4  22

ar ar 

ar m

 

  

 

 

  

 

am

ar ar 

ar m

aa

 

  

 

 f 

  cos

cos2

cos4

4limlim

2200

Simple Flow 4: Doublet (2)

A doublet is a combination of a source and sink

Page 230: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 230/409

Streamlines:

Why is this useful?

 Next slide… 

r  K 

r ma    

  f    coscos

f  cos K r  

Flow over a Circular Cylinder (1)

Page 231: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 231/409

Let’s combine uniform flow and a doublet tosee what flow that represents:

Choose: where a is the radius of acylinder

 K     f 

  cosUxf 

   f    coscoscos2  r 

 K U 

 K Ur   

 

  

 

U a K    2

 f    cos12

2

Ur r 

  

 

Flow over a Circular Cylinder (2)

 f    cos12

2

Ur a

 

 

Page 232: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 232/409

Thus

This potential functionhappens to yield flowover a cylinder

r    

 f 

cos12

2

a

vr 

 

 

 

 

  

f     sin1

12

2

U r 

a

r v

 

  

 

Pressure Distribution over Cylinder

Page 233: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 233/409

Since potential flow analysis assumes inviscidincompressible flow, Bernoulli’s equation can

 be used

Pressure on cylinder surface (r=a):22

2

1

2

1        v pU  p  surface 

)sin41(2

1sin4

2

1

2

1  22222                U  pU U  p p surface

      sin2sin12

2

U U r 

av  

 

  

 

Pressure Distribution over Cylinder

Page 234: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 234/409

Comparison ofinviscid and

experimental

 pressure

distributions:

)sin41(2

1   22           U  p p surface

Page 235: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 235/409

 

Page 236: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 236/409

 

Page 237: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 237/409

 

Momentum Equation (1)

Integral momentum equation for a control

Page 238: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 238/409

g qvolume:

Apply this to differential element:

Forces:

 Normal stress,

 (N/m2)

Shear stress, (N/m2) 

Gravity

 

cscv

 sysdAnV V d V 

t  F    ˆ

    

Momentum Equation (2)

In x- direction z  y x g 

 y z  x F   x

 yx zx xx

 x     

   

 

  

 

Page 239: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 239/409

Momentum Equation (3)

In x- direction

Page 240: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 240/409

 

VAu

udAnV V d V 

t  cscv

    

       ˆ

   

  

 

 

  

 

 

  

 

 

  

 

  

  

  

  

  

  

  

  

 

  

 

 

  

 

 

  

 

 

  

 

2222

2222

2222

 z 

 z 

uu y x

 z 

 z 

ww

 z 

 z 

uu y x

 z 

 z 

ww

 y

 y

uu z  x y

 y

vv y

 y

uu z  x y

 y

vv

 x

 x

uu z  y

 x

 x

uu

 x

 x

uu z  y

 x

 x

uu z  y x

u

u

 A

   

     

   

     

                

   

     

   

        

  

  

   

Momentum Equation (4)

Dividing by volume and equating to force:

Page 241: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 241/409

Subtracting mass conservation times u:

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

  

  

  

  

  

  

  

  

  

  

22

1

22

1

22

1

22

1

221

221

 z 

 z 

u

u z 

w

 z 

w z 

 z 

u

u z 

w

 z 

w

 y

 y

uu

 y

v

 y

v y

 y

uu

 y

v

 y

v

 x xuu

 xu

 xu x

 xuu

 xu

 xu

t u g 

 y z  x  x

 yx zx xx

   

 

     

 

  

   

 

     

 

  

         

          

 

  

 

 

  

 

 

  

 

 

  

 

u

 z 

w

 z 

uwu

 y

v

 y

uvu

 x

u

 x

uu

t u

u g 

 y z  x  x

 yx zx xx      

    

    

      

   

0

u

 z 

wu

 y

vu

 x

uu

        

Momentum Equation (5)

 

  

 

 

  

 

 z 

uw

 y

uv

 x

uu

u g 

 y z  x  x

 yx zx xx        

Page 242: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 242/409

The normal stress is due to both viscous stress() and pressure

 

 

 

 

 

 

 

 

 z 

uw

 y

uv

 x

uu

u g 

 y z  x x

 p x

 yx zx xx        

 

  

 

 

  

 

 z 

vw

 y

vv

 x

vu

v g 

 x z  y y

 p y

 xy zy yy    

   

 xx xx   p       

  

  

  

  

 z ww

 ywv

 xwu

t w g 

 x y z  z  p

 z  xz  yz  zz         

  g  pV V t 

V   

         

Momentum Equation   g  pV V 

V   

         

Page 243: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 243/409

 

 

 

 

 

 

 

 

 z 

uw

 y

uv

 x

uu

u g 

 y z  x x

 p x

 yx zx xx        

 

  

 

 

  

 

 z 

vw

 y

vv

 x

vu

v g 

 x z  y y

 p y

 xy zy yy    

   

  

  

  

  

 z ww

 ywv

 xwu

t w g 

 x y z  z  p  z 

 xz  yz  zz         

Inviscid Flow

  g  pV V t 

V   

         

Page 244: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 244/409

In inviscid flow there is no shear stress (=0)

Euler equation:

Steady inviscid flow:

(see text for proof that this reduces to Bernoulliequation)

 Neglecting gravity:

  g  pV V t 

V   

  

1

  g  pV V  

  

1

  pV V     

  

1

Irrotational Flows (1)

Define the velocity potential

ff f f

Page 245: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 245/409

Vorticity is:

Only irrotational flows have a velocity potential

v y

f u

 x

f  w

 z 

f    f V 

0

ˆˆˆ

ˆˆˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

  

 

 

  

 

 x y y x

 j

 z  x x z 

i

 y z  z  y

k  y

u

 x

v j

 x

w

 z 

ui

 z 

v

 y

w

f f f f f f 

 

Irrotational Flows (2) For incompressible, irrotational flow, mass

i i

Page 246: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 246/409

conservation is:

This is a much easier equation to solve thanmomentum and is useful if flow can beapproximated as irrotational and incompressible

We will see, only inviscid flows can beirrotational

2

2

2

2

2

220

 z  y xV 

  f f f f f 

Page 247: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 247/409

 

Page 248: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 248/409

 

Page 249: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 249/409

 

Full Momentum Equation

  g  pV V t 

V   

         

Page 250: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 250/409

 Need model for viscous forces () dy

dum   

Newtonian Fluids (1)

id

dum   

Page 251: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 251/409

  is just part of the

full viscous

stress The complete

model:

dy

 yx xy x

v

 y

u m      

 

 

 

  zy yz  y

w

 z 

v m      

 

 

 

 zx xz  z 

u

 x

w m    

 

  

 

 x

u xx

  m     2

 y

v yy

  m     2

 z 

w zz 

  m     2

Newtonian Fluids (2) The viscous stress tensor for Newtonian fluids:

