Top Banner
β-Ga 2 O 3 Material Properties of Beta-Gallium Oxide James S. Speck 1 and Steven A. Ringel 2 1 University of California Santa Barbara 2 The Ohio State University
34

Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Aug 26, 2021

Download

Documents

dariahiddleston
Welcome message from author
This document is posted to help you gain knowledge. Please leave a comment to let me know what you think about it! Share it to your friends and learn new things together.
Transcript
Page 1: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

β-Ga2O3

Material Properties of Beta-Gallium Oxide

James S. Speck1 and Steven A. Ringel2 1University of California Santa Barbara 2The Ohio State University

Page 2: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Work Plan

Year 1

UCSB Task 1 MBE Growth of β-Ga2O3 – Unintentionally-doped (UID) Films

UCSB Task 2 Sn and Si Doping Studies

OSU Task 1 Baseline Schottky Diodes and Initial Characterization

OSU Task 2 Baseline Trap Spectrum for UID β-Ga2O3

Year 2

UCSB Task 3 Sn and Si Doping Studies (completion)

UCSB Task 4 Mg Doping Studies

OSU Task 3 Bandgap States in n-type β-Ga2O3 / Completion of UID Studies

OSU Task 4 Transport Measurements

Year 3

UCSB Task 5 Mg Doping Studies (completion)

UCSB Task 6 Development of (Al,Ga)2O3 growth

OSU Task 5 Transport Measurements

OSU Task 6 Bandgap States in Mg-doped β-Ga2O3

OSU Task 7 Evaluation of Traps in β-(Al,Ga)2O3 and Heterostructures

Page 3: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Outline

1. ‘New’ electronic material – β-Ga2O3

2. Growth studies

Homoepitaxy

Heterostructures

3. Process and transport

4. Defect spectroscopy

5. Conclusion and ongoing work

Page 4: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Wide Bandgap Semiconducting Oxides

Material Crystal

structure

Gap

(eV) Features Substrate

Issues/

Opportunities

Growth

technique Applications

ZnO Wurtzite 3.40 polar Sapphire,

GaN, ZnO

dominant donor,

p-doping,surface

accumulation

MOCVD TCO, sensors,

light emitters

In2O3 Bixbyite 2.70 conductivity YSZ

CeO2

dominant donor,

mobility, surface

accumulation

MBE TCO, sensors

SnO2 Rutile 3.65 conductivity TiO2

dominant donor,

p-doping,surface

accumulation

MBE TCO, sensors,

light emitters

Ga2O3 Monoclinic

Rhombohedr. 4.90 conductivity Sapphire

bulk crystals;

dominant donor;

UV transparent

MBE Power

TiO2 Rutile

Anatase 3.10

high-K,

conductivity

Sapphire,

TiO2

dielectric; n-type

conductivity

Hybrid

MBE

CMOS;

tunable

capacitors;

photocatalysis

SrTiO3 Perovskite 3.25 high-K,

piezoelectric SrTiO3

dielectric; n-type

conductivity,

piezoelectric

Hybrid

MBE

CMOS;

tunable

capacitors

Page 5: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Crystal structure

a = 12.2 Å

b = 3.0 Å

c = 5.8 Å

= 90.0o

=103.7o

= 90.0o (010) (001) (100)

Ga2O3 bulk

H. Aida et al, JJAP 47, 8506 (2008)

E.G. Villora et al, JCG 270, 420 (2004)

-gallia structure

- Pulling speed: 10 mm/h

- Size: 70 mm x 50 mm x 3 mm

(Edge-defined film-fed growth (EFG) method)

β-Ga2O3

Page 6: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

β-Ga2O3

Physical Properties

Direct, dipole disallowed bandgap

4.9 eV gap

Naturally n-type

Cleavage on (100) and (001)

Poor growth on cleavage planes

Excellent growth on noncleavage planes

n-type doping

Sn, Si, Ge (Sb in development)

Deep acceptor doping

Mg

Alloys and heterostructures possible

Group III site

β-(Al,In,Ga)2O3

~4.9 eV gap

ARPES studies on β-Ga2O3

Mohamed et al., APL 97, 211903 (2010)

Valence bands

Page 7: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Growth Studies

Page 8: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Dedicated Oxide MBE at UCSB

Plasma-assisted MBE Growth

• Activated oxygen from O2 plasma

(1-2% atomic O)

• Sn, Ga, In, Sb, Mg effusion cells

• Base pressure ~10-10 Torr

• Oxygen plasma cleaning prior to

growth

Used extensively for SnO2 and In2O3

Epi

620

Materials Growth and Characterization

UCSB

Materials Characterization

Extensive suite of characterization tools

AFM, HRXRD, SIMS, XPS, TEM, atom probe

T-dependence Hall, I-V, CV, …

Substrates - Homoepitaxy

(010) β-Ga2O3 from Tamura/Koha

Page 9: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

- -Ga2O3 (010) (Tamura Corp.)