 

 

 

 

 

  uwvuu2

Page 252: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 252/409

If viscosity is constant:

 

  

 

 

 

 

 

 

  

 

 

  

 

 

  

 

 

  

 

        

 z 

w

 y

w

 z 

v

 z 

u

 x

w

 y

w

 z 

v

 y

v

 x

v

 y

u

 z  x x y x

2

2m  

V V 

V  z 

w

V  y

v

 x

u

 z 

w

 y

w

 y z 

v

 x z 

u

 x

w

 z  y

w

 z 

v

 y

v

 x

v

 x y

u

 z 

u

 z  x

w

 y x

v

 y

u

 x

u

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

 

  

 

  m m m m     2

2

2

2

2

2

2

222

2

2

2

2

2

2

2

2

22

2

222

2

2

2

2

2

2

2

Navier-Stokes Equations

  g  pV V t 

V   

         

Page 253: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 253/409

Substituting viscous stress tensor yields NSE

  g V V  pV V t 

V   

  m m       

  2

 x g  z 

w

 y

v

 x

u

 x z 

u

 y

u

 x

u

 x

 p

 z 

uw

 y

uv

 x

uu

u  m m m m           

 

  

 

2

2

2

2

2

2

 y g  z 

w

 y

v

 x

u

 y z 

v

 y

v

 x

v

 y

 p

 z 

vw

 y

vv

 x

vu

v  m m m m           

 

  

 

2

2

2

2

2

2

 z  g  z 

w

 y

v

 x

u

 z  z 

w

 y

w

 x

w

 z 

 p

 z 

ww

 y

wv

 x

wu

w  m m m m           

 

  

 

2

2

2

2

2

2

NSE Example: Flow between plates

Infinite plates in x and z, steady flow, gy=-g,

1 D fl ( 0) 0)(

Page 254: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 254/409

1-D flow (v=w=0) 0)(  z  xu

t u

2

2

0 y

u

 x

 p

  m    g 

 y

 p  

0   00

Flow between plates (2)

2

0 up

 g  y

 p  

0   )( x f   gy p      

uxgyp )(1

Page 255: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 255/409

Flow is parabolic

Flow rate per unit width

20

 yu

 x p

  m 

 yu x g  y

 x p

)(1

)(21   2  xh y

 x pu  

2

21)(0)(   h

 x p xhhu

0)(0)0(  

 x g 

 y

u

22

2

1h y

 x

 pu  

 x

 phh

h

 x

 pdyh y

 x

 pudyq

hh

 

  

 

  m m m    332

1

2

12

33

3

0

22

0

 x

 phu

m 2

2

m ax

Keys to Success… 

St t ith f ll NSE

Page 256: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 256/409

Start with full NSE Make reasonable assumptions and eliminate

terms

Solve simplified differential equations Apply boundary conditions

Page 257: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 257/409

 

Navier-Stokes Equations

R i

Page 258: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 258/409

Review

  g V V  pV V t 

V   

  m m       

  2

 x g  z 

w

 y

v

 x

u

 x z 

u

 y

u

 x

u

 x

 p

 z 

uw

 y

uv

 x

uu

u  m m m m           

 

  

 

2

2

2

2

2

2

 y g  z 

w

 y

v

 x

u

 y z 

v

 y

v

 x

v

 y

 p

 z 

vw

 y

vv

 x

vu

v  m m m m           

 

  

 

2

2

2

2

2

2

 z  g  z 

w

 y

v

 x

u

 z  z 

w

 y

w

 x

w

 z 

 p

 z 

ww

 y

wv

 x

wu

w  m m m m           

 

  

 

2

2

2

2

2

2

Couette Flow (1)

Flow driven by moving plate

Page 259: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 259/409

1-D, steady, infinite in z and x

v=w=0

Same equations at pressure driven flow   boundary conditions are different

2

2

0  y

u

 x

 p

  m  g  y

 p

  

0

U buu     )(,0)0(

)( x f   gy p      

)()(2

1   2  xh y x g  y x

 pu  

Couette Flow (2)

Ubuu )(0)0(

)()(2

1   2  xh y x g  y x

 pu  

b

Uyby y x

 pu     2

2

1

 

 

 

 

 

 

b

 y

b

 y p

U

b

b

 y

U

u

12

2

Page 260: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 260/409

U buu     )(,0)0(

0)(    xh

)(2  x g  x

 pb

b

        bb xU bU  12m 

Pipe Flow (1) 1-D steady flow (vr =0, v=0), axisymmetric

(see p. 321 for full cylindrical NSE)21

Page 261: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 261/409

 No gradients in z (besides pressure)

2

2

21

 z 

v

vr 

r r  z 

 p

 z 

vv   z  z  z  z 

 

  

 

m m   

 

  

 

vr 

r r  z 

 p  z 1m 

Pipe Flow (2)

Boundary conditions:

 

  

 

vr 

r r  z 

 p  z 1m 

0)0(  

v z  0)(    Rv z 

Page 262: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 262/409

 

  

 

vr  z  f  r 

 z 

 p  z )(2

1   2

m 0)(    z  f  

)(4

1   2  z  g r  z 

 pv z   

2

4

1)(   R

 z 

 p z  g 

m  22

4

1 Rr 

 z 

 pv z   

Pipe Flow (3)

22

4

1 Rr 

 z 

 pv z   

Page 263: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 263/409

Movie –  Parabolic velocity profiles in pipe

flow

 z 

 p Rv

m 4

2

m ax

 z 

 p R R R

 z 

 prdr  Rr 

 z 

 pQ

 R

 

  

 

  m 

 

  

m    82422

4

1   444

0

22

28

max2 v

 z 

 p R

 A

QV   

 

Page 264: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 264/409

 

Page 265: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 265/409

Unsteady Flow (1)

Infinite plate, infinite fluid (in z and x), fluid

i i i ll 1 D fl )()(

Page 266: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 266/409

initially at rest, 1-D flow

At t=0, plate moves at velocity U

2

2

 y

u

u

m   

 g  y

 p  

0

00

0)()(

 z  x

0 wv

C  gy p      

Unsteady Flow (2)

Similarity solution: 2

2

 y

u

u

m   

Page 267: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 267/409

Assume solution is of form:

2

2

2

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 y

u

 y

u

 y

u

 yt 

u   h 

 h 

 h 

 h 

 

  

  

  

  

t  f   f  

t t 

 y f  

4

1)0(

 

 y f  u

 h h 

2:)(  

 f   f       h 2

21   )(   C erf  C  f       h 

A “simple” problem… 

Consider flow out of an infinitely long slot

Page 268: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 268/409

Problem is 2-D (w=0, d/dz=0), steady, gravity

negligible, incompressible

x

y

 V

Governing Equations (1)

 xgz

w

y

v

x

u

xz

u

y

u

x

u

x

 p

z

u

wy

u

vx

u

ut

u

mmmm 

 

 

2

2

2

2

2

2

0

 z 

w

 y

v

 x

u

        

Page 269: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 269/409

Simplify to… 

 g  z  y x x z  y x x z w yv xut    m m m m            

 y g  z 

w

 y

v

 x

u

 y z 

v

 y

v

 x

v

 y

 p

 z 

vw

 y

vv

 x

vu

v  m m m m           

 

  

 

2

2

2

2

2

2

 z  g  z 

w

 y

v

 x

u

 z  z 

w

 y

w

 x

w

 z 

 p

 z 

w

w y

w

v x

w

ut 

w

  m m m m             

 

 

 

2

2

2

2

2

2

 

  

 

 y

v

 x

u

 x y

u

 x

u

 x

 p

 y

uv

 x

uu   m m m     

2

2

2

2

 

  

 

 y

v

 x

u

 y y

v

 x

v

 y

 p

 y

vv

 x

vu   m m m     

2

2

2

2

00

0

 y

v

 x

u

Governing Equations (2)

2

2

2

2

1 uu puvuu

  

0

 y

v

 x

u

Page 270: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 270/409

Three equations, three unknowns (u, v, p) u=u(x,y,,m, v=v(x,y,,m), p=p(x,y,,m)

Problem has a solution, but cannot simply

integrate equations CFD is an approach to estimate an answer to

governing equations

22  y x xp

 y x   

2

2

2

21

 y

v

 x

v

 y

 p

 y

vv

 x

vu

  

  

Computational Mesh

Computational fluid dynamics (CFD) solves

these differential equations on a grid

( ( ) ( )

Page 271: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 271/409

u=u(xi,yi,,m, v=v(xi,yi,,m), p=p(xi,yi,,m)

xi and yi are discrete –  spacing x and y

 Nx N number of nodes

Examples of Meshes

Page 272: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 272/409

Numerical Methods Finite Difference

Differential form of governing equations are discretized

and solved

Page 273: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 273/409

and solved

Finite Volume

On each cell, conservation laws are applied at a discrete

 point of the cell [node].

Integral Control Volume Form of

Governing Equations

Taylor Series Expansion

!3!2!1

3

,

3

32

,

2

2

,

,,1

 x

 x

u x

 x

u x

 x

uuu

 ji ji ji

 ji ji

 

  

 

 

  

 

 

  

 

3322  xu xu xuuu

Page 274: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 274/409

Differential is converted to discrete algebraicexpression:

Error of order (x)2

!3

2!1

2

3

,

3

3

,

,1,1

 x

 x

u x

 x

uuu

 ji ji

 ji ji

 

  

 

 

  

 

 

!3!2!1

,

3

,

2

,

,,1 x x x

uu

 ji ji ji

 ji ji

  

  

  

  

  

  

62

2

,

3

3

,1,1

,

 x

 x

u

 x

uu

 x

u

 ji

 ji ji

 ji

 

  

 

 

  

 

 

 x

uu

 x

u   ji ji

 ji  

 

  

 

 

2

,1,1

,

Second Derivatives

!3!2!1

3

,

3

32

,

2

2

,

,,1

 x

 x

u x

 x

u x

 x

uuu

 ji ji ji

 ji ji

 

  

 

 

  

 

 

  

 

Page 275: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 275/409

With an error of order (x)2 

!42

!222

4

,4

42

,2

2

,,1,1

 x

 x

u x

 x

uuuu

 ji ji

 ji ji ji

 

 

 

 

 

 

 

 

 

!3!2!1

3

,

3

32

,

2

2

,

,,1

 x

 x

u x

 x

u x

 x

uuu

 ji ji ji

 ji ji

 

  

 

 

  

 

 

  

 

12

2   2

,

4

4

2

,1,,1

,

2

2  x

 x

u

 x

uuu

 x

u

 ji

 ji ji ji

 ji

 

  

 

 

  

 

 

2

,1,,1

,

2

2 2

 x

uuu

 x

u   ji ji ji

 ji 

 

  

 

 

Discretized Equations

Apply the derivative estimates to the

governing equations: 22

Page 276: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 276/409

governing equations:

Similar additional equation for v momentum

2

2

2

21

 y

u

 x

u

 x

 p

 y

uv

 x

uu

  

  0

 y

v

 x

u

 x

uu

 x

u   ji ji

 ji 

 

 

 

 

    ,,1

,   2

,1,,1

,

2

2 2

 x

uuu

 x

u   ji ji ji

 ji 

 

 

 

 

 

21,,1,

2,1,,1,1,11,1,

,,1,1

, 222

122   y

uuu x

uuu x p p

 yuuv

 xuuu   ji ji ji ji ji ji ji ji ji ji

 ji ji ji

 ji

    

  

01,1,,1,1

 

 y

vv

 x

uu ji ji ji ji

System of Algebraic Equations

Discretization turns 3 partial differential

equations into thousands of algebraic

Page 277: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 277/409

equations into thousands of algebraic

equations (3 for each mesh point i,j)

E.g.:

(2,2)

(4,2)

01,1,,1,1

 

 y

vv

 x

uu ji ji ji ji

01,23,22,12,3

 y

vv

 x

uu

01,43,42,32,5

 y

vv

 x

uu

NxN number of algebraic

equations

Boundary Conditions

Since the mesh is finite, derivatives must be

computed differently at the edge of the mesh

Page 278: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 278/409

computed differently at the edge of the mesh

(u-1,-1 doesn’t exist) 

Boundary conditions must be specified at all

mesh edges

Boundary conditions

are always approximations

of realistic conditions

u,v=0

d/dx=0

d/dy=0

u=U, v=0

CFD Output –  Infinite slot (1)

Solution is only available at grid points –  

interpolation used for values between grid points

Page 279: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 279/409

CFD Output –  Infinite slot (2)

Page 280: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 280/409

CFD Output –  Vortex Generation

Many CFD simulations are unsteady to capture

transient features of flow

Page 281: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 281/409

transient features of flow

Cylinders in cross flow shed vortices that can

 be visualized by streamlines

Movie –  CFD –  computed streamlines over

 bluff-body

Errors in CFD

 Numerical error –  the iterative solution did not

find the correct answer to the algebraici

Page 282: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 282/409

find the correct answer to the algebraicequations

Discretization error –  the derivative estimates

were not accurate enough (x too large) Governing equation error –  a term was

removed that shouldn’t have been (gravity?) 