- 5 x 5 mm2

- XRD (020) -rocking scan : 83 arcsec

- 2.2 deg miscut

- Sn-doped (conductive) and Fe-doped (insulating)

Oxygen plasma:

- O BEP: ~1 x 10-5 Torr

- Plasma power: 200 W

- Active O BEP: ~1 x 10-7 Torr

Growth 620 (RF Plasma MBE)

Substrate

200 nm

Virgin -Ga2O3 (010) substrate

Experimental Details

Sample cleaning:

- Acetone and Isopropanol

- In situ O plasma cleaning (30 min, 850°C)

RMS

0.1 nm

ω (deg)

Thickness

fringes from

rigid body

displacement

hrms: 0.16 nm

Page 10: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Growth Parameter Refinement: Ga Flux

Homoepitaxial Growth

~100 nm UID β-Ga2O3 Tsub: 700 °C

O-rich growth results in favorable surface morphology

Excess Ga: rms roughness ↑, step-bunching ↑, clusters at step edges

(Clusters not removed by HCl – not Ga droplets)

ФGa - ФO* = -0.2 nm/min ФGa - ФO* = +0.2 nm/min

hrms: 1.16 nm hrms: 1.52 nm

Page 11: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Growth Parameter Refinement:

Substrate Temp and Growth Rate Homoepitaxial Growth

~100 nm UID β-Ga2O3 ФGa - ФO* = -0.2 nm/min

Tsub: 600 °C

hrms: 0.431 nm

Tsub: 650 °C

hrms:0.529 nm

Tsub: 700 °C

hrms:1.468 nm

Increasing Substrate Temperature

Enhanced Step-bunching / Surface Roughness

Optimal Temp Range: 600 – 675 °C

Peak of 3.2 nm/min (~200 nm/hr) at 60 Torr O2 foreline

45% improvement over previous PAMBE growth

Page 12: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

β-(AlxGa1-x)2O3 Alloys: Solubility

Equilibrium Al2O3-Ga2O3 Phase Diagram

V. G. Hill et al, J Am Cer Soc 35, 135 (1952)

Solubility of Al2O3 in β-Ga2O3

drastically reduced below 800 °C

by formation of AlGaO3

intermediate compound

In the typical β-Ga2O3

homoepitaxy temperature range

solubility 20-30% Al2O3

Al2O3 β-Ga2O3

Corundum β-Gallia

Page 13: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

β-(AlxGa1-x)2O3 (010) Grown by PAMBE

at 600 °C

O-rich growth - ~60 nm layers - ~3 nm/min

x = ~0.18

Grown beyond

the phase stability

limit at 600 °C

-Islanded surface

-Weak layer peak

-No fringes

Phase stability limit of ~15% Al2O3 at 600 °C (Composition confirmed by EDS)

Page 14: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

β-(AlxGa1-x)2O3 (010)

O-rich growth - ~60 nm layers - ~3 nm/min

Increasing phase stability limit with increasing temp

Phase stability limit of ~18% Al2O3 at 650 °C

Phase stability limit of ~20% Al2O3 at 700 °C

Distinct layer peak

with x = ~0.18 at 650 °C

Increased phase

stability limit at 650 °C

since layer peak

with x = ~0.18 at 600 °C

was indistinguishable

Peak roughness at

phase stability limit

Page 15: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Process and Transport Studies

Page 16: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

ICP- Superior etching technique

ICP yields much higher etch rates and smoother surfaces than RIE

BCl3 – 20 SCCM

~15 mT chamber pressure

200 nm etch depth (all BCl3)

Circular TLM measurements on etched Sn-doped β-Ga2O3 substrates in

progress to correlate roughness to contact resistance

Page 17: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Preliminary Sn-doping Study