Boundary condition error –  the boundaryconditions do not reflect reality

CFD Validation/Accuracy (1)  Numerical error can be

assessed by examiningresiduals

 Residual  y

vv

 x

uu  ji ji ji ji

    1,1,,1,1

Page 283: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 283/409

Residuals would ideally be zero, but actuallyconverge to a small

constant value Once the residuals are

sufficiently small thealgebraic equationshave been solved butthey still may beinnaccurate

CFD Validation/Accuracy (1) Discretization error can be assessed by

recomputing a solution on a finer/different grid

The difference in the solutions is an estimate of

Page 284: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 284/409

The difference in the solutions is an estimate of

effect of grid (grid independence)

Errors in governing equations and boundary

conditions can be assessed by turning on/off

 physical terms or by adding perturbations to

 boundary conditions (sensitivity studies)

Finally, simulations for some cases should becompared to experiments (validation)

Post-Processing

Solution from CFD must be post-processed to

extract information of interest

Page 285: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 285/409

extract information of interest

E.g.: Flowlab assignment you will integrate

velocity profiles to compute mass and

momentum flux

    i

iii   r r uurdr udAndAV m            22

CFD Overview

Simplify equations as far as possible

Discretize equations using a finite grid (derivativesbecome differences)

Page 286: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 286/409

q g g ( become differences)

A few partial differential equations become

thousands+ of algebraic equations

Solve using numerical methods (ME elective course)

Validate solution to insure accuracy –  Even with

commercial CFD codes this step MUST be done by

user CFD always gives a pretty answer –  you must work

to make sure that answer is useful

Why Dimensional Analysis?

Imagine we are interested in the solution to

flow in a round pipe for 1000 differentcombinations of velocity fluid type (density

Page 287: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 287/409

ow a ou d p pe o 000 d e e tcombinations of velocity, fluid type (density,viscosity), and pipe diameter

Do we have to perform 1000 experiments?

1000 calculations?

Dimensional analysis determines how these

1000 cases are related to minimize the numberof independent calculations/experiments thatmust be performed

Problem Variables

For the pipe flow example, assuming the pipe

is smooth and the velocity profile does not

Page 288: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 288/409

y pchange with position in the pipe, the variablesare (experience required to generate this list)

Pipe diameter, D Centerline velocity, V

Viscosity, m

Density,  

Pressure drop,  p

Pipe length, L

),,,,(   L DV  f   p   m   

Buckingham Pi Theorem (1)

“If an equation involving k variables is

dimensionally homogeneous it can be reduced

Page 289: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 289/409

dimensionally homogeneous, it can be reduced

to a relationship among k-r independent

dimensionless groups, where r is the minimum

number of dimensions required to describe thevariables” 

Buckingham Pi Theorem (2)

k=6

p (N/m2), (kg/m3), m (N-s/m2), V (m/s), D

),,,,(   L DV  f   p   m   

Page 290: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 290/409

 p (N/m ), (kg/m ), m (N s/m ), V (m/s), D(m), L (m)

Both kg and N are not independent dimensions

since 1 N = 1 kg-m/s2; thus (N-s2/m4) r=3 (N, m, s)

 p relationship can be expressed with k-r=3dimensionless Pi groups

Dimensionless Pi Groups (1)

To determine Pi groups

Select one variable for each of the independent

Page 291: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 291/409

Select one variable for each of the independent

dimensions (N, s, m) –  these are called repeating

variables

E.g.: D (for m), V (for s),  (for N) For the other non-repeating k-r variables construct

dimensionless parameters using only the non-

repeating variable and the repeating variables as

needed

Dimensionless Pi Groups (2)

 p (N/m2)  z  y x

m D s

mV 

m

 s N 

m

 N  p

 

 

 

 

 

 

 

 

 

 

 

 

 

4

2

2

   

Page 292: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 292/409

This is dimensionless for x=-1, y=-2, z=0

m (N-s/m2)

x=-1, y=-1, z=-1

L (m)

By inspection

12 

 p

  

 z  y x

m D s

mV 

m

 s N 

m

 s N  

  

 

 

  

 

   

  

 

  4

2

2   m 

2VD  

3 D

 L

Result of Pi Group Construction

),,,,(   L DV  f   p   m   

Page 293: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 293/409

Becomes

The Pi groups are not unique, we could form different

dimensionless ratios but in any case we would get a

relationship among a non-dimensional pressure drop

versus two non-dimensional groups

12 

 p

    2

VD  

m 3

 D

 L

 

  

 

 

  

 

 

  

 

 

  

  

 D

 LVD f  

 p,

2 m 

  

  

Common Dimensionless Groups

Some groups are used so often that we have

named them: (many more than shown here)

Page 294: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 294/409

( y ) Reynolds number

Inertial forces/viscous forces

Froude number Inertia/gravity

Euler number

Pressure/momentum

Mach number

c=speed of sound

  VDRe

 gLV  Fr  

2V 

 p Eu

  

c

V  Ma

 

Page 295: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 295/409

 

Page 296: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 296/409

 

Page 297: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 297/409

 

Page 298: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 298/409

Reynolds Number

Re is the most important parameter in fluid

mechanics –  it defines the relative importance

Page 299: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 299/409

pof viscosity to inertial forces

Low Re, viscosity dominates

High Re, inertia dominates Movie  –  Effect of Reynolds number on

viscous behavior

We will see later that Re also determines whenlaminar flows become turbulent

  VDRe

A Specific Example –  Pipe Flow

We derived previously for laminar pipe flow

Th

22

4

1

 Rr  z 

 p

v z   

Page 300: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 300/409

Thus,

At pipe center

Integrating

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 D

 LVD f  

 p,

2

  

  

  z 

 p

 Rr 

v z 

  22

4m 

  z 

 p

 R

2

4m 

 L

 R

V  p

2

4m 

  D

 L

VD L

 DV V 

 p

  

  

  

16

2/

422

 

 

  

 

 D

 L Eu

Re

16

Compiling Data

You perform many experiments of, for

example, pipe flow pressure drop versus

Page 301: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 301/409

p , p p p p

V,D,L,,m

Data should be reported in terms of non-

dimensional Pi groups –  simplest, most useful

way to report relationships among variables

Following examples: 1 Pi group, 2 Pi groups, 3

Pi groups

Problems with 1 Pi Group

Assume the drag, F, on a spherical particle

falling through a viscous fluid is a function ofdi t d l it V d i it

Page 302: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 302/409

diameter, d, velocity, V, and viscosity, m

F[N]=f(d[m],V[m/s],m[N-s/m2])

k=4, r=3 (N,m,s)  1 Pi group

Experiment determines

F

.)(   Consnothing  f  Vd 

 F 

 m 

3Vd 

 F  Vd  F    m 3

Terminal Velocity

The sphere will reach steady state (constant V)

when the drag force and buoyancy force equalthe weight terminal velocity

Page 303: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 303/409

the weight –  terminal velocity

Stoke’s Law: mg

 g  g Vd 

mg  F  F 

 sphere fluid 

bouydrag 

    m 3Fdrag+Fb 

  g r r V   f   s

3

3

423        m   

  g r V   f   sterm

2

9

2

m      

 