O-rich growth - ~200 nm layers - ~3 nm/min

Electron concentrations spanning

1016-1020 cm-3

1 x 1 μm2 AFM

hrms: 0.40 nm

Sn-doping inhibits step-bunching

SnO2 surface segregation for h >250 nm

Mobility of ~120 cm2/Vs (current record)

~1.5x GaN BFOM, similar HFOM

Mo

bil

ity (

cm

2/V

s)

Page 18: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Contact and Defect Spectroscopy Studies

Page 19: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Initial Ni/β-Ga2O3 (010) Schottky Diode Screening

-3 -2 -1 0 110

-9

10-7

10-5

10-3

10-1

101

Cu

rren

t D

en

sit

y (

A/c

m-2)

Voltage (V)

UID β-Ga2O3 (010)

8 nm Ni Ti/Au

200 nm

Diode size: 300 x 300 µm2

300 K n ~ 1.04 Leakage below detection limit

-4 -3 -2 -1 00

20

40

60

80

100

Cap

acit

an

ce(p

F)

Voltage (V)

1k 10k 100k 1M0

20

40

60

80

100

Cap

acit

an

ce (

pF

)

Frequency (Hz)

300 K Ideal C-V

300 K No observable capacitance dispersion

Very high quality devices

Page 20: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

n-type background doping: UID β-Ga2O3 (010)

n detected by Hall

ND = 1.5×1017 cm-3

Although unintentionally doped, n-type conductivity via C-V and Hall

- Hall measured electron density of 1.1×1017 cm-3, with a mobility of 20 cm2/V-s

- C-V revealed n-type doping density of 1.5×1017 cm-3 (assuming εGa2O3=10*)

K. Irmscher, et al., J. Appl. Phys. 110, 063720 (2011)

n-type

300 K 1 MHz

300 K

Page 21: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

[1]. I. Lopez et al, Phys. Status Solidi A 209, No. 1, 113–117 (2012)

Ni/β-Ga2O3 (010) Schottky barrier height

SBH determined by internal photoemission (IPE) and confirmed by C-V Ni/Ga2O3 SBH is 1.55 eV at 300 K with small T dependence

Theoretical prediction of ideal SBH:

Evidence that Ni/(010)Ga2O3 SBH may be unpinned! - Plan to test different metals and orientations - Note Ni/(100) Ga2O3 SBH = 1.1 eV[2]

[2]. K. Irmscher, et al., J. Appl. Phys. 110, 063720 (2011)

• Work function for Ni ~ 5.1 eV • Electron affinity for Ga2O3 ~ 3.5 eV[1]

Calculated ideal SBH ~ 1.55 eV

0.5 1.0 1.5 2.0

0.5 1.0 1.5 2.0-15

-10

-5

0

Ph

oto

cu

rren

t (p

A)

Energy (eV)

Ph

oto

yie

ld1/2 (

a.u

.)

Energy (eV)

1.55 eV

300 K Bias = 0 V

50 100 150 200 250 300 3501.0

1.2

1.4

1.6

1.8

2.0

Barr

ier

Heig

ht

(eV

)

Temperature (K)

Page 22: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

EC- 0.62 eV EC- 1.00 eV

100 200 300 4000.000

0.001

0.002

0.003

dC

/C

Temperature (K)

RW 10 s-1

VR = -0.5 V VF = 0 V

EC- 0.82 eV

DLTS spectrum

DLTS results to explore traps within ~ 1 eV of Ec

200 300 400

dC

/C

Temperature (K)

NT (cm-3)

This work Literature*

EC- 0.62 eV 3.4×1014 low 1014 ~ mid 1015

EC- 0.82 eV 2.4×1016 mid 1016

EC- 1.00 eV 2.8×1015 low 1014 ~ mid 1016

20 30 40 500

5

10

15

ln(

T2)

1/kT (eV-1)

EC - 1.00 eV

EC - 0.62 eV

EC - 0.82 eV

Arrhenius plot

* K. Irmscher, et al., J. Appl. Phys. 110, 063720 (2011)

Red = (010) Ga2O3 (this work) Black = (100) Ga2O3*

Same DLTS traps appear in both crystal orientations for different sources

Trap concentration for EC- 0.82 eV trap is similar; possible growth sensitivity for EC- 0.62 eV and EC- 1.00 eV

Page 23: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

*broadness indicates significant lattice relaxation, under study now2

[2] A. Armstrong et al, J. Appl. Phys. 98, 053704 (2005).