Page 304: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 304/409

Problems with 2 Pi Groups

The pressure drop in a fixed-length pipe

k=5, r=3 ),,,(   DV  f   p   m   

Page 305: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 305/409

Data taken for water

and glycerin in a 0.5 in pipe

 

  

 

 

  

  

  

  

VD f  

 p2

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35

Velocity (ft/s)

   P  r  e  s  s  u  r  e   D

  r  o  p   (   l   b   f   /   f   t   ^   2   )

Water 

Glycerin

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000 100000 120000

 VD/ 

  p   /    V   ^   2

Water 

Glycerin

Problems with 2 Pi Groups (2)

Collapse of multiple data sets confirms

assumptions in Pi group development VDp

Page 306: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 306/409

For a 5-foot pipe:

 

  

 

 

  

  

  

  

VD f  

 p2

y = 18.235x-0.2456

R 2 = 0.9996

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000 100000 120000

 VD/ 

    p     /      V     ^     2

Water 

Glycerin

Power (Water)

246.0

2  24.18

 

  

 

  

  

VD

 p

5

6

Water 

Glycerin

Problems with 3+ Pi Groups

 Now we also vary pipe length ),,,,(   L DV  f   p   m   

 

 

 

 

 

 

 

    LVD

f p

,2

  

Page 307: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 307/409

0

1

2

3

4

0 20000 40000 60000 80000 100000 120000

 VD/ 

    p     /      V     ^     2

Glycerin

L/D=240

L/D=60

L/D=120

  

 

 

 

 

 

   D

 f  V 

,2 m   

 

Page 308: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 308/409

Problems with 1 Pi Group

Assume the drag, F, on a spherical particle

falling through a viscous fluid is a function ofdiameter d velocity V and viscosity m

Page 309: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 309/409

diameter, d, velocity, V, and viscosity, m

F[N]=f(d[m],V[m/s],m[N-s/m2])

k=4, r=3 (N,m,s)  1 Pi group

Experiment determines

F

.)(   Consnothing  f  Vd 

 F 

 m 

3Vd 

 F  Vd  F    m 3

Terminal Velocity

The sphere will reach steady state (constant V)

when the drag force and buoyancy force equalthe weight terminal velocity

Page 310: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 310/409

the weight –  terminal velocity

Stoke’s Law: mg

 g  g Vd 

mg  F  F 

 sphere fluid 

bouydrag 

    m 3 Fdrag+Fb 

  g r r V   f   s

3

3

423        m   

  g r V   f   sterm

2

9

2

m      

Problems with 2 Pi Groups

The pressure drop in a fixed-length pipe

k=5, r=3 ),,,(   DV  f   p   m   

Page 311: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 311/409

Data taken for water

and glycerin in a 0.5 in pipe

 

  

 

 

  

  

  

  

VD f  

 p2

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35

Velocity (ft/s)

   P  r  e  s  s  u  r  e   D

  r  o  p   (   l   b   f   /   f   t   ^   2   )

Water 

Glycerin

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000 100000 120000

 VD/ 

  p   /    V

   ^   2

Water 

Glycerin

Problems with 2 Pi Groups (2)

Collapse of multiple data sets confirms

assumptions in Pi group development

VDp 3

Page 312: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 312/409

For a 5-foot pipe:

 

  

 

 

  

  

  

  

VD f  

 p2

y = 18.235x-0.2456

R 2 = 0.9996

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000 100000 120000

 VD/ 

    p     /      V     ^     2

Water 

Glycerin

Power (Water)

246.0

2  24.18

 

  

 

  

  

VD

 p

5

6

Water 

Glycerin

Problems with 3+ Pi Groups

 Now we also vary pipe length ),,,,(   L DV  f   p   m   

 

 

 

 

 

 

 

  

D

 LVD f  

V

 p,

2

  

Page 313: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 313/409

0

1

2

3

4

0 20000 40000 60000 80000 100000 120000

 VD/ 

    p     /      V     ^     2

y

L/D=240

L/D=60

L/D=120

 

 

 

 

 

 

 

   D

fV 

,2 m   

Why Modeling?

Page 314: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 314/409

Sometimes this is really how we design

things… 

Tacoma Narrows Bridge

Bridge collapse in WA (1940) due to wind-

induced oscillations

Page 316: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 316/409

 New Tacoma Narrows bridge to have twosupsension structures side-by-side

Scale models used to test expensive designs

 New bridge tested in 9mx9m NRC wind tunnel How can we trust the results from the model?

Model Similarity (1)

We are interested in knowing a particular

variable for a large design (drag, pressure

Page 317: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 317/409

drop, oscillation frequency, etc.)

IF we know what other variables affect the

variable of interest then we can generalize therelationship in terms of Pi groups

,...),( 321     f  

Model Similarity (2)

If we build a model that has the same value of

all dependent PI groups, then the dependent Pi

d ill b

Page 318: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 318/409

group measured will be accurate

If:

Then:

real ,2mod,2     real ,3mod,3  

real ,1mod,1  

,...),( 321     f  

Example: I want to know the pressure drop that will

occur in a 3-foot diameter, 1 mile long oil pipe

while pumping 500 lbm/s of oil (thisdetermines the size of pump required)

Page 319: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 319/409

determines the size of pump required)

I have a ¼” pipe to experiment with 

Choose pipe length so that L/D is the same

Choose fluid and velocity so that Re is thesame

  

  

  

   D L f  

V  p Re,

2  

Example: (cont.)

 

  

 

 

  

 

 D

 L f  

 pRe,

2  

Page 320: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 320/409

Model Similarity (3)

In practice it may not be possible to have all

dependent Pi groups match reality –  must use

i i ff

Page 321: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 321/409

experience to capture most important effects

Validation of model must be used to insure

that all variables were included whendeveloping Pi groups

Movie  –  Physical model of plume

disbursement in city

 

Page 322: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 322/409

 

Page 323: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 323/409

Pipe Flow

We have already derived the

equation for pressure driven

laminar flow in a round pipewith no gradients in the flow

22

4

1 Rr 

 z 

 pv z   

Page 324: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 324/409

with no gradients in the flow

direction

However, this geometry isimportant enough to

consider in greater detail

Two additional effects

Turbulence

Entrance length

2

maxvV  

What is Turbulence?

Turbulent flows contain fluctuations in

velocity

Page 325: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 325/409

These fluctuations are coherent leading to

structures in the flow

Movie –  Turbulence in a stirred bowl, small

eddies dissipate first

Turbulence at a Point

For laminar flow u’=0 (no fluctuations) 

)(')(   t uut u  

Page 326: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 326/409

Turbulent flow –  fluctuations around 25%

Transition to Turbulent Flow

Movie –  Turbulence in pipe flow

Original experiment of Osborne Reynolds

Page 327: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 327/409

Importance of Reynolds Number

Experiments of Reynolds showed

Laminar flow Re<2100

Page 328: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 328/409

Turbulent flow Re>4000

Transitional flow 2100<Re<4000

Laminar part of the time

Turbulent part of the time

Weakly turbulent

Turbulence occurs when inertial forces aremuch greater than viscous forces

  VDRe

 

Page 329: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 329/409

Entrance Region

Entrance length is region in a pipe where flow

adjusts to “fully-developed” profile 

ll d l d fil i l i f d

Page 330: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 330/409

Fully developed profile is solution we found

 previously (no gradients in x)

Entrance Region

Entrance length is region in a pipe where flow

adjusts to “fully-developed” profile 

F ll d l d fil i l i f d

Page 331: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 331/409

Fully developed profile is solution we found

 previously (no gradients in x)

Entrance Length

Correlations for entrance length:

Laminar flow:Re060

l e

Page 332: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 332/409

Turbulent flow:

Laminar flows: l=0.5-125 D (Re=10-2100)

Turbulent flows: l=18-50 D (Re=4000-2x106)

Re06.0 D

6/1Re4.4 Dl e

Pressure Drop in Pipe Flow

Pressure drop is linear in fully developed region

Entrance region has extra loss due to higher velocity

gradients at wall

Page 333: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 333/409

gradients at wall

 

Page 334: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 334/409

Friction Factor We found a non-dimensional relationship for

laminar pipe flow (based on centerline V):

 

 

D

 L Eu

Re

16

 

 

 

 

D

 L

VDV  p

m      16

2

Page 335: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 335/409

Based on average velocity:

The friction factor, f is defined such that:for laminar flow:

   DRe   

    DVD  

 

  

  

  

 

 D

 LV  f   p   2

2

1  

 D

 LV 

 D

 L

 DV V  p   22

Re

32

2164    

  

m     

 

  

  

  

 

Re

64 f  

Head Loss in Terms of f

Recall from modified Bernoulli’s equation 

lh z V  p

 z V  p

2

2

221

2

11

22

Page 336: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 336/409

Friction factor is directly related to loss in pipe

flow

l  g  g 

  2122   g g 

 

  

  

  

 

 D

 L

 g 

V  f  

 phl 

2

2

 

Page 337: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 337/409

Effect of Wall Roughness

Wall roughness

also increasesfriction factor

Page 338: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 338/409

friction factor

e, is height of

average perturbation of

wall shape

Friction Factor

The friction factor f is defined such that

 

  

 

 D D

 LVD g 

 p   e 

  

  

,,

2

1   2

Page 339: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 339/409

The friction factor, f, is defined such that

Thus,

For laminar flow f=64/Re

 

  

 

 

  

 

 D

 LV  f   p   2

2

1  

 

  

 

 D g  f    e Re,

Moody Chart

Page 340: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 340/409

Head Loss

Moody chart used to estimate f for a turbulent

flow

Head loss for pipes in a system added together

Page 341: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 341/409

Head loss for pipes in a system added together

to determine total pressure drop

  

  

  

    D

 L g 

V  f   ph L2

2

 Lh z  g 

V  p z 

 g 

V  p   1

2

111

2

11

22   g g 

Minor Losses (1)

Additional elements in a pipe flow system can

cause pressure loss

Loss coefficient K

Page 342: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 342/409

Loss coefficient, K L 

2

21 V 

 p K 

 L  

 g 

V  K h  L L

2

2

minor ,  

Minor Losses (2)

Page 343: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 343/409

Moody Chart

Page 344: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 344/409

Minor Losses

Loss coefficients

are tabulated formay conditions

Page 345: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 345/409

may conditions

Specified by

manufacturers offlow products

 

Page 346: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 346/409

 

Page 347: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 347/409

 

Page 348: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 348/409

 

Page 349: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 349/409

Turbulent Flow

The average defined by:

)(')(   t uut u  

T t 

udt T

u  1

Page 350: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 350/409

t T 

0)('   t u

0'2 u

''vu

Turbulent Transport Correlation in velocity fluctuations can lead to

enhanced transport of momentum

Enhanced transport appears to be extra

viscosity

Page 351: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 351/409

viscosity

0''   vu

Turbulent Viscosity

In turbulent flows shear stress (from nonlinear

udu/dx terms):

y

uvu

y

ut  xy

  m m   m     ''

Page 352: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 352/409

Where the turbulent or eddy viscosity is

If we can define h then we can solve for theaverage velocity profile

 y yy

 yu

vut 

/

''  h m 

Turbulence Modeling

There are no exact solutions in turbulent flows

 –  a model for h must be assumed

For different problems a variety of models for

Page 353: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 353/409

For different problems a variety of models for

h have been proposed/tested

 None are perfect –  for some cases they work

and others they fail

Turbulence modeling is an active research area

A Turbulent Model Example

Prandtl proposed the so-called mixing length

model: ul 

  2  h 

Page 354: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 354/409

Where the mixing length, l, is defined as the

distance to a wall (in bounded flows)

In other problems l is defined differently

 y

Pipe Flow Fluctuations in

velocity carry

extra momentumtoward wall

Hi h

Page 355: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 355/409

Higher meanvelocity gradients

at wall Friction higher

for turbulentflows

n

 R

u  /1

1    

  

 

Effect of Reynolds Number As Re increases, exponent of velocity profile

increases  larger friction at wall

Movie –  Laminar versus turbulent pipevelocity profile

Page 356: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 356/409

velocity profile

n

 R

u  /1

1  

 

 

 

 

External Flow over Objects

When anexternal flow

encounters anobject, the no-slip condition

Page 357: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 357/409

pcauses steepvelocity

gradients at thesurface

The regionover which theobject is felt bythe flow iscalled the

 boundary layer

Far from the object the flow remains

uniform and viscous effects can beneglected since there are no appreciable

velocity gradients

External Flow over Objects

When anexternal flow

encounters anobject, the no-slip condition

Page 358: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 358/409

pcauses steepvelocity

gradients at thesurface

The regionover which theobject is felt bythe flow iscalled the

 boundary layer

Far from the object the flow remains

uniform and viscous effects can beneglected since there are no appreciable

velocity gradients

Boundary Layer

The velocity profile in the

 boundary layer goes from zeroat the wall to the free stream

Page 359: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 359/409

value at infinity

The thickness of the boundarylayer is defined as,  =

y(u=0.99), where the velocity

is 99% of the free stream value

Solution of Boundary Layer

 Navier Stokes equations for 2-D B-L:

 x g  z 

w

 y

v

 x

u

 x z 

u

 y

u

 x

u

 x

 p

 z 

uw

 y

uv

 x

uu

u  m m m m           

 