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

log

()

Energy (eV)

Optical Cross Section Spectrum from Photocapacitance transient analysis provides energy levels

Ec - 4.42 eV

Ec - 2.4 eV

EG = 4.8 eV

0

1

t

o

ndt

dC

h

Fitting with Lucovsky model [1]

[1] G. Lucovsky, Solid State Commun. 3, p299 (1965).

1/2 3/2

3

( )( )

( )

o i in

E h Eh

h

DLOS exploring traps in 4.8 eV bandgap:

energy level determination

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.00

0.01

0.02

0.03

0.04

0.05

dC

/CEnergy (eV)

EG ~ 4.8 eV

Ec - 4.42 eV Ec - 2.4 eV

RT VR = -0.5 V VF = 0 V

Steady State Photocapacitance provides concentrations

Energy level NT (cm-3)

EC- 2.4 eV* 1.5×1015

EC- 4.42 eV 1.0×1016

Page 24: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Summary

Research highlights:

• Optimized (010) β-Ga2O3 homoepitaxial growth

• Developed β-(AlxGa1-x)2O3/Ga2O3 heterostructures

• Establish Al solubility limit

• Developed RIE and ICP etch technology of (010) β-Ga2O3

• High electron mobility in β-Ga2O3

• High quality Ni/Ga2O3 Schottky diodes

• SBH appears to be unpinned at 1.5~1.6 eV over wide range of temperatures

• DLTS and DLOS trap studies

EC

EV NT~ 1x1016 cm-3

EC - 2.4 eV

EC - 4.42 eV

EC - 1.00 eV EC - 0.82 eV

EC - 0.62 eV Next steps:

• characterize MBE grown epilayers as

function of doping (Si, Sn, etc), growth

conditions

• Explore AlGaO/GaO heterostructures

• Measure SBH with different

metal/orientation

• Variable temperature Hall, C-T to determine

activation energy for background donor

Page 25: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Background Slides

Page 26: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Deep level transient/optical spectroscopy (DLTS/DLOS)

• Probe entire EG to ~ 5.5 eV

• <0.02 eV energy resolution

• Sensitive to NT >~ 10-5ND

DLTS/DLOS:C,G,Y,I..

Nano-DLTS/DLOS/SPM

EC

EV

DLTS EC to EC - 1eV

DLOS EC – 1 eV to EV

Semi-transparent Schottky

Ohmic

GaN template

n-GaN, uid(n)-InGaN,

or n-AlGaN

n+GaN:Si epi

Advanced Defect Characterization

OSU

Page 27: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

DLTS and DLOS

EC

EV

ET

Quiescent Condition

0V

EC

EV

ET

Electrical pulse to fill traps

0V

EC

EV

ET

Trap emission (Thermal/Optical)

0V

• Trap modulation:

Capacitance transient

• DLTS: thermal emission • DLOS: optical emission

150 200 250 300 350 400

0.000

0.002

0.004

0.006

Temperature (K)

DL

TS

Sig

na

l (p

F)

32 34 364

5

6

7

8

ln(T

2/e

n)

1/kT (eV-1

)

Steady State Photocapacitance

2 3 4 5

0

2x1016

4x1016

6x1016

8x1016

2N

D

C/C

(c

m-3)

Incident Energy (eV)

ET , NT

NT1

EG

NT2

Arrhenius plot & DLTS spectra

ET , NT slope, peak height onset, step height

~1 eV

Ec

Ev

DLTS DLOS

EF

Full coverage of EG

~2.4 eV

gEh

Page 28: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Growth Rate of -Ga2O3 by MBE

Goal: Growth diagram of -Ga2O3 (010)

M. Tsai et al, J. Vac. Sci. Tech. A28, 354 (2010)

Ga2O3 + 4Ga → 3Ga2O↑

K. Sasaki et al, J. Cryst. Growth 378, 591 (2013)

(100) & (001) : Cleavage plane

Narrow growth window Small growth rate

-Ga2O3 (100)

O plasma: 200 W

Growth T: 800oC

O2: 1 sccm

Ga: 2x10-7 Torr

Page 29: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

~1 eV

~1 eV

~1.4 eV ??

Ec

Ev

DLTS

DLTS

EF

DLTS can’t “see” mid-gap states!

Exponentially worsens with increasing Eg – even worse for AlGaN!