  

 

2

2

2

2

2

2

Page 360: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 360/409

 Neglecting (1) unsteady effects, (2) gradients

and flow in z-direction, (3) gravity

  Plus mass conservation:

 y g  z 

w

 y

v

 x

u

 y z 

v

 y

v

 x

v

 y

 p

 z 

vw

 y

vv

 x

vu

v  m m m m           

 

  

 

2

2

2

2

2

2

2

2

2

2

 y

u

 x

u

 x

 p

 y

uv

 x

uu

m m     

2

2

2

2

 y

v

 x

v

 y

 p

 y

vv

 x

vu

m m     

0

 y

v

 x

u

Blasius Assumptions

Blasius (1908) –  student of Prandtl

 Noted that boundary layers are small (/L<<1)

Therefore v<<u, d/dx<<d/dy

Page 361: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 361/409

, y

Thus dp/dy must be small  pressure is constant

across a boundary layer

The pressure of the free stream is imposed on thesurface

 small  small  small 

 small 

 small 

 y

v

 x

v

 y

 p

 y

vv

 x

vu

2

2

2

2

22

m m     

Flow Over a Flat Plate

Since the free

stream for flow overa flat plate is

Page 362: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 362/409

uniform velocity,

dp/dx=0

2

2

2

2

2

 y

u

 x

u

 x

 p

 y

uv

 x

uu

 small  zero

m m     

2

2

 yu

 yuv

 xuu

m     

Non-dimensional BL Equations (1)

Can non-dimensionalize equation choosing:

x*=x/L, u*=u/U, y*=y/, v*=v/V (to be

2

2

 y

u

 y

uv

 x

uu

m     0

 y

v

 x

u

Page 363: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 363/409

x x/L, u u/U, y y/, v v/V (to be

determined)

From mass conservation:

The non-dimensional terms du*/dx* and

dv*/dy* will be of the same order of

magnitude if V=U/L

Thus, v*=vL/U

0*

*

*

*

 y

vV 

 x

u

 L

 

0*

*

*

*

 y

v

 x

u

Non-dimensional BL Equations (2)

Becomes:

2

2

 y

u

 y

uv

 x

uu

m     

2*

*2

2*

**2

*

**

2

 y

uU  yuv

 LU 

 xuu

 LU 

 m 

      

Page 364: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 364/409

Boundary layer thickness  depends on LRe-1/2 

2*

*22

2*

*2

2*

**

*

**

 y

u L

UL y

u

 L

 y

uv

 x

uu

 

  

 

 

  

 

   

   

2*

*22

1

*

**

*

** Re

 y

u L

 y

uv

 x

uu

 

  

 

 

 

Boundary Layer Thickness

 Numerical solutions show C=5 for laminar flow 

For Re>105 the BL will become turbulent

2/12/1 ~Re   LUL

CLCL  

m      

2/1Re5     L 

Page 365: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 365/409

 

Page 366: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 366/409

 

Page 367: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 367/409

Displacement Thickness (1)

Because the velocity slows at the plate, there is less

mass flux through the boundary layer than in theouter flow

Th fl t b di l d b di t *

Page 368: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 368/409

The flow appears to be displaced by a distance *

0

* udyU U  

Displacement Thickness (2)

If the shape of the boundary layer profile is

known, the displacement thickness can befound

* 1   dyU

Page 369: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 369/409

From numerical solutions

Displacement thickness is equivalent to

 boundary layer thickness but is not arbitrarily

defined (99%U)

0

     34.0Re721.1   2/1*    L

Drag on Plate

Shear stress at the plate can also be calculated

from velocity profile (du/dy at wall)

From numerical solutions:

Page 370: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 370/409

Friction coefficient defined as:

 LU U  LU w   

  

 m 

   22/3

332.0332.0  

2/1

2

Re664.0

21

c   w

 f    

 

Drag/Friction Coefficient

For pipes

Where pA is the drag in the pipe

 

  

  

  

 

 D

 LU  f   p   2

2

1  

Re

64

2

1   2

 

 

 

 

 

 

 

 

 f  

 D

 L

 p

  

Page 371: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 371/409

Where  pA is the drag in the pipe

For a flat plate drag is the integral of shear

stress across the plate: 

2/1

0  22

Re328.1

2

1

2

1

 L

w D

bLU 

bdl 

bLU 

 Drag C 

  

 

  

 

Page 372: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 372/409

 

Page 373: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 373/409

Inviscid Flow Over a Sphere (1) Flow stagnates on

front of

sphere/highest pressure

Page 374: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 374/409

Flow is highest

velocity/lowest pressure at top of

cylinder

Flow achieves highest

 pressure again at rearstagnation point

Inviscid Flow Over a Sphere (2) What is the net

force on cylinder?

 No viscous stress

Pressure

Page 375: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 375/409

Pressure

distribution is

symmetricright/left and

top/bottom

Inviscid flow hasno net force

(drag/lift)

Viscid Flow Over Cylinder (1)

Fluid near wall subject to viscous drag

Higher pressure from outer flow imposed

across boundary layer

Page 376: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 376/409

Viscid Flow Over Cylinder (2)

Flow from A-C high-medium pressure

(favorable pressure gradient)

Flow from C-F medium to high pressure

Page 377: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 377/409

(adverse pressure gradient)

Boundary layer separates

Flow Separation

Separated flows are no

longer thin boundarylayers

Flow recirculates behind

Page 378: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 378/409

Flow recirculates behindseparation point, pressure is less thanwould be achieved byinviscid flow

 Net drag caused by thisseparated flow

Effect of Re

At low Re, viscosity isimportant everywhere(wide boundary layer)

Flow happens to resembleinviscid flow

Page 379: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 379/409

inviscid flow

At moderate Re, the flowis laminar but effects ofviscosity are apparent inseparation

At high Re, the flow isturbulent

Drag Coefficient

The asymmetric pressure distribution caused

 by separation leads to drag A drag coefficient is defined as

Page 380: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 380/409

CD depends on Re, geometry, surface

roughness, etc –  because flow separation

changes with these parameters

 AU 

 Drag C  D

2

21   

Example Drag Coefficients

Page 381: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 381/409

Drag Coefficient

The asymmetric pressure distribution caused

 by separation leads to drag A drag coefficient is defined as

Page 382: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 382/409

CD depends on Re, geometry, surface

roughness, etc –  because flow separation

changes with these parameters

 AU 

 Drag C  D

2

21   

Example Drag Coefficients

Page 383: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 383/409

More Examples

Page 384: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 384/409

CD versus Re

Page 385: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 385/409

Impact of Aerodynamic Designs

Wind tunnel testing has enabled more

aerodynamic (lower CD auto designs)

Page 386: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 386/409

Lift All objects have

drag, but liftrequires anasymmetricgeometry or flow

Flow over an

Page 387: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 387/409

airfoil can be

asymmetric eitherthrough the wingshape or by tiltingthe wing relativeto the incoming

flow (angle ofattack)

 AU 

 Lif t C  L

2

2

1  

Airfoils (1)

Page 388: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 388/409

Airfoils (2) Pressure

 below airfoil

is higher that pressure aboveairfoil

Page 389: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 389/409

airfoil

Edge of winggenerateswing tipvortex

Movie 

 

Page 390: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 390/409

 

Page 391: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 391/409

Why are Golf Balls Dimpled? (1)

Reynolds number: (~30 m/s, D~0.05 m,

v=1.46e-5 m2/s) Re=105  –  almost exactly at transition to

t b l t b d l

Page 392: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 392/409

turbulent boundary layer

Dimples on golf balls can help trip boundarylayer and cause turbulence sooner

Why are Golf Balls Dimpled? (2)

Turbulent BL

separates later –  causes lower drag

Page 393: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 393/409

Two Major Sources of Drag

Separation –  this form of drag is due to large

 pressure gradients across object (dominantdrag for blunt objects) –  lower for turbulent

BL

Page 394: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 394/409

BL

Surface friction –  this form of drag due to boundary layer velocity gradients (dominant

for streamlined objects without separation) –  

higher for turbulent BL

 

Page 395: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 395/409

Fluid Mechanics

Application of mass conservation and

momentum balance to solve for flow (velocityand pressure)

Since many fluid flows are complicated and

Page 396: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 396/409

y pcan’t be directly solved, simplified approachesare usually used

ME 250 was a study of various tools/simpleanalysis approaches to understand fluid flow

and its interactions with surfaces

Navier Stokes Equations The most complete description of fluid flow is the

full NSE –  mass conservation, momentum balance

at all points in the flow for Newtonian fluids   g V V  pV V 

V   

  m m       

  2   0

  

  

Page 397: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 397/409

 x g  z 

w

 y

v

 x

u

 x z 

u

 y

u

 x

u

 x

 p

 z 

uw

 y

uv

 x

uu

u  m m m m           

 

  

 

2

2

2

2

2

2

 y g  z 

w

 y

v

 x

u

 y z 

v

 y

v

 x

v

 y

 p

 z 

v

w y

v

v x

v

ut 

v

  m m m m             

 

 

 

2

2

2

2

2

2

 z  g  z 

w

 y

v

 x

u

 z  z 

w

 y

w

 x

w

 z 

 p

 z 

ww

 y

wv

 x

wu

w  m m m m           

 

  

 

2

2

2

2

2

2

0

 z 

w

 y

v

 x

u

        

Appendix A - CFD

For a general complicated flow, simple tools

cannot recover local velocity fields CFD can solve NSE for complex flows

CFD h ld l b d h NEED

Page 398: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 398/409

CFD should only be used when you NEED

local velocity information AND the flowcannot be solved by a simpler approach

Chapter 6 –  Solve NSE Directly

Start with full NSE

Make reasonable assumptions and eliminateterms

S l i lifi d diff i l i

Page 399: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 399/409

Solve simplified differential equations

Apply boundary conditions

Use this approach when you have a simple (1-

D) flow and NEED to know local velocity

 profiles

Chapter 3, 6 –  Neglect Viscosity

For flows far from walls and at high Re, the

effects of viscosity are negligible Potential and stream function solutions can be

added together (superposition) 02 f

Page 400: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 400/409

added together (superposition)

Or velocity field is known (uniform)

Bernoulli’s equation gives pressure from

velocities

Use this approach when you NEED localinformation AND the flow is inviscid

0  f 

Chapter 2 –  Fluid Statics

If velocity is zero everywhere, NSE reduce to

Pressure field is directly related to gravity (oracceleration of system)

 g  p 

  

Page 401: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 401/409

acceleration of system)

Buoyancy is upward force on submergedobject due to density of fluid

Manometer analysis is common application offluid statics

Use this approach when V=0

Chapter 5 –  Integral Analysis (1)

Integral analysis applies to a control volume

for a system Integral analysis provides NO information

about the flow inside the system

Page 402: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 402/409

y

Reynolds transport theorem used to deriverelationships for system mass and momentum balance

 

cscv

 sys dAnV bbd t  Dt 

 DBˆ

    

Chapter 5 –  Integral Analysis (2)

Mass conservation

Momentum equation

0ˆ  

cscv

dAnV d 

    

Page 403: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 403/409

Be careful with integration and signs

Use this approach when you need ONLY

information for control volume and you havesufficient information at boundaries

 

cscv

 sysdAnV V d V 

 F    ˆ

    

Dimensional Analysis

Dimensional analysis is useful for finding how

different fluid problems are related to oneanother

Useful for integral and differential analysis

Page 404: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 404/409

g y

Useful outside of fluid mechanics Use this approach in general to understand

actual parameters affecting problem

Dimensional analysis does not provide specificinformation only an understanding ofgoverning parameters

Losses, Friction, Drag (1)

Loss factors describe overall system behavior

 –  like integral analysis this is not useful if you NEED local information

Use loss friction drag factors to design pipe

Page 405: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 405/409

Use loss, friction, drag factors to design pipe

systems, understand overall pressure losses Pipe friction –  use Moody chart to determine f

 f  

 D LV 

 p

  

  

  

  

2

21   

Losses Use loss tables to compute K for components

Use drag coefficient tables to compute CD for

 K 

 p

  

  

2

21   

Page 406: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 406/409

objects

Use loss coefficients when you need ONLY

overall pressure drop for a system or dragforce

 AU 

 F C    Drag 

 D2

2

1  

Other Things to Know..

What IS viscosity? What effects does it have

on flow? How does pressure affect flow?

H d fl id d f d t l it ?

Page 407: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 407/409

How do fluids deform due to velocity?

How do pitot static tubes work?

What is the vena contract effect?

Turbulent Flow At high Re, all flows become turbulent

Eddies (vortices) carry momentum in alldirections

Faster mixing of momentum, flatter velocityfil

Page 408: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 408/409

 profiles

Turbulent viscosity used as a model toapproximate effects of eddy mixing

You do not have sufficient background in

turbulent flows yet to calculate local velocityfields (but can still use loss factor charts)

Exam Coverage (1)

Fluid Kinematics (10%)

Acceleration, dilitation, angular deformation,vorticity

Fluid Statics (10%)

Page 409: ME 3250 - Lectures

8/21/2019 ME 3250 - Lectures

http://slidepdf.com/reader/full/me-3250-lectures 409/409

Fluid Statics (10%)

Manometers, pressure distribution on submergedsurfaces

Inviscid Flows (10%)

Bernoulli equation, stream functions

Exam Coverage (2)

Integral Analysis (25%)

Mass and momentum balance

Differential Anlaysis (25%)