EC

EV

>3.4 eV

ET1 = EC-0.6 eV

ET2 = EC-1.3 eV

~30 ms

~63 yrs

300K time constant

Wide bandgap reveals limitations for trap detection approaches based on thermal carrier emission (e.g. DLTS)

Tk

EENve

B

CtCnnn exp

Why DLOS

Page 30: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

-8

-7

-6

-5

-4

-3

-20.00.2

AlxGa

1-xNIn

xGa

1-xN

Al %In %

AlNInN GaN

En

ergy (

eV)

Vacuum level

100 80 60 40 20 0

20 40 60 80 100

0.39 eV

2.5 eV

0.91 eV

1.45 eV 1.76 eV

2.6 eV

1.63 eV

2.12 eV

3.11eV

3.93 eV

0.87eV

1.5 eV

0.60 eV 0.65 eV

0.25 eV

0.9 eV 1.28 eV

2.4 eV 2.5 eV 2.6 eV

3.22 eV 3.28 eV

N-Vacancy complex

Point defect cluster

NT>~ 1017 cm-3 NT>~ 1017 cm-3

NT~ 1015 cm-3

TDD related point defect

Carbon interstitial

Mg acceptor

Carbon acceptor

References: Fang et al., APL 82, 1562 (2003). Hierro et al., APL 80, 805 (2002). Hierro et al., PSSB 228, 309 (2001). Armstrong et al., APL 84, 374 (2004). Hierro et al., APL 76, 3064 (2000). Hierro et al., APL 77, 1499 (2000). Armstrong et al., APL 84, 374 (2004). K. B. Nam et al., APL 86, 222108 (2005). InGaN bandgaps: J.Wu et al. APL80, 4741 (2004). S. X. Li et al., PRB 71, 161201 (2005). L. R. Bailey et al. JAP 104, 113716 (2008). AlGaN bandgaps: Yun et al., JAP 92, 4837 (2002). C. I. Wu, APL 74, 546 (1999). C. I. Wu, JAP4249 (1998)

Grp III vacancy

Eg(InxGa1-xN)= 3.42(1-x)+0.77x-1.43x(1-x)

Evac-Ev = 6.92-0.35x

Eg(AlxGa1-xN)= 3.42+2.86x-x(1-x)

Evac-Ev = 6.92+1.26-0.5x(1-x)

0K band-gap variation of

InGaN and AlGaN alloys

Defining Energy States in III-Nitrides

Page 31: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

Additional Slides

Page 32: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

β-(Al~0.15Ga~0.85)2O3/Ga2O3 (010) Superlattice at 650 °C

Cross-sectional TEM taken in [201] zone axis projection

Roughly normal to bunched steps

Homogeneous alloy distribution and abrupt interfaces

Onset of step-bunching

Page 33: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

β-(Al~0.15Ga~0.85)2O3 (010)

Temperature Optimization

O-rich growth - ~60 nm layers - ~3 nm/min β

-(A

l ~0

.15G

a~

0.8

5) 2

O3 (

01

0)

β-G

a2O

3 (

01

0)

Tsub: 600 °C Tsub: 625 °C Tsub: 650 °C Tsub: 675 °C

hrms: 0.60 nm hrms: 0.72 nm hrms: 0.90 nm hrms: 1.12 nm

hrms: 1.12 nm hrms: 0.58 nm hrms: 0.50 nm hrms: 0.64 nm

Increasing Temperature Enhanced Step-bunching

Inclusion of Al2O3 Suppresses Step-bunching

Smoothest β-(Al~0.15Ga~0.85)2O3 (010) grown at 650 °C

Page 34: Material Properties of Beta-Gallium Oxide...E.G. Villora et al, JCG 270, 420 (2004) -gallia structure -Pulling speed: 10 mm/h -Size: 70 mm x 50 mm x 3 mm (Edge-defined film-fed growth

RIE of β-Ga2O3 (010), (-201), (100)

Average of ≥ 3 timed etches

BCl3/Cl2 – 10/10 SCCM

10 mT chamber pressure

200 W RF

10 mT chamber pressure

Reduced etch rate on (100)

Suitable etch rates ≥ 200 W

Pure BCl3 etch most effective

Reduced discrepancy in etch rates

between planes with pure BCl3

BCl3 does not etch SPR 220 or NLOF 2020 PR (Cl2 etches PR >100 nm/min)

Active components and products of etch unknown – presumably GaCl3